NEW LATE EOCENE MOLLUSKS FROM LOCALIZED LIMESTONE DEPOSITS FORMED BY SUBDUCTION-RELATED METHANE SEEPS, SOUTHWESTERN WASHINGTON

RICHARD L. SQUIRES AND JAMES L. GOEDERT
Department of Geological Sciences, California State University, Northridge 91330 and
15207 84th Avenue Ct. NW, Gig Harbor, Washington 98335 and
Museum Associate, Section of Vertebrate Paleontology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, California 90007

ABSTRACT—The trochid archaeogastropod Marginites (Pupillaria) columbiana n. sp., the mytilid bivalve Modiolus (Modiolus) willapaensis n. sp., and the vesicomyid bivalve Calyptogena chinookensis n. sp. are described from the earliest known fossil communities associated with subduction-related methane seeps. The communities are in very localized limestones of late middle to late Eocene age along the southwestern margin of Washington. These limestones contain large numbers of chemosynthetic bivalves and worm tubes, as well as other macrobenthos, that colonized around cool-temperature methane seeps along the landward slopes of an ancient subduction-zone complex.

Calyptogena chinookensis n. sp. is the earliest known species of this genus, which was previously known from Miocene to Recent.

INTRODUCTION

Three new species of Eocene marine mollusks are described from the earliest known fossil communities associated with subduction-related methane seeps. These communities were recently discovered in southwestern Washington by Goedert and Squires (1990), who reported on the details of the geologic setting, taxonomic composition, and mode of origin. The communities are in three very localized and highly fossiliferous limestone deposits of late middle to late Eocene age enclosed within deep-marine, open-ocean faunas of siliceous siltstones or muddy siltstones that are essentially barren of macrofossils.

The limestones always contain specimens of the following: a naticid gastropod and the bivalves Modiolus (Modiolus) willapaensis n. sp. and Calyptogena chinookensis n. sp. In addition, there can be specimens of the following: vestimentiferan tube worms, serpulid tube worms, the siliceous sponge Aphrocallistes polytretos, a very small fissurellid limpet, a very small pateliform limpet, the archaeogastropods Marginites (Pupillaria) columbiana n. sp. and Homalopoma sp., a buccinid gastropod, and the bivalves Acharax cf. A. dalli, Thyasira (Conchoecetidae) folieri, and a large pitarid bivalve. There can also be various decapod parts. Bivalves are always articulated and show growth series (Goedert and Squires, 1990).

Compressive forces related to on-going subduction during the Eocene in southwestern Washington squeezed subaerial surface methane-rich waters onto the ocean floor. Opportunistic organisms (such as the bivalves Modiolus and Calyptogena) that were capable of harboring methane-oxidizing chemosynthetic bacteria colonized around cool-temperature methane seeps where subsurface fluids discharged. Gastropods (such as Marginites) were grazers of bacteria that lived on the surfaces of the bivalves and worm tubes. The limestones originated from methane-derived authigenic carbonate deposits (Goedert and Squires, 1990).

Although modern examples of subduction-related communities have been reported, mainly from off the coasts of Oregon (Kulm et al., 1986) and Japan (Hashimoto et al., 1989), ancient examples are rare and so far have been confined to Calyptogena-bearing Miocene and Pliocene deposits in Japan (Kanno et al., 1989; Niitsuma et al., 1989) and Miocene–Pliocene deposits in southwestern Washington (Campbell, 1989).

The limestones, which are now mostly covered with slope wash and vegetation, are up to 15 m in thickness, 68 m in length, and 38 m in width. They will be referred to as the Humptulips, Bear River, and Menlo deposits (Figure 1). Details as to exact location, size of deposit, stratigraphic position, age, and collectors are given in the Appendix of this report. The abbreviation LACMIP = Natural History Museum of Los Angeles County, Invertebrate Paleontology Section.

SYSTEMATIC PALEONTOLOGY

Class GASTROPODA Cuvier, 1798
Order ARCHAEOGASTROPODA Thiele, 1925
Family TRICHOIDEA Rafinesque, 1815
Subfamily MARGINITINAE Stoliczka, 1868
Genus MARGINITES Gray, 1847
Type species.—By monotypy, Turbo helicinus Phipps, 1774.

Subgenus PUPILLARIA Dall, 1909
Type species.—By monotypy, Trochus pupillus Gould, 1849.

MARGINITES (PUPILLARIA) COLUMBIANA n. sp.

Figure 2.1–2.3

Marginites (Pupillaria) n. sp. GOEDERT AND SQUIRES, 1990, fig. 2q.

Diagnosis.—A Marginites with numerous low collateral costae on subtabulation near suture, 6–8 moderately strong and closely spaced spiral ribs between subtabulation, moderately strong angulation on body whorl.

Description.—Shell small, turbiniform, with 3–4 convex whorls increasing rapidly in size, spire moderately low, body whorl large; suture moderately shallow; whorls subtabulate near suture with numerous low but prominent collateral costae; penultimate whorl with 5–6 spiral ribs becoming more closely spaced anteriorly; body whorl with a moderately strong angulation, ornamented by 6–8 moderately strong spiral ribs between subtabulation and angulation and anterior to angulation closely spaced spiral ribs; umbilicus fairly wide and deep; growth lines prosocline; aperture circular. Holotype height 8.2 mm, width 8.9 mm.

Remarks.—Specimens range in height from 4 to 10.5 mm. Some are internal molds. All are incomplete, and the sculpture anterior to the angulation is described from remnants of shell. Details of the umbilical area are obscured by matrix.

The new species resembles Marginites (Pupillaria) condoni Dall (1909, p. 98, Pl. 6, figs. 7, 8; Weaver, 1943, p. 290–291, Pl. 62, figs. 17, 19) from the Empire Formation of late Miocene age (Armentrout et al., 1983) in southwestern Oregon. Unlike...
the new species, *M. (P.) condoni* is found in shallow-water deposits (Armentrout, 1967). The new species differs from *M. (P.) condoni* in the following features: smaller, lower spire, whorls more convex and less tabulate near suture, numerous low collateral costae on subtabulation near suture, weaker and more closely spaced spiral ribs, six to eight rather than five spiral ribs between suture and angulation, and no nodules on spiral ribs.

The earliest known *Margarites* (*Papillaria*) is a single specimen of *M. (P.)?* sp. Hickman (1980, p. 20, Pl. 2, fig. 7) from the Keasey Formation of late Eocene age in southwestern Washington. The new species differs from *M. (P.)?* sp. in the following features: a subtabulation near suture of body whorl, spiral ribs on body whorl much weaker and much more closely spaced, and base of body whorl not as flat.

The earliest known species of *Margarites s.s.* are the same age as the new species. One is *M. (M.) chappelli* Durham (1944, p. 154, Pl. 15, fig. 11) from the Quimer Formation, northwestern Washington. Armentrout et al. (1983) assigned this formation to the late Eocene. The other is *M. (M.) sericeus* Hickman (1980, p. 19-20, Pl. 2, figs. 5, 6, 8) from the Keasey Formation of late Eocene age in southwestern Washington. *Margarites* (*Papillaria*) *columbiana* n. sp. differs from both of these species in having spiral ribs rather than being smooth.

Etymology.—The new species is named for the Columbia River.

Material.—Nine specimens.

Occurrence.—Upper Eocene, southwestern Washington; strata temporally equivalent to lower part of Lincoln Creek Formation, locality LACMIP 5802 (Bear River deposit). (See Appendix.)

Repository.—Holotype, LACMIP 8353; paratypes, LACMIP 8358 and 8359; all from locality LACMIP 5802.

M. (M.) willapaensis n. sp.

Figure 2.4-2.6

M. (M.) willapaensis n. sp.

Figure 2.4-2.6

Diagnosis.—Shell small, smooth, narrowing posteriorly, beaks distinct and projected, hinge line about 50 percent of length of shell, umbonal ridge extending only to middle part of valve.

Description.—Shell small, modioliform, equivalement, inequilateral, maximum height at middle of dorsal margin, narrowing posteriorly; beaks prosyrate, projecting beyond commissure in anterodorsal region of shell; dorsal margin concave; hinge line about 50 percent of length of shell; posterior dorsal margin deflected ventrally; umbonal ridge on each valve extending obliquely from beak to middle part of valve; lunule small; ventral margin near straight; sculpture of fine commarginal lines of growth, tending to be coarsest on anterior part of valve just ventral of umbonal ridge. Holotype height 10 mm, length 20 mm, thickness 7.5 mm.

Remarks.—Specimens range in length from 6.5 to 27 mm, but most are about 20 mm in length. All are articulated, and no interior features were observable.

The new species resembles *M. (M.) eugenensis* Clark (1925, p. 86, Pl. 9, fig. 4; Weaver, 1943, p. 111-112, Pl. 24, fig. 8; Hickman, 1969, p. 34, Pl. 2, figs. 1-5; Moore, 1983, p. 74, Pl. 19, fig. 12) from the Eugene Formation of late Eocene age (Armentrout et al., 1983) in central-western Oregon and from the upper part of the San Emigdio Formation of late Eocene age in southern California (DeLise, 1967). Unlike the new species, *M. (M.) eugenensis* is found in shallow-water deposits (DeLise, 1967; Hickman, 1969). The new species differs from *M. (M.) eugenensis* in the following features: about three times smaller, smooth shell rather than sculptured by fairly coarse radial ribbing, posterior end of shell narrower, ventral margin straight, beaks more distinct, hinge line only about 50 percent rather than about 65 percent of length of shell, posterior dorsal margin more deflected ventrally, and umbonal ridge does not extend all the way to the posterior end of shell.

Etymology.—The new species is named for the Willapa Hills and the Willapa River Valley of southwestern Washington.

Material.—About 150 specimens.

Occurrence.—Upper middle to upper Eocene, southwestern Washington. Upper middle to upper Eocene: Humptulips Formation, locality LACMIP 12385. Upper Eocene: strata temporally equivalent to lower part of Lincoln Creek Formation, locality LACMIP 5802 (Bear River deposit); lower part of Lincoln Creek Formation, locality LACMIP 12326 (Menlo deposit). (See Appendix.)

Repository.—Holotype, LACMIP 8350; paratypes, LACMIP 8349, 8360 to 8362; all from locality LACMIP 5802.

Order VENEROIDA H. Adams and A. Adams, 1856

Family VESICOMYIDAE Dall and Simpson, 1901

Genus CALYPTOGENA Dall, 1891.
Calyptogena chinookensis n. sp.

Figure 2.7–2.11

Calyptogena n. sp. **Goedert and Squires,** 1990, fig. 2o, p.

Diagnosis.—Shell medium-sized, moderately elongate, umbones located at anterior fourth of valve, anterior margin somewhat elongate, posterior margin tapered, and interior of both valves with a narrow ridge extending posteroventrally from umbo.

Description.—Shell medium-sized, equivalve, inequilateral, moderately elongate, inflated with both valves of equal convexity; umbones low and located at anterior fourth of valve; anterior margin of valves somewhat elongate, ventrally margin long and straight, and posterior margin tapered; ligamental area opisthodetic, occupying about three-fourths of the length of posterior dorsal margin; valves sculptured with very closely spaced growth lines and a few irregular growth ridges; growth lines more prominent ventrally; interior of both valves with a narrow ridge extending posteroventrally from umbo. Holotype height 38 mm, length 90 mm, thickness 27 mm.

Remarks.—Specimens range in length from 9 to 100 mm, but most are about 80 mm in length. Most are internal molds of articulated specimens. Although no valve interiors were directly observable, an internal narrow ridge extending posteroventrally from the umbo of each valve is indicated by the presence of a groove in this region on many of the internal molds.

Because dentition features are not observable on the new species, assignment to a subgenus of *Calyptogena* is not possible.

The new species resembles the extant *Calyptogena nautili* Okutani and Mértivier (1986, p. 148–151, text fig. 1a, Pl. 1, figs. 1–3) from about 3,800 m depth in the eastern Nankai subduction zone off the Pacific coast of Japan. Horikoshi (1989) showed that *C. laubieri* Okutani and Mértivier (1986, p. 151, text fig. 1b, Pl. 2, figs. 4–7) is conspecific with *C. nautili*. *Calyptogena chinookensis* n. sp. differs from *C. nautili* in the following features: ventral margin straight rather than sinuous, ventral mar-
gin without a shallow concavity centrally, posterior end more tapered, interior of both valves with a narrow ridge extending posterovertrally from umbo.

Previously, the geologic range of genus *Calyptogena* was thought to be Miocene to Recent, with fossil occurrences confined to Japan and the Pacific coasts of North America and Central America (Keen, 1969; Boss and Turner, 1980). With the discovery of *Calyptogena chinookensis* n. sp., the geologic range of this genus is now extended into the late Eocene.

Etymology. —The new species is named for the town of Chinook, Washington, which is a few kilometers south of the type locality.

Material. —About 50 specimens.

Occurrence. —Upper middle to upper Eocene, southwestern Washington. Upper middle to upper Eocene: Humptulips Formation, locality LACMIP 12385. Upper Eocene: strata temporally equivalent to lower part of Lincoln Creek Formation, locality LACMIP 5802 (Bear River deposit); lower part of Lincoln Creek Formation, locality LACMIP 12326 (Menlo deposit). (See Appendix.)

Repository. —Holotype, LACMIP 8351, paratypes, LACMIP 8332, 8363 and 8364; all from locality LACMIP 5802.

ACKNOWLEDGMENTS

G. L. Kennedy, Natural History Museum of Los Angeles County, informed the senior author about important references and allowed access to paleontological collections. Phil Owen, Natural History Museum of Los Angeles County, alerted the senior author to the presence of the *Calyptogena* specimens in the LACMIP paleontological collections. In so doing, he initiated this study. Gail Goedert and K. L. Kaler helped in making paleontological collections of the limestone deposits. J. H. McLean, Natural History Museum of Los Angeles County, gave valuable comments regarding the identification of the trochoid archaeogastropod and allowed access to collections of Recent *Calyptogena* from the northeast Pacific. Bert Draper kindly loaned comparative material from his private collection of fossils. We thank Steve Niemcziek for allowing access to the fossil collections. We thank Steve Niemcziek for allowing access to the fossil collections.

The manuscript benefited from reviews by Ellen Moore and Lou Ella Saul.

REFERENCES

APPENDIX

LOCALITIES

LACMIP 5802. Bear River deposit. In an abandoned quarry on the south side of Bear River in the SE¼, SE¼, sec. 20, T10N, R10W, Chinook 7.5 minute quadrangle, Pacific County, southwestern Washington. In 1954, during the last active quarrying, the limestone was reported as 15 m thick, 68 m in length, and 38 m wide (Danner, 1966). Informal “siltstone of Cliff Point” (Wells, 1989). Age: late Eocene (calcareous nannofossil CP15b Zone of Okada and Bukry (1980) and benthic foraminiferal Refugian Stage) (Goedert and Squires, 1990); temporal equivalent to lower part of Lincoln Creek Formation. Collectors: J. L. and Gail Goedert, 1978, 1979, 1990.
