NOTES AND NEWS

Received for publication 20 May 1997.

NOMENCLATURAL NOTES ON HAINANPOTAMON DAI, 1995 (BRACHYURA, POTAMIDAE), ORIENTALIA DANG, 1975 (BRACHYURA, POTAMIDAE) AND ORIENTALIA RADOMAN, 1972 (MOLLUSCA, GASTROPODA, PROSOBRANCHIA, HYDROBIIDAE)

BY

DARREN C. J. YEO and PETER K. L. NG
School of Biological Sciences, National University of Singapore,
Kent Ridge Crescent, Singapore 119260, Republic of Singapore

Unfortunately, the name Orientalia had already been validly used by Radoman (1972: 196) for a genus of freshwater snails from Montenegro, Yugoslavia. This makes Orientalia Dang, 1975, a junior homonym of Orientalia Radoman, 1972.

The taxonomy of *Potamon (Potamon) orientale* Parisi, 1916, has been the subject of some discussion. Bott (1966, 1970) transferred this species to the subgenus *Ranguna (Ranguna)* Bott, 1966, mainly on the basis of its male first pleopod structure, although its carapace (rounded, smooth and convex, as well as a very narrow frontal margin) is atypical for members of the genus. Froglia & Grippa (1986) agreed with Bott's (1970) classification after examining syntypes in the Museo Civico di Storia Naturale di Milano. The genus *Ranguna* has since been shown to be heterogeneous and is a junior synonym of *Potamiscus* Alcock, 1909 (see Ng & Naiyanetr, 1993). Ng & Dudgeon (1992: 743) had commented that *Potamon orientale* Parisi, 1916, was not a member of the genus *Ranguna*, that it was actually closer to *Potamon globosum* Parisi, 1916, from Okinawa in the Ryukyus, and that the generic placements of both these species remain unclear. The establishment of a new genus for *Potamon orientale* Parisi, 1916, and its allies is thus not unexpected.

All the species now referred to either *Orientalia* Dang, 1975, and *Hainanpotamon* Dai, 1995, are clearly closely related and agree with all the major characters specified by both authors for the genus. To this effect, we have examined the types of *Potamon orientale* Parisi, 1916, *Orientalia rubra* Dang & Tran, 1992, and *O. tankiensis* Dang & Tran, 1992. The holotype of *Potamon (Geothelphusa) glabra* Dang, 1967, cannot be located at present and may be lost (N. T. Dang, pers. comm.). We thus have little doubt that *Orientalia* Dang, 1975, and *Hainanpotamon* Dai, 1995, are subjective synonyms, with the former name having priority. But since *Orientalia* Dang, 1975, itself is a junior homonym of *Orientalia* Radoman, 1972, *Hainanpotamon* Dai, 1995, becomes the first available name for the group of potamid crabs here recognized.

ACKNOWLEDGEMENTS

Thanks to Professor Dr. L. B. Holthuis for his kind help with literature and his many useful suggestions. We are also grateful to Prof. Dang Ngoc Thanh for his help with Vietnamese crab material and to Dr. Nguyen Ngoc Ho for her help in translating some Vietnamese literature. This study was partially supported by research grant RP 950326 from the National University of Singapore to the second
NOTES AND NEWS

author. This is contribution 97/11 from the Systematics & Ecology Laboratory, School of Biological Sciences.

REFERENCES

DANG, N. T., 1967. Cac loai moi va giong moi tim thay trong khu he dong vat khong xuong song nuoc ngot va nuoc lo mien Bac Viet-nam. Tap san Sinh Vat-Dia Hoc, 6: 155-164, figs. 1-10. [In Vietnamese.]

Received for publication 17 June 1997.
ON THE MALE OF MONSTRILLA MARIAEUGENIAE SUÁREZ-MORALES & ISLAS-LANDEROS (COPEPODA, MONSTRILLOIDA) FROM THE MEXICAN CARIBBEAN SEA

BY

E. SUÁREZ-MORALES
El Colegio de la Frontera Sur (ECOSUR-Chetumal), A.P. 424, Chetumal, Quintana Roo 77000, Mexico

There have been about 90 species of monstrilloid copepods described to date (Grygier, 1994), which are comprised in three recognized genera: Cymbasoma Thompson, 1888, Monstrilla Dana, 1849, and Monstrillopsis G. O. Sars, 1921. Several species are known from a single specimen only or from a few specimens of either sex. Out of more than 30 known species of the genus Monstrilla Dana, about 23 are known from only one sex, mostly females (Isaac, 1975; McAlice, 1985; Suárez-Morales, 1996). Since there is a strong sexual dimorphism in most species, it is difficult to directly match a female with the corresponding male unless they are found on the same host (McAlice, 1985). However, the structure and armament of some body parts such as the furcal rami, the antennules, and the cuticular ornamentation, can be used to relate females and males of a given species; to find them in the same sample can also be helpful (Suárez-Morales & Escamilla, in press). There are several examples in the literature with attempts to match both sexes of different nominal species (Grygier, 1995). This, for example, is the case in M. canadensis McMurrich, 1917 and M. serricornis G. O. Sars, 1921, which have been advanced as candidates for the male of M. helgolandica Claus, 1863 (cf. McAlice, 1985).

From surface plankton samples collected at the Puerto Morelos reef area, in the northern portion of the east coast of the Yucatan Peninsula, Mexico, Suárez-Morales & Islas-Landeros (1993) described Monstrilla mariaeugeniae. They based the description on the examination of 9 female specimens collected by the UNAM (Universidad Nacional Autónoma de México) marine station at Puerto Morelos (Suárez-Morales & Islas-Landeros, 1993); males were not found in those samples and remained unknown. Additional zooplankton material collected in 1990-91 from a reef area on the southern part of the same coast by CIQRO (Centro de Investigaciones de Quintana Roo), yielded more than 40 male specimens of monstrilloid copepods, which were collected along with several females identified as M. mariaeugeniae. The males were taxonomically analyzed and turned out to be identical to a “subspecies” previously described as M. wandelii tropica by Suárez-Morales (1996), from material collected by CIQRO in 1993 at the