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Phylogeny and Biogeography of Asian Freshwater Crabs of the
Family Gecarcinucidae (Brachyura: Potamoidea)

SEBASTIAN KLAUS!, DIRK BRANDIS?, PETER K.L. NG*, DARREN C.J. YEO?® & CHRISTOPH
D. SCHUBART# '

L Abteilung Okologie & Evolution, Goethe-Universitit Frankfurt, Siesmayerstr. 70-72, D-60054 Frankfurt
am Main, Germany

2 Zoologisches Museum, Universitit Kiel, Hegewischstr. 3, 24105 Kiel, Germany

3 Department of Biological Sciences, National University of Singapore, Science Drive 4, 117543 Singapore,
Republic of Singapore

4 Fakultat fiir Biologie 1 (Zoologie), Universitiit Regensburg, 93040 Regensburg, Germany

ABSTRACT

The phylogeny of the Asian freshwater crabs of the family Gecarcinucidae is investigated using the
mitochondrial large subunit rRNA gene and the nuclear encoded histone 3 gene. The results confirm
the monophyly of the Gecarcinucidae. A division into two families, Gecarcinucidae and Parathel-
phusidae, is not supported. Therefore, and in consideration of the unresolved family relationships,
all Old World freshwater crabs are assigned to one superfamily, the Potamoidea. The evolution of
structures of the second gonopod within the Gecarcinucidae is shown to involve convergent re-
duction of a complex-type groove to a simple-type groove or its complete absence. Gecarcinucids
without a frontal triangle are shown to form a paraphyletic group. Thus, these morphological char-
acters are of minor importance for clarifying phylogenetic relationships within the Gecarcinucidae.
Genetically, the Gecarcinucidae can be differentiated and separated into seven monophyletic lin-
eages and an assemblage of as yet unresolved Indian groups. We identify the Malay Peninsula and
Borneo (particularly Sabah and Sarawak), where representatives of four of these lineages occur, as
a hotspot of gecarcinucid diversity. In agreement with our phylogenetic results, an early radiation
of the Gecarcinucidae on the Indian subcontinent is postulated along with several dispersal events
from Sundaland into the Malesian (Malaysian) Archipelago.

1 INTRODUCTION

The Southeast Asian biota has been a constant focus of biogeography since the 19th century (e.g.,
Wallace 1869; Hall 2003). This interest is mainly because the region’s biodiversity hotspots (Myers
et al. 2000) coincide with a complex geography and geological history (Hall and Holloway 1998;
Morley 2000). The phylogeny of the freshwater crab family Gecarcinucidae (sensu Klaus et al.
2006) appears to be well suited to reflect both the geography and history of Southeast Asia. In
general, freshwater crabs are believed to have limited dispersal capabilities (Ng & Rodriguez 1995),
and crabs within hydrographic drainage systems can be expected to be more closely related. This
is of particular interest within Sundaland, consisting of the Malay Peninsula and the Greater Sunda
Islands (Borneo, Sumatra, and Java), as these land masses, now separated by the sea, were connected
by palaeoriver systems in times of lower sea level (Voris 2000).

The range of the Gecarcinucidae (sensu Klaus et al. 2006) covers both the Australian and Ori-
ental zoogeographic regions, and it is the only freshwater crab family that crosses Wallace’s Line.
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With currently 345 described species in 57 genera, gecarcinucids make up about 35% of the to-
tal species diversity and 46% of the genus diversity of the Old World freshwater crabs (Ng et al.
2008). Important local species radiations, based on molecular markers, have been described for
Sri Lanka (Bossuyt et al. 2004), Sulawesi (Schubart and Ng 2008), and Taiwan (Shih et al. 2007).
Nevertheless, no phylogenetic analysis of the whole family has been conducted until now. Recent
molecular phylogenies that included gecarcinucid species primarily addressed family and superfam-
ily relationships with only a limited number of gecarcinucid representatives (Bossuyt et al. 2004: 40
specimens, 20 species, 10 genera; Daniels et al. 2006: 18 species, 10 genera; Klaus et al. 2006: 25
species, 19 genera). All previous systematic approaches to the Gecarcinucidae were based primarily
on morphology, focusing on the mandibular palp (Alcock 1910), the frontal triangle (Bott 1970b),
or second gonopod characters (Klaus et al. 2006).

Our aim is to identify major evolutionary lineages within the Gecarcinucidae. Our study includes
76 gecarcinucid species of 40 genera. These genera cover 70% of the gecarcinucid genus-level di-
versity and 85% of the known species. Several genera, especially among the Indian fauna (see Bahir
and Yeo 2007), are not included. Nevertheless, the present data allow conclusions to be drawn on
the historical biogeography of the Gecarcinucidae and provide a phylogenetic framework that sets
the context for future locality or genus-based revisions. This study also contributes to a better under-
standing of the evolution of morphological characters previously used for taxonomic assignments.

2 HISTORICAL SYSTEMATIC APPROACHES TO THE GECARCINUCIDAE

Rathbun (1904) divided the Asian freshwater crabs (which were all included in the family Potami-
dae Ortmann, 1896) into two subfamilies: the Potaminae, containing most of the Asian freshwater
crab fauna, and the monotypic Gecarcinucinae for the genus Gecarcinucus. This system was funda-
mentally altered by Alcock (1910). He assigned all Asian species with a bilobed terminal segment
of the mandibular palp to the Gecarcinucinae, and retained species with a simple terminal seg-
ment within the Potaminae. Within this redefined Gecarcinucinae, Alcock (1910) recognized two
genera: Parathelphusa and Gecarcinucus. Possibly because he doubted the validity of the genus
Gecarcinucus, he mtroduced the name Parathelphusinae as a synonym for the Gecarcinucinae but
kept the latter name throughout his work. Influenced by these ideas, Colosi (1920) established within
the Gecarcinucinae the tribes Parathelphusini Alcock, 1910, and Hydrothelphusini Colosi, 1920, the
latter to include the Madagascan genus Hydrothelphusa with a bilobed mandibular palp.

A major change to this taxonomy by Bott (1969, 1970a, 1970b) recognized a superfamily
Parathelphusoidea Alcock, 1910 (later corrected to Gecarcinucoidea Rathbun, 1904, by Holthuis
1979), which included Alcock’s Gecarcinucinae and several African genera with a bilobed mandibu-
lar palp. The Gecarcinucinae sensu Alcock (1910) was split into three families, applying diagnostic
characters of the frontal triangle: the Gecarcinucidae Rathbun, 1904, with the subfamilies Gecarcin-
ucinae Rathbun, 1904, and Liotelphusinae Bott, 1969; the Parathelphusidae Alcock, 1910, with the
subfamilies Spiralothelphusinae Bott, 1968, the monogeneric Ceylonthelphusinae Bott, 1969, and
the East— and Southeast Asian Somanniathelphusinae Bott, 1968; and as the third family the Sun-
dathelphusidae Bott, 1969, from the Sunda islands, the Philippines, New Guinea, and Australia.
The latter was not further divided into subfamilies. Bott recognized within the Gecarcinucoidea 31
genera with 98 species (115 including subspecies). Later, the Sundathelphusidae were synonymized
with the Parathelphusidae (Ng-and Sket 1996).

This system was adopted by Martin & Davis (2001) with the reservation that the African species
should possibly be excluded from the Gecarcinucoidea. However, Bott’s system of subfamilies was
not generally adopted by other researchers, and there have been doubts about their validity (see Ng
& Tay 2001; Ng 2004; Bahir & Yeo 2007). The distinction of the Gecarcinucidae and Parathel-
phusidae has been questioned by several-workers (e.g., Holthuis 1979; Ng 1988, 2004; Yeo &
Ng 1999; Daniels et al. 2006), but Klaus et al. (2006) formally recognized only one family of
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gecarcinucoid freshwater crabs in Asia, the Gecarcinucidae, on the basis of gonopod morphology
and mtDNA phylogeny. All African members of the Gecarcinucidae were assigned to the Deck-
eniidae (the Deckeniinae within the Potamonautidae according to Cumberlidge et al. 2008). The
Gecarcinucidae was divided into two subfamilies based on the morphology of the second gonopod
(Klaus et al. 2006): the Indian-Sri Lankan Gecarcinucinae and the Parathelphusinae with their main
distribution in East- and Southeast Asia. Cumberlidge et al. (2008), Ng et al. (2008), and Yeo et
al. (2008), however, provisionally recognized both Gecarcinucidae and Parathelphusidae as sepa-
rate families, although, like Klaus et al. (2006), they exciuded all African freshwater crabs from the
Gecarcinucidae. )

3 MATERIALS AND METHODS
3.1 Molecular analysis

Samples for this study were obtained from different museum holdings, aquarists, and collections
by the authors between 1999 and 2006 (Table 1). Some of the museum specimens, which in-
clude type material, were more than 100 years old and made amplification of longer DNA se-
quences impossible. Genomic DNA was extracted from the muscle tissue of walking legs using
the Puregene kit (Gentra Systems). Selective amplification of an approximately 560 basepair (bp)
fragment, excluding primers, from the mitochondrial large ribosomal subunit (16S rRNA) and of

“a 320-bp fragment of the nuclear histone 3 gene (H3) was carried out by polymerase chain re-
action (PCR) under the following conditions: 40 cycles, with 45 sec denaturing at 94°C, 1 min
annealing at 48°C, and 1 min extension at 72°C (with 4 min initial denaturation and 10 min
final extension time). Especially for the H3 gene amplification, touchdown PCRs were performed
to prevent unspecific binding of primers; denaturation and elongation times as well as the cor-
responding temperatures were identical to the previous PCR profile, but the annealing temper-
ature in the first eight cycles was decreased from 52°C to 48°C (steps of 0.5°C), followed by
40 cycles with an annealing temperature of 48°C. Primers used were 16L.29 (5’-YGCCTGTTT-
ATCAAAAACAT-3’, Schubart, this volume) and 16H37 (5’-CCGGTYTGAACTCAAATCATGT-
3’, Klaus et al. 2006) or 16H12 (5’-CTGTTATCCCTAAAGTAACTT-3’, Schubart, this volume) for
the 16S and H3AF (5’-ATGGCTCGTACCAAGCAGACVGC-3’) in combination with H3AR (5°-
ATATCCTTRGGCATRATRGTGAC-3’, both Colgan et al. 1998) or the H3H2 (5’-GGCATRATGG-
TGACRCGCTT-3’) for the H3. PCR products were purified with the Sure Clean Kit (Bioline) and
sequenced with the ABI BigDye terminator mix in an ABI Prism 310 Genetic Analyzer (Applied
Biosystems, Foster City, USA). In addition to the sequences generated in this study, our phyloge-
netic analyses include previously published sequences corresponding to the same 16S and H3 gene
regions from GenBank, originating from the studies of Bossuyt et al. (2004), Daniels et al. (2006),
Klaus et al. (2006), and Shih et al. (2007).

Sequences were aligned manually with the software BioEdit 7.0.9.0 (Hall 1999) with alignment
lengths of 557 bp for 16S RNA and 318 bp for H3. A partition homogeneity test as implemented
in PAUP 4.0b was performed (100 replicates). As expected, this test showed significant differences
between the genes, as the H3 sequences are much more conserved than the 16S rRNA gene. Thus
within the phylogenetic analysis each gene supports different splits at different points in time. The
data sets for both genes were combined in one alignment. Epilobocera sinuatifrons (Pseudothel-
phusidae) was designated as the outgroup taxon.

Bayesian analysis (MrBayes 3.1.2, Huelsenbeck and Rongquist 2001) was run with four MCMC
chains for 20 million generations, until the average standard deviation of split frequencies decreased
to 0.00248. A tree was saved every 1000 generations (with a corresponding output of 20,000 trees).
Prior settings as suggested by MODELTEST 3.7 (Posada and Crandall 1998) following the Akaike
information criterion were applied (the HKY+I+G model for the H3 and the TtN+I+G model for
the 16S partition). The first 1,000,000 generations, i.e., 1000 trees (“burn-in phase™), were excluded .
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Figure 1. Terminology used for describing the second gonopod (G2) of freshwater crabs as proposed by Klaus
et al. (2006). (A) Model of a G2. (B) Cross-section of the distal part of the G2 with a complex type of groove
(Parathelphusa bogorensis). Scales are different.

from the analysis. Besides the combined analysis, the 16S partition was analyzed separately to show
the contribution of each of the two genes to the final phylogenetic conclusions. The 87 sequences
include additional sequences from GenBank (accession number indicated in the tree, see Fig. 2) and
sequences of species for which we failed to amplify the orthologous H3 sequence (see Table 1).
Bayesian analysis was run with four MCMC chains for 10 million generations (final average stan-
dard deviation of split frequencies = 0.00606) with the prior settings as suggested by MODELTEST
3.7 (HKY+I+G). The “burn-in” phase was of 1,000,000 generations and was excluded from the
subsequent analysis.

3.2  Morphological analysis

Cross-sections of second gonopods (G2) available from the study of Klaus et al. (2006) and speci-
mens additionally investigated for this study are listed in Table 2. Second gonopods were stored in
70% EtOH, decalcified in 5% trichloroacetic acid for 24 hours, dehydrated in a series of EtOH, and
embedded in Spurrs resin or Durcupan® (Fluka AG, Buchs, Switzerland), respectively. Semi-thin
sections of 2 ym thickness were cut using an ultramicrotome with a diamond-knife and stained with
Richardsons blue. The terminology used for describing the different G2 morphologies is introduced
in Fgure 1.

4 RESULTS

The combined H3-16S phylogenetic analysis (Fig. 2) and the 16S-only analysis (Fig. 3) strongly
support the monophyly of the Gecarcinucidae sensu Klaus et al. (2006) and confirm the separation
of the Gecarcinucidae from the Potamidae by the morphology of the mandibular palp as proposed by
Alcock (1910) and by sperm morphology (Klaus et al. 2008). Yet the division of the Gecarcinucidae
into Gecarcinucinae and Parathelphusinae is not reflected by the molecular phylogenies. In contrast,
several major clades are recognizable.

In the 16S-only analysis all deeper splits within the Gecarcinucidae remain polytomous or are
weakly supported. Primarily congeneric groups have maximum posterior probabilities. This indi-
cates a much faster evolution of this mitochondrial gene compared to the nuclear encoded histone
H3. Nevertheless, the 16S rRNA sequence contains valuable phylogenetic information that increases
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Figure 2. Bayesian analysis of the combined H3-16S rRNA data set, with the different lineages within the
Gecarcinucidae (G). Indicated are: a clade similar to the “Parathelphusidae” of Bott (*); a monophyletic clade
excluding all Indian species (**); and the sister clade to Sundathelphusa tenebrosa consisting of four gecarcin-
ucid lineages (**%),
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Figure 3. Bayesian analysis of the 16S rRNA data only, including sequences of species for which the amplifi-
cation of the H3 fragment failed and sequences of further species from GenBank. Indicated are the Gecarcinu-
cidae (G), the clade similar to Bott’s “Parathelphusidae” (*), and the different gecarcinucid lineages.
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the accuracy of the combined analysis. The following groups can be identified within the Gecarcin-
ucidae (referring to the combined H3-16S rRNA analysis, if not indicated otherwise).

4.1 Indian—Southeast Asian group

This monophyletic clade branches off first in the Gecarcinucidae and is the basal sister group to
all other gecarcinucids. It consists of the genera Lepidothelphusa (Borneo), Liotelphusa (India and
the Himalayas), Thaksinthelphusa (Thailand), and Phricotelphusa (northern Burma to the Malay
Peninsula).

The groove of the second gonopod of Phricotelphusa gracilipes and P. hockpingi is intermediate
in morphology between the complex (where both ventral and dorsal groove margins are broadened,
e.g., in Travancoriana schirnerae) and simple (where only the ventral groove margin is broadened,
e.g., in Gecarcinucus jacquemonti) types of the G2 grooves. In P. hockpingi the groove is formed by
a much thicker cuticle compared to the cuticle surrounding the tissue area, typical of the complex
type of G2. However, a true dorsally broadened groove margin is absent. The dorsal margin is more
prominent in P, gracilipes but is not solid and contains soft tissue.

4.2 A paraphyletic group of continental Indian species

Several Indian species included in this analysis dissociate in the combined analysis into several
clades. In the first assemblage, the genera Vanni and Cylindrotelphusa cluster together and form the
earliest split with respect to all other gecarcinucids listed below. Well supported is a clade that in-
cludes the genera Sartoriana and Maydelliathelphusa (and Barytelphusa, 16S-only). This clade oc-
curs on the Indian subcontinent excluding Sri Lanka, and its range extends north into the Himalayas
with Maydelliathelphusa and into Afghanistan and Iran in the west with Sartoriana blandfordi.
The relationship of Gecarcinucus jacquemonti, representing the type genus of the Gecarcinucidae,
to this clade and to all other gecarcinucids is unresolved. In the 16S-only analysis, all continen-
tal Indian species, even congeners, remain polytomous, except the clade that contains Sartoriana,
Maydelliathelphusa, and Barytelphusa.

Different character states of the second gonopod occur within these Indian species. Cylindrotel-
phusa and Maydelliathelphusa have the distal part of the G2 completely reduced, while the conti-
nental Indian species of Travancoriana, Sartoriana, and Snaha escheri (Gubernatoriana in Klaus
et al. 2006) possess the complex type of second gonopod groove. The specimen identified as Travan-
coriana sp. (see Klaus et al. 2006, SMF 24914), and showing the simple type of second gonopod,
turned out to belong to Oziothelphusa after reexamination. Gecarcinucus jacquemonti is so far the
only species of this set of Indian gecarcinucids with the ventral groove margin of the G2 broadened
(simple type of G2).

4.3  Sri Lankan group

This clade from the Indian subcontinent is represented in the combined analysis by Oziothelphusa
and Ceylonthelphusa. In the 16S-only analysis, Oziothelphusa and Spiralothelphusa cluster together
but connect to the Sri Lankan genera Ceylonthelphusa and Mahatha with only weak support. The -
study of Bossuyt et al. (2004), based on mitochondrial sequence data, shows that two more genera
of Sri Lanka that are not included here, Pastilla and Perbrinckia, also belong to this clade. The
sister group relationship of the Sri Lankan group to the following lineages of East and Southeast
Asian gecarcinucids is well supported (not in the 16S-only analysis). In all investigated species of
this group, the simple type of G2 occurs (Klaus et al. 2006). Within the genus Ceylonthelphusa, the
groove of the G2 is reduced and the distal part of the G2 forms a leaf-like structure.

All non-Indian gecarcinucids, excluding the genera Lepidothelphusa, Thaksinthelphusa, and
Phricotelphusa from the Indian—Southeast Asian group, form a monophyletic clade (Fig. 2).
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4.4 Philippine group

Branching off first within this clade is a group containing species from the Philippines and the
Moluccas and reaching with the genus Sendleria to New Guinea and the Solomon Islands. Sun-
dathelphusa picta, S. boex, and S. cavernicola from the Philippines cluster together in both the
combined H3-16S and 16S-only analyses. Currothelphusa asserpes from Halmahera and Sendleria
gloriosa from the Solomon Islands group together, while in the 16S-only analysis Sundathelphusa
halmaherensis is sister species to C. asserpes, and Sundathelphusa sutteri and S. celer from Luzon
form the sister group to Sendleria gloriosa. The G2 of Sundathelphusa picta and S. boex is of the
simple type. Interestingly, Sundathelphusa tenebrosa from Borneo does not cluster with the previ-
ous clade but is the sister group to all remaining freshwater crabs from East and Southeast Asia.
These in turn form a strongly supported monophyletic assemblage (Fig. 2). This set can be subdi-
vided as outlined below.

4.5 East-Southeast Asian group

Within this group, Siamthelphusa, Heterothelphusa, and Sayamia cluster together with high support.
Salangathelphusa separates at a more basal level, and Niasathelphusa wirzi appears as the sister
group to all other species of this group.

In the 16S-only analysis Salangathelphusa brevicarinata and Niasathelphusa wirzi do not con-
nect to this clade. The East Asian genus Somanniathelphusa appears as the sister group to the
Southeast Asian species, while Geithusa pulchra (Redang Island, Malay Peninsula) appears as the
sister taxon to all other species of the East—Southeast Asian group. Although having a very weak
posterior probability, Niasathelphusa wirzi clusters in the 16S-only analysis within the Bornean as-
semblage. However, in the combined H3~16S analysis, its relationship to the East-Southeast Asian
group is well supported. ‘

The range of this group covers East Asia (China, Taiwan) and Southeast Asia down to the Malay
Peninsula with the isolated occurrence of Niasathelphusa wirzi on Nias island west of Sumatra. In
the species Salangathelphusa brevicarinata and Geithusa pulchra the simple type of G2 occurs,
whereas all other species in this clade show a completely reduced distal part of the G2. This argues
for the simple type of G2 being the plesiomorphic character state within this group, with complete
reduction being an apomorphy.

4.6 Bornean group

In both analyses, this clade clusters with the East-Southeast Asian group, although this interrela-
tionship is not supported by the very low posterior probabilities. The topology of the deeper splits is
similar in both analyses, with Sundathelphusa rubra of Sulawesi diverging first, followed by Arach-
nothelphusa rhadamanthysi and then the species of the genus Thelphusula. As mentioned above,
however, in the 16S-only analysis Niasathelphusa wirzi arises between S. rubra and A. rhadaman-
thysi. This is not supported by the posterior probabilities, but again this indicates the close relation-
ship of the East—Southeast Asian group and the Bornean group. The G2 of Sundathelphusa rubra is
of the simple type with a broad ventral groove margin. Although Thelphusula baramensis has a G2
with elongated distal part, it lacks any groove structures.

The Malesian—Australian group and the genus Parathelphusa cluster together in the combined
H3-16S analysis as a monophyletic clade.

4.7  Malesian—Australian group

With Austrothelphusa, Balssiathelphusa, Geelvinkia, Holthuisana, Irmengardia, Perithelphusa,
members of the genus Sundathelphusa, Stygothelphusa, Rouxana, and Terrathelphusa, this group
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contains a diverse set of genera. Its range covers most of the phytogeographic region of Malesia
(ranging from the Isthmus of Kra on the Malay Peninsula to the Solomon Islands in the East) in-
cluding northern Australia. )

Within the Malesian—Australian freshwater crabs, there are two well-supported clades. One
clade contains the New Guinean-Australian genera Austrothelphusa, Geelvinkia, Holthuisana, and
Rouxana (16S-only), and the other clade contains the three species Irmengardia johnsoni (Malay
Peninsula), Terrathelphusa kuhli (Java), and Sundathelphusa minahassae (Sulawesi). Of the Bornean
genera belonging to the Malesian—Australian group, the genera Bakousa and Stygothelphusa cluster
together. The phylogenetic relationships of these clades along with the Bornean genera Balssiathel-
phusa and Perithelphusa are not sufficiently resolved. In the Malesian—Australian group, a G2 with
both groove margins broadened is present, although weaker developed in Terrathelphusa kuhli and
Irmengardia pilosimana. Sundathelphusa cassiope from Halmahera (Moluccas), which has a com-
plex type of G2 groove, probably also belongs to this lineage, and not, like S. halmaherensis, to the
Philippine group.

4.8 The genus Parathelphusa

The five representatives of the speciose genus Parathelphusa form a monophyletic group with iden-
tical topologies in both analyses. In the combined H3-16S analysis, Parathelphusa is the sister
group to the Malesian-Australian clade. Compared to the other Southeast Asian groups, rather short
branches occur within Parathelphusa, even between species from the western (P. maculata, Malay
Peninsula) and the eastern (P. pantherina, Sulawesi) margin of the range. Parathelphusa oxygona
from Borneo is in a sister group relationship to the other species. All examined second gonopods of
this genus have a complex type of groove.

5 DISCUSSION
5.1 Monophyly of the Gecarcinucidae

This study supports the.monophyly of the Gecarcinucidae as previously defined by Klaus et al.
(2006), corresponding to:the Gecarcinucinae sensu Alcock (1910) and the Gecarcinucoidea sensu
Cumberlidge et al. (2008) and Ng et al. (2008). The family relationships among the Gecarcinucidae,
Potamidae, and Potamonautidae are not resolved. This is also the case in the molecular analyses of
Daniels et al. (2006) and Klaus et al. (2006). Sperm morphology also provides no evidence on the
familial relationships (Klaus et al. 2008). The only morphological character shared between Potami-
dae and Potamonautidae (Potamonautinae) is the distal part of the G2 forming a closed tube (Klaus
et al. 2006). However, the Deckeniinae within the Potamonautidae have a G2 with a lateral open
groove. If this simple character state is the plesiomorphic condition in the Potamonautidae, then the
conformation of the G2 tube in the Potamidae and Potamonautinae are convergent developments. In
fact, the potamid tube is formed by groove margins that are involuted, while in the Potamonautinae
these margins broadly overlap (see Klaus et al. 2006).
There is therefore no phylogenetic evidence to unite Potamidae and Potamonautidae in a super-
~family Potamoidea and on the other hand maintain a separate superfamily Gecarcinucoidea with the
single family Gecarcinucidae. As already proposed by several authors (von Sternberg et al. 1999;
von Sternberg & Cumberlidge 2001; Klaus et al. 2006; Klaus et al. 2008), we favor the recognition
of only one superfamily of Old World freshwater crabs, the Potamoidea, that includes the Gecarcin-
ucidae, Potaridae, and Potamonautidae.

5.2 Gecarcinucid lineages and the morphology of the frontal triangle and the second gonopod

The present analysis does not support the differentiation of the Gecarcinucidae into two or three
families based on character states of the frontal triangle as introduced by Bott (1970a) and adopted
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by Martin & Davis (2001) and Cumberlidge et al. (2008). The use of the absence or presence of
the frontal triangle as a diagnostic character for the two sister groups (Gecarcinucidae and Parathel-
phusidae) implies that one of the two groups might be paraphyletic, as one of the two character
states must represent the plesiomorphic condition. This is confirmed by the present molecular phy-
logeny. Moreover, there are several genera (e.g., Ceylonthelphusa and Perbrinckia) for which it is
difficult to separate the different character states, as they show intermediate morphologies. It ap-
pears that the plesiomorphic character state within the Gecarcinucidae is the complete absence of
the frontal triangle, as indicated by its absence in the Indian and Indian—Southeast Asian groups, not
to mention its absence in the Potamidae and Potamonautidae as comparative outgroups. The same
criticism for the use of the frontal triangle can be applied for the two character states of the second
gonopod (simple groove versus complex groove) that were used by Klaus et al. (2006) as diagnostic
characters for the gecarcinucid sister groups Gecarcinucinae and Parathelphusinae. However, it is
more difficult to identify the plesiomorphic state of the second gonopod. If the complex type of G2
groove of the genus Phricotelphusa and several Indian species is homologous, it would probably
represent the plesiomorphic character state in the Gecarcinucidae. In the paraphyletic Indian group,
both types of G2 groove occur. In the common ancestors of the Malesian—Australian group and the
genus Parathelphusa, the complex type of G2 groove evolved, while the East-Southeast Asian and
the Bornean groups retained a simple type of G2 groove, as it occurs in the Philippine group (Fig. 4).

The complete reduction of the distal part of the second gonopod occurs independently in sev-
eral Indian genera and in the East-Southeast Asian group. Probably this correlates with a dramatic
change in the mechanisms involved in sperm transfer. This is also evident from the absence of a
flexible terminal joint in the first gonopod, the generally reduced length of the first gonopod, and in
modifications of the female genital apparatus in species lacking the distal part of the second gono-
pod (unpublished data).

5.3 Similarities with the system of Bott

Superficially, the splitting of the Gecarcinucidae into several subclades resembles the taxonomic
grouping of Bott (1970a), although his use of the frontal triangle as a diagnostic character and the
resulting system of three different families (Gecarcinucidae, Parathelphusidae, and Sundathelphusi-
dae) is strongly contradicted by this study. Most of Bott’s subfamilies appear as para- or polyphyletlc
assemblages. In detail, groups with certain congruence to Bott’s taxa are:

(1) The Indian—Southeast Asian group. This clade corresponds to Bott’s Liotelphusinae with
exclusion of Sartoriana, Thelphusula, and Travancoriana, while the position of Adeleana with rep-
resentatives on Borneo and Sumatra still remains unknown. Lepidothelphusa cognetti of Borneo
was previously suggested to be closely related to Phricotelphusa based on morphological charac-
ters (Bott 19702).

(2) The Sri Lankan group. This group comprises, with Oziothelphusa and Spiralothelphusa, part
of Bott’s Spiralothelphusinae (excluding Balssiathelphusa and Irmengardia) and, with Ceylonthel-
phusa, his Ceylonthelphusinae.

(3) The East-Southeast Asian group. This monophyletic clade includes all the genera of Bott’s
subfamily Somanniathelphusinae (Salangathelphusa, Somanniathelphusa, and Siamthelphusa).

(4) The genus Parathelphusa. Bott’s Parathelphusinae included the genera Parathelphusa, Nau-
tilothelphusa, and Palawanthelphusa. The latter was synonymized with Parathelphusa (Ng & Goh
1987), while Nautilothelphusa seems to nest deeply within the genus Parathelphusa of Sulawesi
(Schubart & Ng 2008), making the latter paraphyletic.

As this study includes only selected gecarcinucid representatives, it is likely that the phylogeny
may change with a larger sample size. This might affect the placements of the Indian gecarcinucid
taxa and relationships within the described groups. However, we are reasonably confident that many
of the present ideas will be reinforced. Certainly, a clade of Lepidothelphusa and Phricotelphusa
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Figure 4. Different morphologies of the second gonopod (cross-sections of its distal part) correlated with the
topology of the combined gecarcinucid H3—16S rRNA data (Fig. 2). Crosses () indicate complete reduction
of the distal part of the G2. Scale bars = 50 pm if not indicated otherwise.
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Figure 5. Approximate distribution of the different lineages of the Gecarcinucidae.

can also be justified through a suite of morphological characters (unpublished data). We refrain from
recognizing formal taxonomic ranks here.

5.4 The genus Sundathelphusa Bott, 1969

The genus Sundathelphusa contains 27 species, of which 18 are described from the Philippines with
several dozen more that need to be described (unpublished data). Together with Parathelphusa and
Somanniathelphusa, it is one of the most speciose genera within the Gecarcinucidae.

It is evident that the current taxonomic definition of Sundathelphusa is flawed, as the species in-
cluded here are distributed among at least three different lineages. Sundathelphusa rubra
(Sulawesi) is sister to the other species of the Bornean lineage (Fig. 2). Within Sundathelphusa
from the Philippines and Halmahera, Currothelphusa and Sendleria are nested, and Sundathelphusa
sp. from Sulawesi clusters within the Malesian—Australian assemblage (Fig. 3). The same applies
for S. minahassae from Sulawesi, described as a subspecies of S. cassiope by Bott (1970b). Sun-
dathelphusa cassiope itself is the type species of Sundathelphusa and originates from Sulawesi.
Therefore, the genus name will stay with the species from Sulawesi (excluding S. rubra). The genus
Sundathelphusa needs to be revised (Chia and Ng 2006), and only more detailed morphological and
molecular investigations will clarify relationships and taxonomy of this polyphyletic assemblage.

5.5 Biogeography )

Remarkably, species distribution among the lineages is more or less equal (treating the poorly re-
solved Indian groups as one paraphyletic assemblage, see Figs. 5, 6). Only the Bornean group and
the Indian-Southeast Asian group show comparably lower species numbers (Fig. 6). As expected,
most of the gecarcinucid species occur in continental Asia. Nevertheless, there are remarkable ra-
diations of gecarcinucid crabs on Sri Lanka and Borneo. New Guinea and Sulawesi also display
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Figure 6. Diversity patterns of the Gecarcinucidae. The diameter of the circles is proportional to the species
number within the respective gecarcinucid lineage (ordinate) and geographic area (abscissa). Species incertae
sedis belong to genera not included in the phylogenetic analyses.

relatively high species diversity. In contrast, well-explored Sumatra and Java are depauperate in
species number, even when considering cryptic speciation (unpublished data). Australia also shows
a minor species and lineage diversity (Fig. 6), most likely due to a more recent dispersal of fresh-
water crabs from New Guinea across the Torres Strait, although there are still several species that
need to be described (P.J.F. Davie, pers. comm.). The present analyses and the previous molecular
phylogenies of the Old World freshwater crabs (Daniels et al. 2006; Klaus et al. 2006), as well as
the fossil record (Klaus et al. 2006), argue against an origin of the Potamoidea predating the frag-
mentation of the former Gondwana continent. The fact that the Australian and New Guinean species
nest deeply within the Gecarcinucidae, given the diversity pattern of the Australian region, excludes
an Australian origin for the Gecarcinucidae.

Klaus et al. (2006) hypothesized that the Gecarcinucidae initially evolved on the Indian sub-
continent, with subsequent dispersal to East and Southeast Asia. Based on the present data, this
is difficult to resolve. The fact that the Indian groups (including the Sri Lankan group) branch off
early within the gecarcinucid phylogeny could indicate an early radiation on the Indian subcontinent.
But within the earliest separated Indian—Southeast Asian clade, taxa of both groups cluster together,
with the species branching off first being Lepidothelphusa cognetti from Borneo.

For the sister group of the Sri Lankan clade (Fig. 2), an Indian origin seems to be most parsi-
monious with this phylogenetic split having already occurred on the Indian subcontinent (see also
Bossuyt et al. 2004). As these non-Indian gecarcinucids are monophyletic, they are most likely the
result of a single dispersal event eastward out of India. It was proposed by Klaus et al. (2006) that
this dispersal event out of India could have occurred during the Miocene, when the climate became
more humid again in northern India (Morley 2000), allowing the gecarcinucid crabs to expand their
range. ‘

Because only derived members of the East—Southeast Asian lineage occur in East Asia, the
direction of gecarcinucid dispersal was probably first via the Malay Peninsula to the islands of the
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Sunda Shelf. As regression events of variable magnitude were frequent during the glaciation periods
of the Pliocene and Pleistocene, the resulting terrestrial connections could have allowed freshwater
crabs to access the Greater Sunda Islands, although it is difficult to assign this initial and later
dispersal events to defined periods of low sea level. The spreading of the Gecarcinucidae beyond the
Sunda Shelf to the Philippines, Sulawesi, Halmahera, and further to New Guinea and Australia can
be explained only by hypothetical dispersal via rafting, as there is no geological evidence to suggest
terrestrial connections between these regions. The Philippine group contains the earliest separated
descendants of such a gecarcinucid dispersal event with subsequent radiation on the Philippine
islands. The distribution of this lineage covers a dispersal pathway following the Sangihe Island
chain from the Philippine Islands to the Moluccas and with Sendleria onwards to New Guinea. This
dispersal pathway was proposed as a track of general faunal exchange with New Guinea/Australia
(Moss and Wilson 1998). .

All of the four younger lineages (the Malesian—Australian group, the East—Southeast Asian
group, the Bornean group, and Parathelphusa) probably evolved on the Sunda Shelf. Sundathel-
phusa tenebrosa from Borneo, sister group to these lineages, could represent an early clade within
this radiation. A probable hypothesis is that the initial splits occurred on Borneo itself. Borneo cer-
tainly represents a biodiversity hotspot with respect to gecarcinucid diversity. Approximately 14%
of the known gecarcinucid species occur on this island, as do representatives of four of the five
lineages with Malesian representatives (Fig. 6). In addition, several new genera and species remain
undescribed (unpublished data). The distribution pattern of the diverse Malesian—Australian group
is congruent with this hypothesis, with an early differentiation of the Bornean genera Balssiathel-
phusa, Bakousa, Perithelphusa, and Stygothelphusa. Based on the present data, this lineage reached
Sulawesi and New Guinea/Australia independently.

The East-Southeast Asian group successfully dispersed back into continental Asia. The species
branching off first, Niasathelphusa wirzi (Nias island), Salangathelphusa brevicarinata (Phuket,
Pulau Langkawi), and Geithusa pulchra (Pulau Redang Island, Malay Peninsula; 16S rRNA only),
occur as relics on small islands off the coast of Sumatra and the Malay Peninsula. Therefore, it is
probable that the East—Southeast Asian clade evolved in the area of Sumatra and the Malay Penin-
sula and spread to East Asia secondarily. During times of low sea level this could have occurred via
the Siam palaeo-river system that drained the rivers of the Gulf of Thailand to the South China Sea
(Voris 2000).

The genus Parathelphusa appears as sister group to the Malesian—Australian lineage. The rel-
atively short branch lengths within Parathelphusa could indicate a more recent spreading of this
genus, with high diversity on Borneo, and remarkable species radiations on Palawan (Ng & Takeda
1993; Freitag & Yeo 2004) and Sulawesi (Chia & Ng 2006; Schubart & Ng 2008). The genus reaches
Mindoro and Balabac via Palawan (Ng & Takeda 1993) but is not reported from other Philippine
islands. To the east, Parathelphusa has crossed Wallace’s Line onto Sulawesi and Lombok and oc-
curs in the 'west in the Malay Peninsula (Bott 1970b; Ng 1988, 1997).

6 CONCLUSIONS

Besides validation of gecarcinucid monophyly, this phylogenetic analysis increases profoundly our
knowledge of the relationships within the Gecarcinucidae. In contrast to most previous approaches
based on morphology alone, we can draw a much more detailed picture, identifying several lineages
within the Gecarcinucidae.

Biogeographically, our phylogeny appears to support an early radiation of the Gecarcinucidae
on the Indian subcontinent with subsequent dispersal to Southeast Asia. It allows the identification
of diversity hotspots (Borneo and the Malay Peninsula) based on genetic diversity. It also provides
insights to the historical freshwater crab biogeography of the Malesian (Malaysian) archipelago.
Most conspicuously, the complex geography and palaeogeographical history of this region lead
to reticulate area-lineage relationships, indicating: (1) independent colonization events at different
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time points, e.g., the Philippine group and Parathelphusa in the Philippines; the Philippine group
and the Malesian—Australian group in New Guinea; or the Malesian—Australian group, the Bornean
group, and Parathelphusa in Sulawesi; (2) recolonization events, e.g., the dispersal of the East—
Southeast Asian group back to continental Asia; and (3) species radiations of related lineages on the
same island, e.g., the Malesian—Australian group, the Bornean group, and Parathelphusa in Borneo.
Although most of the gecarcinucid distribution patterns can be explained only by dispersal, vicariant
events also contributed to the present distribution of gecarcinucid lineages, as sea level fluctuations
both enabled isolation and faunal exchange on the Sunda Shelf.
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