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The Bearing of Larval Morphology on Brachyuran Phylogeny 

PAUL R CLARK 

Department of Zoology, The Natural History Museum, Cromwell Road, London, England 

ABSTRACT 

Obtaining all developmental stages from an ovigerous decapod female is common in the laboratory. 
This is a significant advance for larval taxonomic studies, morphological descriptions, Systematics, 
phylogenetics and evolutionary theory. Yet for such studies reliable data must be founded on quality 
observations and interpretation of setotaxy using a modern high-powered microscope equipped with 
differential interference contrast. Incorrect setal counts are problematic, especially since first-stage 
zoeas of congeneric brachyuran species appear to have identical setotaxy. This similarity provides 
such a high degree of predictability within a taxon that setal differences (incongruence) in a group 
may suggest incorrect assignment of taxa. However, relationships based on differences and simi­
larities are not necessarily founded on shared derived characters, and instead may be supported by 
symplesiomorphies. The methodology involved in larval phylogenetics is also problematic. For ex­
ample, oligomerization is considered to be an evolutionary trend within Crustacea. Decapod larval 
development suggests that heterochronic processes may provide a dominant evolutionary mecha­
nism influencing loss of characters. Although using an unordered transformation series in a phylo-
genetic analysis is acknowledged to generate the most parsimonious trees, such an assumption does 
not necessarily represent a linear evolutionary pathway towards gradual terminal delay of characters 
as postulated by heterochrony for decapod larvae. A mosaic of heterochronic processes provides a 
complex evolutionary mechanism influencing oligomerization (reduction and loss) within brachyu­
ran .zoeae. This is best captured in a phylogenetic analysis by using "irreversible-up" (terminal 
delay, not terminal addition) transformation series. Reconstruction of trees using this assumption 
about character evolution generates longer trees and frequently involves more evolutionary steps 
to compensate for homoplasy. Yet there is evidence to suggest that homoplasy is common within 
many brachyuran larval lineages. Nonetheless, larval phylogenetics does appear to have advantages 
since all decapod zoeal stages are adapted to a planktonic existence, and therefore setal patterns are 
subject to similar selection pressures. Morphological differences among larvae may provide addi­
tional phylogenetic information as compared to possibly convergent adult characters that are more 
the product of the interaction between genotype and environment. 

1 WHY STUDY LARVAE? 

Historically, decapod Systematics has been established on the basis of adult morphology, but these 
phenotypic characters are the end product of the interaction between genotype and environment. 
Consequently, relationships within and between taxa may be postulated on convergence between 
adults. Another valuable and often-overlooked source of information is the morphology of decapod 
larvae. Larvae are adapted to the same habitat, a uniform planktonic environment, and as such setal 
patterns should be subjected to more or less constant selection pressures. Therefore, larval characters 
may reflect relationships better than the morphology of the adults (see Williamson 1982; Rice 1980; 
Felderetal. 1985). 
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The majority of decapod larval studies have addressed relationships within the Brachyura, and 
these have been based mostly on zoeal characters. As with the adults, larval relationships have 
normally been established on similarity and difference of morphologically features (e.g., Rice 1980; 
Martin 1984; Martin et al. 1985; Felder et al. 1985; Ng & Clark 2000; Clark & Ng 2006). But 
relationships founded on similarities among taxa may be based on ancestral characters and not 
necessarily those that are shared and derived. With this in mind, several studies have conducted 
phylogenetic analyses of zoeal characters with a view to confirming or testing relationships based 
primarily on adult morphology (e.g., Rice 1980; Clark 1983; Clark & Webber 1991; Marques & 
Pohle 1998; Ng & Clark 2001; Clark & Guerao 2008). 

The purpose of. this paper is to use a restricted set of data associated with brachyuran (mostly 
pilumnoid) zoeal stages to review some of the problems identified with constructing phylogenies 
using setotaxy. The study also aims to show that phylogenetic analysis of Xanthoidea and Pilum-
noidea zoeal characters can provide a new insight into a classification traditionally founded on adult 
convergent morphology. 

2 COLLECTING LARVAE 

Rearing decapod larvae was once considered difficult, but the use of Artemia nauplii as a food source 
has opened up the field. All aspects of larval biology, including biochemistry, ecology, endocrinol­
ogy, growth, metabolism, moulting, physiology, ultrastructure and other topics (see Anger 2001 for 
details) can now be more easily studied. Obtaining all developmental stages from an ovigerous fe­
male is now common in the laboratory. This is a significant advance for descriptive studies (alpha 
taxonomy), Systematics, phylogenetics and evolutionary theory. However, larval rearing is not with­
out its disappointments and failures. Collecting ovigerous target species still depends on sampling 
effort and a measure of luck; success is never guaranteed. Once the specimens are safely ensconced 
in a constant temperature room, rearing is time-consuming, requiring dedication and discipline to 
see it through to completion. Even then, for no apparent reason, larval cultures occasionally crash. 
These.frustrations aside, there are distinct advantages to rearing larvae in the laboratory as opposed 
to studying plankton-collected material, such as collecting all life stages with verification from ex-
uvia, providing sufficient specimens for morphological studies, and confirming the identification 
of the larvae by examining the spent female. The ability to positively identify the species is the 
distinct advantage that laboratory-reared material has over describing plankton-caught larvae. Con­
fident identification of such larvae to species level is still problematic (e.g., the third and fourth 
zoeal stages of crab larvae from Atlantic Seamounts described by Rice & Williamson 1977 are still 
unidentified). 

3 SETAL OBSERVATIONS 

After completing the task of laboratory rearing, many larval morphologists proceed to produce poor 
descriptions, typically by missing increasing numbers of setal characters during zoeal development. 
Reliable data are everything, and setotaxy must be founded on high-quality observations and in­
terpretation. Although Rice (1979) and Clark et al. (1998a) made pleas for improved standards in 
descriptions of crab zoeas, some studies are still inadequate. Zoeal and megalopal characters are still 
being either overlooked or ignored, for example, the development of the third maxilliped through 
successive zoeal moults. This situation must be resolved if there is to be progress in brachyuran 
larval research. A modern-day high-powered microscope equipped with differential interference 
contrast (DIC) is fundamental to these studies if setal ambiguities are to be resolved. Using lesser 
microscopes is inadequate for modern larval studies. Additionally, some larval characters, such as 
the endopod spine on the antennal protopod of xanthoid larvae, may be resolved only by using a 
scanning electron microscope. 
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4 ZOEAL SIMILARITY 

Brachyuran first-stage zoeas of congeneric species appear to have virtually identical setotaxy (Chris­
tiansen 1973; Clark 1983, 1984; Ng & Clark 2000). This similarity provides a high degree of pre­
dictability within a taxon. Setal differences (incongruence) within a group suggest incorrect assign­
ment of taxa and lack of systematic compatibility. For example, the first stage zoeas of Chlorodiella 
nigra (Forsk0al, 1775), Cyclodius monticulosus (Dana, 1852), Pilodius areolatus (H. Milne Ed­
wards, 1834), Pilodius paumotensis Rathbun, 1907 and P. pugil Dana, 1852 are similar, if not iden­
tical, in terms of setotaxy. Their zoeas cannot be identified to species level. An example shows the 
usefulness of this similarity: Serene (1984), based on adult features, felt that Chlorodiella biden-
tata (Nobili, 1901) did not belong in Chlorodiella and should perhaps be referred to its own genus 
within the Chlorodiinae Alcock, 1898 (now Chlorodiellinae Ng & Holthuis, 2007). If the hypothesis 
of Serene (1984) were correct, then the first-stage zoeas of C bidentata would possess a setotaxy 
identical to those of the other species assigned to the subfamily. According to Ng and Clark (2000), 
this was not the case. In fact, based on larval characters, especially the antenna, Ng & Clark (2000, 
table 6) showed that C. bidentata was not even a xanthid but a member of the Pilumnidae (now 
Pilumnoidea Samouelle, 1819; see Ng et al. 2008). 

According to Clark & Ng (2004b) there were 72 genera and 408 species of Pilumnoidea known, 
and of these the zoeas of approximately 30 species (Table 1) are described. The pilumnoid zoeal 
antenna is a conservative character in that, except for the development of the endopod, its morphol­
ogy remains unchanged with successive moults and defines all species attributed to this superfamily. 
It is characteristic of all 30 species listed in Table 1. According to Martin's (1984: 228, Fig. 1H) 
definition of xanthid group II, pilumnids are characterized by an acutely tipped antennal exopod, 
about equal in length to or slightly longer than the protopod, armed with small spinules distally, 
and with a prominent outer seta about halfway along its length; additionally, the antennal protopod 
is usually longer than the rostrum. However, Martin overlooked a second smaller medial seta on 
the exopod. Two medial setae on the antennal exopod are diagnostic of this family (Fig. 1A). Fur­
thermore, the exopod is distally bilaterally spinulate, as is the protopod. Interestingly, the antenna 
exopod of Aniptumnus quadridentatus (De Man, 1895) (Fig. IB) is more elongate than in the other 
pilumnoids described, but it still retains the two medial setae. 

Eumedonic crabs provide another example. Adult eumedonids are associates of echinoderms. 
Many brachyuran systematists have found their morphology confusing, resulting in their placement 
in various families, including the Majidae, Parthenopidae, Xanthidae, Pilumnidae, Trapeziidae, Por-
tunidae, Pinnotheridae and Eumedonidae. Ng & Clark (2001) considered the first-stage zoeas of 
five eumedonid species: Echinoecus pentagonus (A. Milne Edwards, 1879), Harrovia albolineata 
Adams & White, 1849, Permanotus purpureus (Gordon, 1934), Rhabdonotus pictus A. Milne Ed­
wards, 1879 and Zebrida adamsii White, 1847. All five possessed the same type of antenna (as in 
Fig. 1 A). On similarity of the zoeal antenna, Ng & Clark (2001) challenged the validity of the Eume­
donidae as a distinct (e.g., Martin & Davis 2001) family and suggested that these cryptic crabs were 
in fact pilumnoids. Their study of eumedonid first-stage zoeas is a classic example of larvae setal 
patterns resolving the classification of a difficult group of brachyuran species that was previously 
based on deceptive adult morphology. 

Comparisons based on differences and similarities of morphology are of interest because they 
provide an expectancy (predictability) that the first-stage zoeas of closely related species will share 
a suite of characters. However, these characters are not necessarily shared derived characters, and 
therefore relationships founded on similarities among taxa may be based on symplesiomorphic 
characters. 
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2 medial setae 
on exopod i 

(1 large, 1 small) /jf 

2 medial setae 
on exopod 

Figure 1. Diagnostic characters of the pilumnoid antenna, first-stage zoea. (A) Pilumnus hirtellus. (B) Anip-
tumnus quadridentatus. 

5 HETEROCHRONY 

Clark (2001) analyzed patterns in setotaxy and segmentation associated with abbreviated zoeal de­
velopment in three higher taxa of brachyuran crabs — two portunids, two xanthoids and a number 
of majids — with different numbers of larval stages. Included were laboratory-reared larvae of 
species with six zoeal stages [Charybdis helleri (A. Milne Edwards, 1867) by Dineen et al. 2001], 
five stages [Liocarcinus arcuatus (Leach, 1814) by Clark 1984], four stages [Lophozozymus pictor 
(Fabricius, 1798) by Clark & Ng 1998], three stages [Actumnus setifer (de Haan, 1835) described 
later by Clark & Ng 2004b], and two stages [Macrocheira kaempferi (Temminck, 1838) by Clark & 
Webber 1991, Libinia spinosa H. Milne Edwards, 1834, by Clark et al. 1998b, and Inachus dorset-
tensis (Pennant, 1777) and Inachus leptochirus Leach, 1817 both by Clark 1980, 1983]. Comparing 
these life cycles, Clark (2001) concluded that the development of different characters occurred at 
different times and/or rates, suggesting that the evolutionary history of brachyuran zoeas provided 
robust examples of heterochrony. However, Clark (2001) made no attempt to relate his zoeal theory 
to the heterochronic processes described by McKinney & McNamara (1991). 

Heterochrony can be defined as an evolutionary change in the timing of the development of a 
character between an ancestor and descendant. McKinney & McNamara (1991) illustrated a hier­
archical classification of heterochrony, reproduced here in Fig. 2A. They considered that between 
an ancestor and its descendant, development can be either reduced or increased. Accordingly, a re­
duction in development resulted in paedomorphosis (child formation), i.e., the retention of juvenile 
characters of the ancestral forms by adults of their descendants. An increase in development re­
sulted in peramorphosis, i.e., the descendant incorporating all the ontogenetic stages of its ancestor, 
including the adult stage, in its ontogeny, so that the adult descendant "goes beyond" its ancestor. 
McKinney & McNamara (1991) recognized three basic types of change for paedomorphosis and 
peramorphosis: change in rate, change in offset time, and change in onset time. Consequently, six 
kinds of developmental change were recognized: (1) the rate of change in the descendant can be 
slower (neoteny) or faster (acceleration) than the ancestor; (2) the onset time in the descendant can 
be later (postdisplacement) or earlier (predisplacement) than in the ancestor; and (3) the offset time 
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HETEROCHRONY 

PAEDOMORPHOSIS PERAMORPHOSIS 

i—I 1 r—"I 1 
Progenesis Neoteny Postdisplacement Hypermorphosis Acceleration Predisplacement 

B 
ANCESTOR 

(outgroup) 

I 
DESCENDANT 

(ingroup) 

UNDERDEVELOPMENT OVERDEVELOPMENT 

earlier offset slower rate later onset later offset faster rate earlier onset 

Figure 2. Heterochrony. (A) The hierarchical classification of heterochrony (after McKinney & McNamara 
1991). (B) Simplified version with the three heterochronic processes associated with brachyuran zoeas high­
lighted in bold. 

in the descendant can be earlier (progenesis) or delayed (hypermorphosis) than in the ancestor. The 
heterochronic system proposed by McKinney & McNamara (1991) is summarized here in Fig. 2B. 

The problem with the hierarchical system of heterochrony as proposed by McKinney & McNa­
mara (1991) in relation to larvae, in particular to zoeal characters, is that three processes are usu­
ally associated with sexual maturity, namely progenesis, neoteny and hypermorphosis. Functionally, 
Decapoda larvae are developmental and dispersal stages and are not influenced by sexual maturity, 
which develops during the postlarval phase and is continued in the juveniles and adults. Therefore, 
only three heterochronic mechanisms (see Clark 2005) appear to relate to brachyuran zoeal devel­
opment (see bold typeface in Fig. 2B): postdisplacement (Table 2), predisplacement (Table 3) and 
acceleration (Table 4). In addition, the terms onset and offset used by McKinney & McNamara 
(1991) can be used to describe the presence (expressed) or absence (delayed) of individual setae, 
segments and even developmental phases/stages. 

Table 2. Postdisplacement (underdevelopment): four setae are present (expressed, onset) in the ancestor com­
pared to 3 setae (seta 4 absent or delayed) and 2 setae (setae 3 and 4 absent or delayed, offset) in descendants 
1 and 2, respectively. 

ANCESTOR 

DESCENDANT 1 

DESCENDANT 2 

Setal 
present 
onset 
expressed 
present 
onset 
expressed 
present 
onset 
expressed 

Seta 2 
present 
onset 
expressed 
present 
onset 
expressed 
present 
onset 
expressed 

Seta 3 
present 
onset 
expressed 
present 
onset 
expressed 
absent 
offset 
delayed 

Seta 4 
present 
onset 
expressed 
absent 
offset 
delayed 
absent 
offset 
delayed 

onset of first zoeal \ offset of first zoeal stage (molt | 
stage (hatching) to second zoeal stage) 
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Table 3. Predisplacement (overdevelopment): four setae are present (expressed, onset) in the ancestor compared 
to 5 setae (seta 5 present or expressed) and 6 setae (setae 5 and 6 present or expressed, onset) in descendants 1 
and 2, respectively. 

ANCESTOR 

DESCENDANT 1 

DESCENDANT 2 

Seta 1 
present 
onset 
expressed 
present 
onset 
expressed 
present 
onset 
expressed 

Seta 2 
present 
onset 
expressed 
present 
onset 
expressed 
present 
onset 
expressed 

Seta 3 
present 
onset 
expressed 
present 
onset 
expressed 
present 
onset 
expressed 

Seta 4 
present 
onset 
expressed 
present 
onset 
expressed 
present 
onset 
expressed 

Seta 5 
absent 
offset 
delayed 
present 
onset 
expressed 
present 
onset 
expressed 

Seta 6 
absent 
offset 
delayed 
absent 
offset 
delayed 
present 
onset 
expressed 

onset of first zoeal \ offset of first zoeal stage (molt to second zoeal stage) \ 
stage (hatching) 

Table 4. Acceleration (overdevelopment) faster rate: four steps are required in the ancestor to fully develop an 
appendage from hatching to the offset of the zoeal phase compared to three and two steps in descendants 1 and 
2, respectively (see third maxilliped, Clark 2005:' 441, fig. 14). 

ANCESTOR 

DESCENDANT 1 

DESCENDANT2 

ACCELERATION | 

UNIRAMOUS BIRAMOUS 

BIRAMOUS 

BIRAMOUS 
with 

EPIPOD 

BIRAMOUS 
with 

EPIPOD 

BIRAMOUS 
with 

EPIPOD 

BIRAMOUS 
with 

EPIPOD and 
ARTHROBRANCH 

BIRAMOUS 
with 

EPIPOD and 
ARTHROBRANCH 

BIRAMOUS 
with 

EPIPOD and 
ARTHROBRANCH 

onset of hatching | offset of zoeal phase, onset of megalopal phase \ 
and zoeal phase 

6 POLARITY OF SETAL CHARACTERS 

Brachyuran zoeal molts are associated with body growth, division of somites, appearance and de­
velopment of appendages, and appearance (expression) of setae. On certain body somites and ap­
pendage segments, the number of some setae does not increase after successive zoeal moults (stages) 
and can be considered conservative. For example, the setal patterns on the second maxilliped en-
dopod of xanthoids (Fig. 3A) remain constant (conservative) throughout zoeal development (e.g., 
Lophozozymus pictor as described by Clark & Ng 1998). When analyzing these conservative setal 
characters for possible phylogenetic significance, a number of brachyuran workers (e.g., Lebour 
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Figure 3. First-stage zoea, second maxilliped, setation patterns on the three-segmented endopod. (A) Pilodius 
pugil: seta 3.5 is present (expressed) and is considered to be the ancestral condition. (B) Banaria subglobosa: 
seta 3.5 is lost (absence or delay in appearance) and is regarded as the derived state for this character. 

1928, 1931; Bourdillon-Casanova 1960; Kurata 1969; Clark 1980, 1983; Rice 1980, 1983, 1988; 
Clark & Webber 1991; Ng & Clark 2001) have assumed that zoeal evolution has proceeded by 
loss ©r reduction of setae. Under such an assumption, the presence (expression) of a seta would be 
considered the ancestral state, and its absence (loss or delay in appearance) is considered derived. 
For example, seta 3.5 is present (expressed) and considered to be the ancestral condition (Fig. 3A), 
while its' loss (absence or delay in appearance) is regarded as the derived state for this character 
(Fig. 3B). 

In contrast to such conservative characters, there are some somites and appendage segments 
that accumulate setae at successive zoeal moults. Scoring and polarizing these characters is not 
straightforward. When Clark & Webber (1991) first analyzed majid zoeae using PAUP, they sim­
ply counted the setae on each appendage article. As a consequence, five setae on a segment for 
one species was considered ancestral when compared to the same segment of another species with 
only four setae (derived). Such an assumption does not take into account which seta had been lost 
(absent or delayed). Neither did such counting take into account the influence of abbreviated zoeal 
development on expression of setae (Clark 2005). For example, with reference to the third endo­
pod segment of the first maxilliped in the first stages of Charybdis helleri (Portunoidea Rafinesque, 
1815; see Ng et al. 2008) and the xanthoid Chlorodiella nigra), at first glance a seta is present in ZI 
of the latter and absent in the former, suggesting that C. helleri is the derived condition (compare 
Fig. 4A with 4E). However, when Dineen et al. (2001) reared C. helleri in the laboratory through 
to stage ZVI, they showed that this seta appeared (was expressed) later (in ZIV) during develop­
ment (Fig. 4A-D). Reassessing this character now (Fig. 4E), it is clear that the seta on endopod 
segment 3 has appeared (expressed) early, in ZI, of Chlorodiella nigra compared to the outgroup 
(possible ancestor) of Charybdis helleri. From McKinney & McNamara (1991), this early 
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seta expressed \ \ \ 
mZI \ , 

Figure 4. First maxilliped, expression (appearance or presence) of the seta on third endopod segment. (A-D) 
Charybdis helleri zoeas I-IV, respectively. (E) Chlorodiella nigra zoea I. 

expression relates to predisplacement of the seta, overdevelopment (peramorphosis) in Chlorodiella 
nigra, and its early onset is the derived condition. The absence of the seta in ZI of Charybdis helleri 
is therefore the plesiomorphic (ancestral) condition. 

Accumulative setae, such as the armature of the maxilla proximal coxal endite in brachyuran 
zoeas, also are of interest with regard to hetrochrony and polarization. Figure 5A-F illustrates 
the accumulative setae on the maxilla proximal coxal endite during the development of ZI-VI for 
Charybdis helleri by Dineen et al. (2001); stages ZI to ZVI bear 3,3,3,3,4,5 setae, respectively. 
Comparison of this accumulation sequence with the zoeal development of Nanocassiope melan-
odactyla (A. Milne Edwards, 1867) by Dornelas et al. (2004), which consists of only four zoeas 
with setation arranged 4,4,5,6 (Fig. 5G-J), shows that the appearances of 4 (ZI) and 6 (ZIV) se­
tae are both expressed (present) early compared to what is seen in the zoeal stages of C. helleri 
(ZV and ZVI). 

Scoring the accumulative setae on the maxilla proximal coxal endite for a phylogenetic analysis 
with reference to the first-stage zoeas of C. helleri, N. melanodactyla, Pilumnus hirtellus (Linnaeus, 
1761) and Eriphia scabricula Dana, 1852 is difficult (Fig. 6A-D, respectively). Considering C. hel­
leri as the outgroup (ancestor), the character could be scored simply as a multistate character, with 
the 3 setae of this species being the ancestral condition and accumulation of setae being increasingly 
more derived. 

However, these accumulative setae also could be scored individually with respect to the princi­
ples of heterochrony and overdevelopment (peramorphosis). The individual setae can be identified 
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D \ E I 
/ % I 

G 1/ 
/ 
ZI 
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V V M 

ZII 

I v - O 

ZIII 

zi! zn] zra'zrv1- zv| Zyi F 

Figure 5. Maxilla, setation of proximal coxal endite. (A-F) Charybdis helleri (Portunidae). (G-J) Nanocas­
siope melanodactyla (Xanthidae). 

setal seta 2 
expressed expressed 

seta 4 
delayed 

seta 3 
expressed 

seta 1 
seta 4 expressed 

expressed 
seta 2 

expressed 

B 

seta 1 
expressed seta 2 

\ expressed 

seta 1 
expressed s e t a 2 

seta 4 
expressed 

\ expressed 

\ / 

seta 4 
expressed 

seta 3 
expressed 

seta 5 
/ .expressed 

_ seta 6 
delayed 

I// ^ seta 6 
\{ expressed 

Figure 6. Maxilla, setation of proximal coxal endite. (A) Charybdis helleri. (B) Nanocassiope melanodactyla. 
(C) Pilumnus hirtellus. (D) Eriphia scabricula. 
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and their expression (presence) correlated to an outgroup (possible ancestor) species with a longer 
zoeal development phase, e.g., Charybdis helleri with six zoeal stages. Thus, instead of being a 
single multistate character, three characters can be scored. In Figure 6A-D, the setae are numbered 
from 1 to 6. Setae 1-3 are present (expressed) in C. helleri, N. melanodactyla, P. hirtellus and E. 
scabricula. Seta 4 is absent (delayed) in C. helleri (the outgroup and ancestor), but is expressed 
(overdeveloped when compared to the ancestor) in N. melanodactyla, P. hirtellus and E. scabricula. 
Seta 5 is delayed in C. helleri and N. melanodactyla but is expressed in P hirtellus and E. scabric­
ula, with seta 6 being delayed in C. helleri, K. melanodactyla and P. hirtellus but expressed in E. 
scabricula. These characters therefore could be scored as delayed (0) vs. expressed (1) for each of 
the three setae (seta 4, 5 and 6). 

7 TRANSFORMATION TYPES 

The choice of transformation types is important because such decisions affect the number of evo­
lutionary steps in a phylogenetic analysis. Using "irreversible-up" with respect to brachyuran 
zoeal phylogeny is widely regarded as introducing an element of subjectivity because it does not 
necessarily produce the shortest (most parsimonious) trees, as postulated by Marques & Pohle 
(1998). 

A problem for the present study is that according to Maddison & Maddison (1992: 79), when 
using unordered characters, " . . . a change from any state to any other state is counted as one step" 
(referred to as "Fitch parsimony"; see Fitch 1971; Hartigan 1973). Thus, a change from 0 to 1, or 
from 0 to 8 or 7 to 4, is each counted as one step. A five-state unordered character can be represented 
diagrammatically (Fig. 7 A), where change between any two states involves only one step (i.e., only 
one line has to be traversed in the diagram). An unordered transformation series does not reflect 
the course of evolution as proposed for decapod larvae and based on heterochrony (Clark 2005). 
Heterochrony suggests a gradual progressive loss (delayed expression) of characters in a linear 
transformation series, such as the loss of one seta at a time from the proximal basial endite of the 
maxilla (Clark 2005: 437, table 19; and fig. 16). Individual setae can be scored (Fig. 6), i.e., the 
six setae on the proximal basial endite of the maxilla are numbered individually 1 to 6. Empirical 
observations suggest that seta 6 is lost, then seta 5, then seta 4 and so on in the last zoeal stage of 
the descendant in relation to the ancestor. Heterochrony within decapod larvae provides no support 
for the suggestion that any one state can transform to any other state in a single step, e.g., 1 to 4 or 3 
to 0. Indeed, heterochrony appears to support a linear transformation series, of which there are two 
types: ordered and irreversible. 

Maddison & Maddison (1992: 79) define an ordered transformation series: "For characters des­
ignated as ordered, the number of steps from one state to another state as the (absolute value of the) 

A i 

4 3 
B 0 « 1 ~ 2 ~ 3 ~ 4 
c O - ^ W 2 H 3 - f 4 
D 4 - * 3 - > 2 - > l -•O 

Figure 7. Transformation series: (A) unordered. (B) ordered. (C) irreversible-up terminal addition. (D) 
irreversible-up terminal delay = oligomerization. 
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difference between their state numbers" ("Wagner parsimony"; Farris [1970]; Swofford and Mad-
dison [1987]). Thus, a change from 0 to 1 is counted as one step, from 0 to 8 as eight steps, from 
7 to 4 as three steps. Thus, a five-state ordered character can be represented diagrammatically as 
shown in Fig. 7B. In this diagram, the number of steps in the change between any two states is equal 
to the number of lines on the path between the two states; thus, from 1 to 4 is three lines or three 
steps. The analysis of heterochrony (Clark 2005) provides no support for the existence of ordered 
transformation of character types in decapod larvae. In the absence of any supporting evidence, it 
is problematic to accept that zoeal characters once lost in a specific lineage or taxon, e.g., 4 to 3 
to 2 to 1 to 0 (Fig. 7B), can then reappear again as 0 to 1 to 2, etc. Within the decapods a number 
of traits have been lost and not reappeared. For example, the Dendrobranchiata release their eggs 
directly into the water column, whereas all derived decapods (Pleocyemata) spawn their eggs onto 
the pleopods, where they remain with parental (female) care until hatching. This strategy, the re­
lease of eggs into the sea, has not been reversed in derived decapods. Further, the Dendrobranchiata 
have a nauplius larval phase, which is lost (present in embryonic development) in the more derived 
decapods (Pleocyemata) where larvae hatch in a more advanced stage of development as zoeas. 
Nauplii have not reappeared in the Pleocyemata. 

Maddison & Maddison (1992: 79-80) define irreversible as: "For characters designated as irre­
versible, the number of steps from one state to another state is counted as the difference between 
their state numbers, with the restriction that decreases in the state number do not occur" ("Camin-
Sokal parsimony"; Camin and Sokal [1965]). Thus, a change from 0 to 1 is counted as one step, 
from 0 to 8 as eight steps, but changes from 1 to 0 or 8 to 0 are impossible. Multiple gains (in­
creases) are allowed, but no losses (decreases) are allowed. A five-state irreversible character can 
be represented diagrammatically (Fig. 7C). However, this figure represents terminal addition (Clark 
2005: 438), whereas the linear transformation series described by Fig. 7D seems to best fit the theo­
ries that a mosaic of several heterochronic processes provides a dominant evolutionary mechanism 
influencing oligomerization within brachyuran zoeae. Terminal delay of characters is represented 
by Fig. 8 (see also Clark 2005). Once decapod larval characters are lost in any lineage, they are not 
expressed again. 

8 HOMOPLASY 

Although scoring characters as "irreversible-up" does reflect reduction or abbreviation, ultimately 
resulting in terminal delay (oligomerization), this option, in general, does not allow reversals in char­
acter state changes and forces additional homoplasy. But homoplasy does appear to be extremely 
widespread in brachyuran zoeal lineages; many derived character states have evolved more than 
once within different branches (clades). For example, seta 3.5 (Fig. 3B) has been lost (delayed or 
absent) a number of times in brachyuran zoeal evolution. Examples are found in the Pilumnidae as in 
Tanocheles bidentata (described by Ng & Clark 2000); within the Xanthidae as in Leptodius exara-
tus (H. Milne Edwards, 1834) and Lybia plumose Barnard, 1947 (both by Clark & Paula 2003); 
within the Majidae as in Inachus (by Clark 1983) and Libinia spinosa H. Milne Edwards, 1834 
(by Clark et al. 1998b); and within the Grapsoidea as in Xenograpsus testudinatus Ng, Huang & 
Ho, 2000 (by Min-Shiou et al. 2004). As with the second maxilliped, the expression of the seta 
on the first endopod segment (Fig. 3) also has been lost (delayed or absent) a number of times in 
brachyuran zoeal evolution. Examples occur within the Trapezioidea as in Trapezia richtersi Galil 
& Lewinsohn, 1983 (by Clark & Ng 2006); within the Majidae as in Inachus (by Clark 1983) and 
Libinia spinosa (by Clark et al. 1998b); and within the Grapsoidea as in Armases miersii (Rathbun, 
1897) (by Cuesta et al. 1999). Such derived characters have not just evolved once within brachyuran 
zoeas; they have evolved in many different lineages. Consequently, homoplasy appears to be the 
norm in the evolution of brachyuran zoeas, not the exception. 
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Ancestor 

The appearance of 
seta 6 is terminally 

delayed (lost or absent) 

Figure 8. Maxilla, proximal basial endite, a representation of terminal delay with respect to seta 6. (A-D) 
Pilumnus hirtellus. (E-F) Actumnus setifer. (H-I) Pilumnus sluiteri (see Clark 2005). 

9 PHYLOGENETICS 

Our understanding of larval morphology bears not only on classification but also on phylogeny. 
For example, on the basis of adult morphology, Tanaocheles bidentata was originally assigned to 
the xanthoidean subfamily Chlorodiellinae, and the "Eumedoninae" species have been assigned to 
various taxa including Eumedonidae, Xanthoidea, Trapezioidea and Portunoidea (for details see 
Ng & Clark 2000, 2001). However, similarity of the zoeal antenna morphology (Fig. 1) suggests 
that T. bidentata and the "eumedonids" should be assigned to the Pilumnoidea. In order to test this 
hypothesis, 18 synapomorphic characters of first-stage zoeas from representative taxa were ana­
lyzed, including: two xanthids, Actaea areolatus (Dana, 1852) and Chlorodiella nigra; one tetraiid, 
Tetralia cavimana Heller, 1861; one Portunoidea, Charybdis helleri (also the outgroup); four pilum-
noids, Benthopanope indica (De Man, 1887), Glabropilumnus edamensis (De Man, 1888), Pilumnus 
hirtellus and P. vespertilio (Fabricius, 1793); and three "eumedonids," Echinoecus pentagonus, Ze-
brida adamsi and Rhabdonotus pictus. Rhabdonotus pictus is used to represent the first-stage zoeas 
of Harrovia albolineata and Permanotus purpureus because the setal arrangement of all three larvae 
is identical. 

For this brief example, the data matrix was constructed in MacClade 4.08 OSX (Maddison & 
Maddison 2000), the trees were generated in PAUP* 4.0M0 (Swofford 2002), and the data set was 
analyzed using Branch and Bound. One of the 18 characters included in the analysis was treated 
as unordered because of the difficulty in determining the polarity of exopod antennal spinulation 
(Clark & Guerao 2008), and the remaining 17 were treated as "irreversible-up." A 50% majority rule 
consensus was generated from two trees with a consistency index = 0.5714 and tree length of 35. 

The resulting tree supported the inclusion of Tanaocheles bidentata within the Pilumnoidea 
(Fig. 9) and in the same clade as Pilumnus hirtellus, the type species of the superfamily. There is no 
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' Tanaocheles bidentatus 
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Echinecus pentagonus 

Pilumnus hirteilus 

Benthopanope indica 

Tanaocheles bidentatus 

- Rhabdonotus pidus 

' Glabropilumnus edamansis 

" Pilumnus vespertilio 

Figure 9. Phylogenetic analysis of first-stage zoeas (1) supports the morphological comparisons based on 
similarity and difference in that Tanaocheles bidentata is not a member of a xanthoidean subfamily but should 
be assigned to the Pilumnoidea Samouelle, 1819; (2) indicates that eumedonid crabs should be assigned to 
the Pilumnoidea Samouelle, 1819, rather than to a distinct family within the Xanthoidea; and (3) suggests that 
the Eumedonidae Dana, 1852, may not be a monophyletic taxon because Echinoecus pentagonus appears in a 
separate pilumnoidean clade. Competing topologies for the pilumnoid lineages of tree A are shown in tree B. 

phylogenetic support for assigning this species to the Chlorodiellinae, represented in the analysis 
by the type species Chlorodiella nigra. Similarly, there is no support for placing T bidentata in 
the Trapezioidea Miers, 1886 (represented by Tetralia cavimana) as suggested by Kropp (1984) 
for Tanaocheles stenochilus (see Ng and Clark 2000 for details). Although T bidentata possesses 
some unique larval characters, such as loss of lateral spines and reduced rostral spine, on the basis 
of this limited analysis there appears to be little support for the assignment of Tanaocheles to a 
new subfamily, Tanaocheleinae (now Tanaocheleidae Ng & Clark 2000, see Ng et al. 2008), as 
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proposed by Ng & Clark (2000). However, more taxa will need to be included to resolve intrafamilial 
relationships. 

In Figure 9, the "eumedonid" taxa represented by Echinoecus pentagonus, R. pictus and Z 
adamsi (including Harrovia albolineata and Permanotus purpureus) were located within the 
Pilumnoidea clade. There is no support from the first zoeas that the eumedonids were related to 
the Trapezioidea (represented by Teiralia cavimana), the Xanthoidea (represented by Chlorodiella 
nigra and Actaea areolatus), or the Portunoidea (represented by Charybdis helleri). Furthermore, 
this analysis suggests that the "eumedonids" may be polyphyletic. These commensal crabs are as­
sociated with echinoderms. Echinoecus pentagonus is found internally in sea urchins such as Di­
adema savignyi, Echinothrix calamarix and Echinothrix diadema; H. albolineata, P. purpureus and 
R. pictus are found on crinoids; and Zebrida adamsi is located externally on sea urchins such as 
Asthnosoma ijimai and Diadema setosum. From the tree (Fig. 9), E. pentagonus and Z adamsi + 
R. pictus (representing H. albolineata and P. purpureus) are placed in separate clades. Biologically, 
these two clades correspond to the externally inhabiting eumedonids and the internally associated 
E. pentagonus. Moreover, the externally inhabiting eumedonids appear to be subdivided into those 
crabs that live on crinoids (R. pictus representing H. albolineata and P. purpureus) and Z adamsi, 
which is found on sea urchins. More larval descriptions of sea-urchin associates are required to 
confirm this division. The non-monophyly of the eumedonids also has implications for the subfam­
ily Eumedoninae as proposed by Stevcic (2005) and Ng et al. (2008), as two of the genera that 
they assign to this subfamily, namely Echinoecus and Zebrida, are in separate clades (Fig. 9). This 
analysis supports the views expressed by Chia & Ng (1995), who questioned the divisions of the 
Eumedonidae proposed by Stevcic et al. (1988). The larvae of the type species, Eumedonus niger H. 
Milne Edwards, 1835, are not known but are of interest, for if these are similar to those of Z adamsi, 
R. pictus, H. albolineata and P. purpureus, it would suggest that E. pentagonus is not a eumedonine 
as presently defined. In fact, E. pentagonus shares two synapomorphies — absence of dorolateral 
spines on somites four and five — with the three taxa in the clade (B. indica, T. bidentatus and 
Pilumnus hirtellus). In summary, this limited phylogenetic analysis of first-stage zoeas supports the 
inclusion of T. bidentatus and the eumedonines within the Pilumnoidea, but suggests the latter taxon 
may not be monophyletic. 

10 CONCLUSIONS 

Studying only first-stage zoeas or obtaining the complete larvae development from an ovigerous de­
capod female in the laboratory has one distinct advantage: the species can be subsequently positively 
identified. A modern high-powered microscope with DIC is essential for basic alpha taxonomy and 
descriptions of setal patterns. 

Brachyuran zoeas of congeneric species appear to have identical setotaxy. This similarity pro­
vides a degree of predictability within a taxon. Setal differences (incongruence) within a group 
are indicative of systematic non-compatibility; they suggest incorrect assignment of taxa. However, 
similarity does not provide a measure of relationship, which can only be achieved by analyzing 
shared derived characters. 

Oligomerization is considered to be an evolutionary trend within the Crustacea. Study of deca­
pod larval development suggests that heterochronic processes may provide a dominant evolutionary 
mechanism influencing oligomerization within brachyuran zoeas. 

On some body somites and appendage segments, setae do not increase in number after succes­
sive zoeal moults, so these are considered conservative characters. When analyzing conservative 
setal characters for possible phylogenetic significance, their presence (expression) can be consid­
ered the ancestral state and their absence (loss or delay) derived. In contrast, there are some somites 
and segments that accumulate setae; numbers of these setae increase with successive zoeal moults. 
A method of phylogenetically interpretating these accumulative setae may be to identify individual 
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setae and correlate their expression or delay with respect to an outgroup (possible ancestor) species 
with a long zoeal development phase. 

Unordered characters generate the shortest number of evolutionary steps and produce the most 
parsimonious trees. However, an unordered transformation series does not represent the linear evo­
lutionary steps toward gradual loss of characters as postulated here by heterochrony. A mosaic of 
several heterochronic processes provides an evolutionary mechanism influencing oligomerization 
(reduction and loss) in brachyuran zoeas, and this is best represented by an irreversible transforma­
tion series. But reconstruction of trees using "irreversible up" does not necessarily produce the most 
parsimonious trees and frequently involves more evolutionary steps to compensate for homoplasy. 
There is evidence that suggests homoplasy is widespread within many brachyuran lineages. 

With respect to a classification based on decapod adult morphology, brachyuran larval descrip­
tions can be used to provide an additional perspective on conventional Systematics and evolutionary 
processes. 
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