Deep-water decapod crustacean fauna of the Eastern Ionian Sea

Chrissi-Yianna Politou¹, Porzia Maiorano², Gianfranco D’Onghia² and Chryssi Mytilineou¹

¹ Hellenic Centre for Marine Research, Aghios Kosmas, 16604 Helliniko, Greece
² Department of Zoology, University of Bari, Via Orabona 4, 70125 Bari, Italy

ABSTRACT. Knowledge on the decapod crustacean fauna of the E. Ionian Sea was enriched by a recent research program, carried out in deep waters (300-1200 m) of its northern part. The data were collected from a total of 148 hauls towed during four experimental trawl surveys from September 1999 to September 2000. Thirty nine decapod species were identified, of which eight were Dendrobranchiata and 31 Pleocyemata (17 Caridea, 9 Brachyura, 3 Anomura, 1 Astacideum and 1 Palinurum). Concerning their depth distribution, 30 species were found in the depth zone 300-500 m, with Parapenaeus longirostris being the most abundant species. Plesionika heterocarpus and P. antigai followed in terms of abundance. Of the 27 species caught in the zone 500-700 m, Aristaeomorpha foliacea and Plesionika martia were the most abundant. In the zone 700-900 m, 19 species were found and Aristaeomorpha foliacea with Aristeus antennatus were the most numerous. Finally, the 18 decapod species encountered in the zone 900-1200 m showed low abundance, and Sergia robusta with Polycheles typhlops predominated in numbers.

INTRODUCTION

The literature on the decapod crustacean fauna of the Eastern Ionian Sea (Greece) is limited comparing to that referring to other Greek seas and more specifically to the Aegean Sea (e.g. Thessalou-Legakis & Zenetos, 1985; Thessalou-Legakis, 1986; D’Udekem D’Acoz, 1995). The systematic investigation of the decapod fauna of the Greek waters in the Ionian Sea has started quite recently in the framework of larger projects (MEDITs projects 1994-2001) or in restricted areas of the Ionian Sea, always at depths not exceeding 800 m (“Deep Water Fisheries” and RESHIO projects). Some information, obtained during the MEDITS project, is given by Politou et al. (1998, 2000).

The aim of the present work is to enrich the knowledge on the decapod crustacean fauna of the Eastern Ionian Sea with information obtained in the framework of the project INTERREG Italy-Greece, which was carried out in deep waters (300-1200 m) of its northern part. This information concerns the decapod faunistic composition, the species depth distribution, their frequency of occurrence and abundance.

MATERIALS AND METHODS

Sampling took place in depths from 300 to 1200 m of the Greek Ionian Sea during four experimental trawl surveys carried out from September 1999 to September 2000 (Fig. 1) using two chartered commercial trawlers. The gear used was a commercial bottom trawl with a cod end mesh size of 20 mm (side). The vertical and horizontal opening of the trawl were estimated, using a remote acoustic sensing system attached to the gear, as 1.5 m and 17 m respectively at a towing speed of 2.4 knots. The random stratified sampling design was applied using depth for the stratification of the study area. Three depth zones were defined, 300-500 m, 500-700 m and 700-900 m. Some additional experimental hauls were carried out in the depth zone 900-1200 m. A total of 148 hauls were carried out. The tow duration was 30 minutes for depths <500 m and one hour for depths >500 m. After each haul, catches were identified to species level. Species abundance was recorded on board. The mean abundance in number of individuals per fishing hour (CPUE) was estimated for each depth zone as:

\[
\text{CPUE} = \frac{\sum \text{Nn}}{\sum \text{tn}}
\]

where \(\sum \text{Nn}\)=sum of individuals of a species in the n hauls carried out in the depth zone and \(\sum \text{tn}\)=sum of fishing time of the n hauls in the depth zone.

RESULTS

Thirty nine decapod species were identified in total in the study area. Of them eight were Dendrobranchiata and 31 Pleocyemata (17 Caridea, 9 Brachyura, 3 Anomura, 1 Astacideum and 1 Palinurum) (Table 1).
Thirty species were found in the depth zone 300-500 m (6 Dendrobranchiata and 24 Pleocyemata: 14 Caridea, 6 Brachyura, 2 Anomura, 1 Astacideum and 1 Palinurum). *Parapenaeus longirostris* was the most important species, since it presented a remarkably high frequency of occurrence and abundance (Fig. 2). Although different species, such as *Plesionika antigai*, *P. gigliolii*, *P. heterocarpus*, *Nephrops norvegicus*, *Munida rutllanti*, *P. edwardsii* and *Chlorotocus crassicornis*, were also found frequently, only *P. heterocarpus*, *P. antigai* and *P. edwardsii* were worth a mention in terms of their abundance.

Of the 27 species caught in the zone 500-700 m, six were Dendrobranchiata and 21 Pleocyemata: 9 Caridea, 7 Brachyura, 3 Anomura, 1 Astacideum and 1 Palinurum. *P. maritai* was present in all stations, whereas other highly occurring species were, in order of importance, *Polycheles typhlops*, *Aristaeomorpha foliacea*, *P. acanthonotus*, *P. gigliolii*, *P. longirostris*, *N. norvegicus* and *P. antigai*. *Aristaeomorpha foliacea* and *Plesionika maritai* were dominant in terms of abundance.

In the zone 700-900 m, 19 species were found (7 Dendrobranchiata and 12 Pleocyemata: 7 Caridea, 3 Brachyura, 1 Astacideum and 1 Palinurum). Many species, such as *A. foliacea*, *Polycheles typhlops*, *Aristaeus antennatus*, *P. martia*, *Sergia robusta* and *P. acanthonotus*, showed high frequency of occurrence. However, their abundance was generally low with *A. foliacea* followed by *Aristeus antennatus* being the most numerous.

Finally, of the 18 decapod species encountered in the zone 900-1200 m, six were Dendrobranchiata and 12 Pleocyemata: 7 Caridea, 4 Brachyura and 1 Palinurum. *S. robusta* was the most frequently occurring species followed by *A. antennatus*, *P. typhlops*, *Acanthephyra pelagica*, *Pasiphaea multidentata*, *Sergestes arachnipodus*, *Acanthephyra eximia* and *P. acanthonotus*. Although, *Sergia robusta* and *Polycheles typhlops* predominated in numbers, their abundance was remarkably low.

DISCUSSION

Including results from the present study, the number of known decapods from the Ionian Sea has now reached 82 species. Of the identified decapods, *Acanthephyra eximia*, *Philoceras echinulatus* and *Pontophilus norvegicus* are reported for the first time in the E. Ionian Sea. *Acanthephyra eximia* was found in waters deeper than 800 m, which were not investigated earlier. Only one specimen of *Philoceras echinulatus* was caught in a single station. Finally, only one specimen of *Pontophilus norvegicus* was found in a deep station (965 m). Some other species, such as *Acanthephyra pelagica*, *Geryon longipes*, *Munida tenuimana*, *Paromola cuvieri*, *Parthenope macrochelos*, *Pasiphaea multidentata*, *Plesionika narval*, *Polycheles typhlops*, *Sergestes arachnipodus* and *Sergestes arcticus*, have been reported for the area only in the gray literature (Deep Water Fisheries technical report, unpublished data; D’ONGHIA et al., 2001; POLITOU et al., 2001). Most of them are also uncommon species or mainly found in the two deepest strata. The two commercial deep-water shrimps *Aristaeomorpha foliacea* and *Aristeus antennatus* that were absent from the list of POLITOU et al. (1998) were found during the surveys of the Deep Water Fisheries project and later in the framework of the MEDITS project (KAPIRIS et al., 1999; KAPIRIS & THESSALOU-LEGAKI, 2001; PAPAKONSTANTINOU & KAPIRIS, 2001; CAU et al., 2002). Most of the decapod species found in the present study, with the exception of *Acanthephyra eximia*, *Aegaeon lacazei*, *Munida rutllanti*, *Paromola cuvieri*, *Philoceras echinulatus*, *Plesionika edwardsii*, *Plesionika narval* and *Pontophilus norvegicus*, were also found in the SE Adriatic Sea, which is adjacent to the E. Ionian (VASO & GIKNURI, 1993; UNGARO et al., 1999; MARSAN et al., 2000). Comparing data from the rest of the Greek waters (Aegean and Cretan Sea) reveals that all the species found in the present study, with the exception of *Pontophilus norvegicus* and *Sergestes arachnipodus*, have been reported in the existing literature for these areas (KOUKOURAS et al., 1992, 1997, 1998, 2000; KALLIANIOTIS et al., 2000).
TABLE 1

List of decapod species collected in the E. Ionian Sea with species depth range and frequency of occurrence (%) per depth stratum.

<table>
<thead>
<tr>
<th>Depth strata (m)</th>
<th>Depth range (m)</th>
<th>300-500</th>
<th>500-700</th>
<th>700-900</th>
<th>900-1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of hauls</td>
<td>45</td>
<td>52</td>
<td>38</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Dendrobranchiata

- *Aristaeomorpha foliacea* (Risso, 1827) 388-1047 2.2 88.5 94.7 15.4
- *Aristeus antennatus* (Risso, 1816) 480-1171 2.2 53.8 89.5 76.9
- *Gennadas elegans* (Smith, 1882) 1082-1192 15.4
- *Parapenaeus longirostris* (Lucas, 1846) 288-840 93.3 57.7 10.5 23.1
- *Sergestes arcticus* Krøyer, 1855 700-1192 2.6
- *Sergestes arachnipodus* (Cocco, 1832) 318-1171 2.2 5.8 10.5 46.2
- *Sergia robusta* (S.I. Smith, 1882) 480-1192 2.2 23.1 63.2 84.6
- *Solenocera membranacea* (Risso, 1816) 322-823 6.7 1.9 2.6

Pleocyemata

Anomura

- *Munida intermedia* A. Milne Edwards & Bouvier, 1899 328-503 11.1 1.9
- *Munida ruttanti* Zariquiey Alvarez, 1952 300-533 37.8 3.8
- *Munida temuitiana* G.O. Sars, 1872 518-518 1.9

Astacidea

- *Neprops norvegicus* (Linnaeus, 1758) 317-700 42.2 57.7 2.6

Brachyura

- *Bathymeris longipes* (Risso, 1816) 322-1003 6.7 23.1 13.2 15.4
- *Calappa granulata* (Linnaeus, 1758) 302-553 8.9 1.9
- *Geryon longipes* A. Milne Edwards, 1881 644-965 1.9 7.9 7.7
- *Macropipus tuberculatus* (Roux, 1830) 343-462 11.1
- *Macropodia longipes* A. Milne Edwards & Bouvier, 1899 340-1003 2.2 7.7
- *Monoderamus couchii* (Couch, 1851) 460-965 2.2 1.9 7.7
- *Paromola cuvieri* (Risso, 1816) 597-742 7.7 2.6
- *Parthenope macrochelos* (Herbst, 1790) 302-582 11.1 1.9

Caridea

- *Acanthephyra eximia* S.I. Smith, 1886 897-1047 2.6 38.5
- *Acanthephyra pelagica* (Risso, 1816) 480-1192 2.2 15.8 61.5
- *Aegaeon lacazei* (Gourret, 1887) 340-464 17.8
- *Alpheus glaber* (Olivi, 1792) 373 2.2
- *Chlorotocus crassicornis* (Costa, 1871) 300-614 35.6 3.8
- *Pasphephae multidentata* Esmarch, 1866 518-1171 9.6 28.9 53.8
- *Pasphephae sivado* (Risso, 1816) 377-1082 6.7 23.1 10.5 7.7
- *Philoceras echinulatus* (M. Sars, 1861) 407 2.2
- *Plesionika acanthonotus* (Smith, 1882) 317-1047 13.3 86.5 44.7 30.8
- *Plesionika antiqua* Zariquiey Alvarez, 1955 288-700 77.8 34.6
- *Plesionika edwardsii* (Brandt, 1851) 305-700 35.6 23.1 2.6
- *Plesionika gigliolii* (Senna, 1903) 300-700 75.6 61.5
- *Plesionika heterocarpus* (Costa, 1871) 300-676 64.4 23.1
- *Plesionika martia* (A. Milne Edwards, 1883) 317-1085 15.6 100 65.8 15.4
- *Plesionika narval* (Fabricius, 1787) 356 2.2
- *Pontophilus norvegicus* (M. Sars, 1861) 965 7.7
- *Pontophilus spinosus* (Leach, 1815) 322-460 8.9

Palinura

- *Polycheles typhlops* Heller, 1862 328-1171 17.8 98.1 92.1 76.9
Although comparison of abundance with other studies is difficult, because of the different types of gear and methods used, the general fauna distribution is quite similar to that found in other Mediterranean areas (ABELLO et al., 1988; CARTES & SARDA, 1992, 1993; CARTES et al., 1994; UNGARO et al., 1999; AVELLO et al., 2002). A dominance of shrimps in all depth strata observed in the present study was mentioned also by POLITOU et al. (1998) for the slope of the region. In relation to the western Mediterranean, our results are more comparable with those of AVELLO et al. (1988), whose samples were collected with a commercial trawl. A high presence of small species, such as Calocaris macandreae Bell, 1864 and Processa nouveli Al-Adhub & Williamson, 1975, was mentioned by some authors (CARTES & SARDA, 1992; CARTES et al., 1994) for these depths in the Catalan Sea. These species were not found in the present study. This discrepancy can be explained by the smaller cod-end mesh size of the experimental trawl used in the former studies. Furthermore, although the species depth distribution observed in the present study was generally within the ranges given in the literature for the Mediterranean, in some cases new depth records were obtained (Table 2). More specifically, the distribution of the species Aristaeomorpha foliacea, Bathynectes maravigna, Monodaeus couchii, Parapenaeus longirostris, Pasiphaea sivado, Plesionika antennata, Plesionika edwardsii and Plesionika martia was extended into waters deeper than those reported for the Mediterranean. Concerning Bathynectes longipes, it is considered a scarce species (ABELLO et al., 2001) and no depth distribution ranges are given for it.

A remarkable difference between the Greek Ionian Sea and the westernmost areas of the Mediterranean is the high abundance of *A. foliacea* in the former area and its absence or scarcity in the latter ones. This difference may be explained by the vulnerability of this species to overfishing (ORSI RELINI & RELINI, 1985; MATARRESE et al., 1997) in combination with the fishing pressure exercised in the deep waters of the westernmost areas. Such pressure is negligible in the Greek Seas. Furthermore, different hydrological conditions (i.e. salinity and temperature) between areas are reported as factors affecting the distribution of the species along the Mediterranean (RELINI & ORSI RELINI, 1987; MURENU et al., 1994). *A. foliacea* is considered to prefer waters of relatively high salinity and temperature such as those of the E. Ionian Sea in comparison to the westernmost Mediterranean areas (THEOCARIS et al., 1993; HOPKINS, 1985).

A decline in the number of decapod species and of their abundance with depth was evident in the Ionian Sea. This pattern was observed also in the western Mediterranean (CARTES & SARDA, 1992, 1993; CARTES, 1993). The upper part of the slope (300-700 m) was characterized by a relatively high number of species found in abundance. Parapenaeus longirostris, Aristaeomorpha foliacea, Ple-
sionika martia, P. heterocarpus, P. antigai and P. edwardsii were the species that displayed the highest abundance values, and most of them are of important commercial value. Below 700 m of depth, the number of species and mainly their abundance decreased sharply, although red shrimps (mainly A. foliacea and secondarily A. antennatus) were found in non negligible quantities in the zone 700-900 m. Given the relatively constant environmental conditions in these depths and the high oligotrophy of the area (Stergiou et al., 1997), the main factor determining this reduction with depth seems to be the low trophic resource availability.

ACKNOWLEDGEMENTS

The authors are grateful to their colleagues who participated in the sampling cruises and in the laboratory work. Special thanks to Stefanos Kavadas and John Dokos for their help in the data base management and the map drawing.

The project “INTERREG II Greece-Italy” was financially supported by the Greek Ministry of Economy and the EC.

REFERENCES

Abello, P., A. Carbonell & P. Torres (2002). Biogeography of epibenthic crustaceans on the shelf and upper slope off the

TABLE 2

Depth range of occurrence for decapod species in the Mediterranean updated with the results of the present study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthephyra eximia</td>
<td>421 (Abello et al., 2002)</td>
<td>2261 (Cartes, 1993)</td>
</tr>
<tr>
<td>Acanthephyra pelagica</td>
<td>176 (Abello et al., 1988)</td>
<td>2261 (Cartes, 1993)</td>
</tr>
<tr>
<td>Argopecten lacazei</td>
<td>13 (Abello et al., 1988)</td>
<td>1041 (Cartes, 1993)</td>
</tr>
<tr>
<td>Alpheus glaber</td>
<td>3 (Abello et al., 1988)</td>
<td>871 (Abello et al., 1988)</td>
</tr>
<tr>
<td>Aristaeomorpha foliacea</td>
<td>150 (Matarrese et al., 1995)</td>
<td>1047 (present study)</td>
</tr>
<tr>
<td>Aristaeus antennatus</td>
<td>150 (Matarrese et al., 1995)</td>
<td>2200 (Sardia et al., 1994)</td>
</tr>
<tr>
<td>Bathynectes longipes</td>
<td>620 (present study)</td>
<td></td>
</tr>
<tr>
<td>Bathynectes maravigna</td>
<td>245 (Abello et al., 2001)</td>
<td>1003 (present study)</td>
</tr>
<tr>
<td>Calappa granulata</td>
<td>25 (Abello et al., 2002)</td>
<td>712 (Abello et al., 2002)</td>
</tr>
<tr>
<td>Chlororophila crassicornis</td>
<td>55 (Abello et al., 1988)</td>
<td>742 (Pipitone & Tumbiolo, 1993)</td>
</tr>
<tr>
<td>Gennadas elegans</td>
<td>250 (Koukouras et al., 1997)</td>
<td>2261 (Cartes, 1993)</td>
</tr>
<tr>
<td>Geryon longipes</td>
<td>439 (Abello et al., 1988)</td>
<td>1895 (Cartes, 1993)</td>
</tr>
<tr>
<td>Macropipus tuberculatus</td>
<td>48 (Abello et al., 1988)</td>
<td>748 (Abello et al., 1988)</td>
</tr>
<tr>
<td>Macropodia longipes</td>
<td>18 (Abello et al., 1988)</td>
<td>748 (Abello et al., 1988)</td>
</tr>
<tr>
<td>Monodaeus couchii</td>
<td>44 (Abello et al., 2002)</td>
<td>965 (present study)</td>
</tr>
<tr>
<td>Munida intermedia</td>
<td>35 (Abello et al., 1988)</td>
<td>871 (Abello et al., 1988)</td>
</tr>
<tr>
<td>Munida ruflata</td>
<td>40 (Abello et al., 2002)</td>
<td>587 (Abello et al., 2002)</td>
</tr>
<tr>
<td>Munida tenuimana</td>
<td>286 (Abello et al., 2002)</td>
<td>1899 (Cartes, 1993)</td>
</tr>
<tr>
<td>Nephrops norvegicus</td>
<td>58 (Abello et al., 2002)</td>
<td>871 (Abello et al., 1988)</td>
</tr>
<tr>
<td>Parapeneus longirostris</td>
<td>26 (Pipitone & Tumbiolo, 1993)</td>
<td>840 (present study)</td>
</tr>
<tr>
<td>Paromola cavieri</td>
<td>267 (Pipitone & Tumbiolo, 1993)</td>
<td>795 (Pipitone & Tumbiolo, 1993)</td>
</tr>
<tr>
<td>Parthenope macrochelos</td>
<td>20 (Abello et al., 1988)</td>
<td>655 (Pipitone & Tumbiolo, 1993)</td>
</tr>
<tr>
<td>Pasiphaea multidentata</td>
<td>128 (Abello et al., 1988)</td>
<td>2261 (Cartes, 1993)</td>
</tr>
<tr>
<td>Pasiphaea sivado</td>
<td>33 (Abello et al., 1988)</td>
<td>1082 (present study)</td>
</tr>
<tr>
<td>Philoceras echinulatus</td>
<td>55 (Abello et al., 1988)</td>
<td>871 (Abello et al., 1988)</td>
</tr>
<tr>
<td>Plesionika acanthomonos</td>
<td>141 (Pipitone & Tumbiolo, 1993)</td>
<td>1680 (Cartes, 1993)</td>
</tr>
<tr>
<td>Plesionika antigai</td>
<td>98 (Abello et al., 2002)</td>
<td>700 (present study)</td>
</tr>
<tr>
<td>Plesionika edwardsii</td>
<td>250 (Garcia-Rodriguez et al., 2000)</td>
<td>700 (present study)</td>
</tr>
<tr>
<td>Plesionika giglioli</td>
<td>101 (Abello et al., 1988)</td>
<td>748 (Abello et al., 1988)</td>
</tr>
<tr>
<td>Plesionika heterocarps</td>
<td>45 (Abello et al., 2002)</td>
<td>699 (Abello et al., 1988)</td>
</tr>
<tr>
<td>Plesionika maria</td>
<td>165 (Abello et al., 1998)</td>
<td>1085 (present study)</td>
</tr>
<tr>
<td>Plesionika narval</td>
<td>5 (Thessalou-Legaki et al., 1989)</td>
<td>510 (Politou et al., 2000)</td>
</tr>
<tr>
<td>Polychelus typhlops</td>
<td>241 (Abello et al., 2002)</td>
<td>1927 (Cartes, 1993)</td>
</tr>
<tr>
<td>Pontopilus norvegicus</td>
<td>366 (Abello et al., 1998)</td>
<td>2261 (Cartes, 1993)</td>
</tr>
<tr>
<td>Pontopilus spinosus</td>
<td>69 (Abello et al., 2002)</td>
<td>871 (Abello et al., 1998)</td>
</tr>
<tr>
<td>Sergestes arachnopus</td>
<td>279 (Abello et al., 2002)</td>
<td>1224 (Cartes, 1993)</td>
</tr>
<tr>
<td>Sergestes arcticus</td>
<td>160 (Abello et al., 2002)</td>
<td>2188 (Cartes, 1993)</td>
</tr>
<tr>
<td>Sergia robusta</td>
<td>220 (Abello et al., 1998)</td>
<td>2261 (Cartes, 1993)</td>
</tr>
<tr>
<td>Solenocera membranacea</td>
<td>3 (Abello et al., 1998)</td>
<td>871 (Abello et al., 1998)</td>
</tr>
</tbody>
</table>

