17.

XVII. NOTES ON CRUSTACEA DECAPODA IN THEINDIAN MUSEUM.

XI. Atyidae of the gents Paritya (-Xiphocaridina).

By Stanley Kevp, B.A., Smperintemdent,
Zoological Smprey of India.
Bouvier has shown that the Eest Indian Xiphocaris clongeda (Guérin) differs in several important structural characters from the species, previously referred to the same genus, found in Fastern Asia, Austrilia and New Zealand and has proposed for the latter the generic, name Xiphocaridina. But Miers in 1882 , when recordieg certain Japanese Atyids as Atyeplyra? compressa, noted that the species was probably to be distinguished generically from BritoCapello's Atyaiphyra by the presence of exopods on all five thoracic legs '; and he suggested for the Japanese form the generic name Paratya. There can be no doubt that Miers' specimens are generically identical with those on which Bouvier based his Xiphocaridima with the result that the latter name, by far the more appropriate of the t wo, must lapse.

Genus Paratya, Miers.

186母. Atyephyru, von Martens, Apch.f. Naturgesch.. XXXIV, p. si fin part not Atyaiphyra. Brito-Capellol.
1880. Miersia, Kingsley. Proc. Acad. Sci. Philadelphia. 1879. p. t16 (in part).
1882. Paratya, Mrors, Arn. Mag. Nat- Hist. 15) IX, p. 194-
1895. Xiphocaris. Ortmann. Proc. Aced. Sci. Philadelphia. 1894, p. 400 (in part).
1905. Xiphocaris. Bouvier, 1 nm . Scu. France Belgique. XXXIX, p. 60 (in part).
1919. Xiphocariminn, Bouvier, Comppes Rendws Acad. Sci.. Paris, p. 1729.
1912. Xiphecarilina, Kemp, Rec. /md. Mus., VII, p. 113 .

Only two species which can be referred to the genus Paratya have hitherto been recognised, viz. Paratya compressa (de Hasm), described from Japan and since recorded from Korea, Flores, Australia and Norfoll I. and P. curvinosiris (Heiler) from New Zealand, Chatham I. and Upper Assam.

[^0]In the collection recently made by Dr. Annandale in the Far East there are series of P. compresea from several localities in Japan. On examination, the specimens were found to fall into two well-marked races, one inhabiting the north-eastern portions of the main idand, while the other is apparently restricted to the south-western parts, the upper limit of its distribution being Lake Biwa and its vicinity. This rather unexpected discowery led me to make an examination of all the Paratya preserved in the Indian Museum, and I find as a result that there has been a great deal of misapprehemion regarding the taxonomy and distribution of the species. The Indian Museun is fortunately well supplied with material: inctading Dr. Annandale's collection, specimens are available from seven localities in Japan, from Sydney in New South Wales, from Lake Torrens in S. Australia (as well as a sample from " S. Australian waters"). from both east and west sides of Norfolk I., from two localities in New Zealand and from two in Upper Aesam.

Examination of this extensive material leads me to comelude (i) that the true Peratya compresse is restricted to Japan, poesibly extending into Koren ; in the main island of the former country it is represented by two well-marked races; (ii) that the Australian form is to be distingusibed specifically from the Japanese and is represented in Norfork I. by a race which differs from it in characters of at least subspecific valne; and (iii) that the form recorded from New Zealand and Upper Assam is distinct from any of the others.

The five forms examined may be distinguished by the following characteristics:-

Key to the species and subspecies of Paratya
I. Propodus of 3 rd and $5^{\text {th }}$ peraeupods. in both rexes. less than three times as long as dactytus, dacivlus of 3rd pair with 19 to 30 spines, the number very rarcls falling to 18 ipropodus of 3nd and 4 th pairn expanded distally in male, the dilated portion bearing numerous spines;
A. Rostrum with 16 to 25 dursal teeth, hindmost
tooth situated on carapace or immerliately above ortital notch
B. Rostrum with 7 to is dorwal keth, provimal part of rostrum unarmed, no tooth on carapacx. or above orbital notch
11. Propodus of $3^{\text {rd }}$ and $5^{\text {th }}$ peracopods. in females.: more than three times as long as dactylus: dactylus of 3rd pair usually with 6 to 13 spine. the number occasionally rising, in males only, to 18 .

[^1]1. Lipper border of rostrum with 10 to 17 irregu-

Larly disposed teeth, forming at least three distinct groups: propodus of 3 rd and ath legs expanded distally in males, the dilated portion bearing numerous spines
P. curvirastris
H. I pper border of rostrum with 19 to 32 teeth.
forming an uninterrupted series; 3 rd and th
legs of male not modifiod.

1. Carpus of 1 ist perseopods t wice or more than twice as long as broad; propodus of 5 th peraeopods less than four times as long as dactylus ; dactyli of 3 red and $5^{\text {th }}$ peiaeopods at least three times as long as broad. 1 dactylus of 3 rd per. ateopod with 9 to 13 spines

> P. australiewsis.
sp. nov.
Carpua of ist peracopods less than twice as long as broed: propodus of 5 th peraeopods, at least in females, more than four times as long as dactylus: dactyli of 3 rd and $5^{\text {th }}$ peracopods less than three times as long as broad: dactylus of 3 rd peraeopod with 6 to 8. rarely 9 spines

It is probable that the size of the eggs will afford a valuable criterion in specific and subspecific differentiation; bat unfortunately the collection contains ovigerous females only of \boldsymbol{P}. curoivostris and of P. compressa subsp. improvisa.

It will be noticed that in three of the five recognised forms the third and fourth peraeopods of the male are modified, the propodus being conspicuously dilated towards its distal end and armed on the posterior margin of the expanded part with a great number of short spines. Very similar sexual differences are met with in Atyaéphyra, a genus that has a circum-Mediterranean distribution and is also one of the more primitive genera of the family. In males of Atyaéphyra desmaresti, as Barrois has shown;" the third and fourth legs are modified on precisely the same lines as in Paratya; but, strangely enough, the segment concerned is not the propodus, bat the merus.

That sexual modifications of the third and fourth legs should be entirely absent in the forms of Paratya from Australia and Norfolk I. is very curious. Males are unfortunately scarce in my material from these localities and examination of further specimens is therefore desirable. In no case, however, have I found the slightest trace of modification, though the character is well marked in much smaller specimens from Japan.

Calman "has noticed sexual differences in the length of the spines on the third and fourth legs in Limnocaridina similis and L. sacius from Lake Tanganyika, while in other species of the same

[^2]Barrois, Rev. Brol. Nord. France, V, p. 124, fig. 2 (1ky2).
Calman, Proc. Zool. Sic. London. Igo6, p. 195.
gemus mo such distinction was to be found. It seems probable, therefore, that in this genus, as in Parafian, the existence of serual modifentions in the thoracic legs is a specific character. In Xiphoceris, the most primitive of all the Atyidae, these serual differences do not exist.'

Bonvies, "in his account of the races of Atyoephyrat desmaresdi, found that dirtinctive characters were afiorded by the structure of the emdopodite of the first pleopod of the male. In the genus Perafye the appendage is similar in outline in all the forms and the difilierences that exist in the spinulation appear to be of less importance than those derived from other parts.

All the species and subspecies exarined agree in the possession of a supraorbital spine. The carpess of the first peraeopod is deeply ercenate in front, that of the second pair less markedly ma. Eropods are found on all the thoracic legs, but there are no arthrobranchs above the bases of any of these limbs. The outer uropod agrees with that of Xiphocaris in bearing only a single morable spimule in place of the series found in most genera of the family. The telson bears two, less commonly three pairs of dorsal spines and is provided at the apex with eight or ten spinules

A syuopsis of the numbers of rostral teeth in the different forms is given on p. 297.

In the descriptions which follow I have referred only to the characters that show racial or specific differences.

Paratya compressa (de Haan) sensu stricto.
1849- PEphyra compressa, de Haan, in Siebodd, fauna 'Jafonica. ('rust. p. 186, pl. xdvi. fig- 7.

1880 Wiersia compressa, Kingsley, Proc. Aced. Scr. Dhiledelphia. 1879 p. 116.
1902. Xiphocaris compresse. Rathbun. Proc. C.S. Vift. Mus.. XXVI. p. 49 (? part only).
1905. Xiphacaris compresse, Borrvier, Rall. Sci. Frince Relgique, XXXIX p. 62 (part only; not fig. I, p. 61).

1914 Xiphocaridina compressa. Balss., Abhandl. math.-phys. Klesse k. Beyer. Aked. Wiss., Suppl. Bd. II. Abe 11, p. 23 (part only)
In this form the rostrum always reaches beyond the antennular peduncle, extending almost to, or a little beyond the aper of the antennal scale. On its upper border it is armed with 16 to 25 (wsually 17 to 24) teeth, forming an uninterrupted series from the base to the apez. The hindmost dorsal tooth is either situated on the carapece or is placed.immediately above the posterior limit of the orbit; in a few cases two posterior teeth are on the carapace. The lower border bears in the middle of its length from 1 to 6 teeth, most commonly i to 3 .

The lateral process of the antennular peduncle extends a little beyond the end of the basal segment.

[^3]Domeal Tretri.

Vitntial tehte.

In the first peraeopods (text fig. 1a) the carpas is comparatively slender, from 2.2 to 2.5 times as long as its greatest breadth; rarely in young specimens the proportion falls as low as 1.8 . The chela is about a third longer than the carpus and its length is usually about one-third the width of the palm. The carpus of the second pair (text fig. 1b) is from 6.0 to $7 \cdot 1$ times as long as broad. The dactylus of the third peracopods (text-figs. ic, d) is long and slender; the propodus is only from 2.1 to 2.5 times its length. Excluding the spines its length is from 37 to 4.5 times its breadth. The dactylar spines vary in number from 19 to 22, very rarely 18. In the fifth peracopods (text figs. 1e, f) the propodus is also from 21 to 2.5 times as long as the dactylus; the latter segment bears from 43 to 69 spinales, excluding which it is from 4.2 to 4.8 times as long as broad.

In the male the propodus of the third and fourth peraeopods is a little dilated towards the distal end and the terminal third of

$\begin{array}{ll}\text { a. First peraeopod. } & \text { d. Dactylus of third peracopund. } \\ \text { b. Second peracopod. } & \text { e. Fifth peraeopod. }\end{array}$
b. Second peracopod. c. Fifth peraeopod.
c. Third peracopod of make. f. Dactylus of fifth perseriport.
the posterior margin is armed with numerous close-set spines (textfig. Ic). In the specimens I have seen these sexual modifications are much less conspicuons than in the larger individuals belonging to the subsp improvisa.

None of the specimens examined bear eggs; the largest is 23 mm . in total length.

De Haan's figure of this species is unasually poor, but except for the fact that the carpus of the second legs is stated to be indistinctly annulate, the description agrees very well with the specimens I have examined. According to de Haan there are 20 to 24 teeth on the upper border of the rostrum.

The typical form of P. compressa is represented in the Indian Museum by a great number of specimens collected by Dr. Annandale in Komatsu Lake near the eastern shore of Lake Biwa and from the Ogura and Yodo ponds near Kyoto : there are also a few examples from L. Biwa itself. All specimens from localities situ-
sated further to the northeast belong to the subspecies inpparisa and it appears, therefore, that the northern distributional 1 init of the typical form is somewhere in the vicinity of Lake Bin. The specimens recorded by Mim Rathbun from the latter locality me nt doubtedly belong to the typical form and this is perhaps also the case with the solitary individuals which she examined from Twaslima I. and from Pusan in Korea. If my views on the distriliarLion are correct, Bale' examples from Koitogawa in Kedsusa prov. are to be referred to the subsp. improvise, while those recorded from Okayama belong to the typical race. Bass notes that in the latter individuals the eggs are 0.63 mm . in length and 0.40 mm . in breadth.

Dr. Annandale noted that the species was abundant among weeds or dense vegetation at Komatsu and in pools and backwaters round Lake Biwa; in the lake itself it was much scarcer. Living specimens showed no definite markings, but were doted more or less profusely with small pigment cells. The fingers of the chelate were tinged with orange brown. The Temnocephaloid worm Caridinicole was present in the gill chambers of a large proportion of the individuals examined at Komatsu.
subsp. Improvise, nov.

```
IN08. Atyephyra compressa, vo Martens. Arch.f. Naturgesch., XXXIV, i,
            P- 51, pl. i, figs. 4 -c.
    1882. Atyephyra ? compress, Miens, Ann. Mag. Nat. Hist. (5., IX, p. 193.
    ? 1890. Miersia compressa, Ortmann, Zool. Fahrb., Syst., V, p. 464.
1وo2. Xiphocaris compress, Dofein, Abhandl. math.-phys. Klasse K.
        Bayer. Akad. Wisc., XXI. p. 632.
```

This subspecies is distinguished from the typical form almost entirely by the dentition of the rostrum. The rostrum reaches to,

Fig. 2.-Paratve compresses subsp. improvisa nov.
a. Pirat perseopod
d. Dactilum of third perseopod of female.
b. Second permeopod.
e. Fifth peraeopod.
c. Third perseopod of female.
f. Dactylue of fIfth peraeopod.
or a little beyond the antennal scale and bears on its upper margin an uninterrupted series of 7 to 18 (usually 8 to 15) teeth. The
prozimal part of the rostrum is altogether unarmed; the hindmost tooth of the series is placed above the cornea, when the eye is directed straight forwards, or is in advance of this point. On the lower border there are from i to 4 teeth, usually 2 or 3 .

The proportionate measurements of the legs are much the same as in the typical form. In the first pair (text-fig. 2a) the carpas is from 2.1 to 2.7 times as long as broad and in the second (text-fig. $2 b$) from 5.6 to 6.3 times. The propodus of the third pair (text-figs. $2 c, d$) is from 2.4 to 277 times the length of the dactylus. the length of the latter segment, spines excluded, being from $3: 3$ to 40 times its breadth. In the fifth pair (text-figs. 2e, f) the propodus is from 2.4 to (in one instance only) 2.9 times as long as the dactylus, the latter segment, spines excluded, being from 40 to 47 times as long as broad. The dactylar spines seem to be rather more numerous than in the typical form; in the third pair there are from 24 to 30 and in the fifth from 71 to 92.

In large males the third and foarth peraeopods show an extreme degree of sexual modification

Fig. 3.-Parafya compressa subsp. improvisa, nov.
Third peraeopod of adaft male with dactylus further eilarged. (text-fig. 3). The propodins is very strongly etpanded distally, so much so that the segment is less than s times as long as broad, whereas it is nearly 9 times as long as broad in females. The anterior margin is concave, while the posterior is convex and is furnished with numerous spinules in the distal two thirds of its length The dactylus is also modified; it is more than 5 times as long as wide and is widest near the distal end; the spines are distinctly recurved and the terminal one is not larger than the others.

The subspecies appears to be rather larger than the typical form, reaching a maximum length of 36 mm . The eggs vary from 0.63 to 0.70 mm . in length and from 0.43 to 0.46 mm , in breadth.

In this case I believe that the character of the rostrum affords a valid basis for racial distinction; among fifty specimens of the subspecies I have not been able to find a single individual that resembles the typical form. The specimens examined are from the lagoon Kasumi-ga-ura in Hikachi province, collected by Dr. N. Annandale; from Tokio, collected by Hilgendorf (Berlin Mus.); from Lake Haruna, near Ikao, at an altitude of about 3000 ft ., collected by Dr. K. Nakazawa and from Lake Suwa, in the Shinano province, at an aititude of 2660 ft ., collected by Dr. T. Kawamura.

The specimens from Yokohama dexcribed by von Martens belong, as is clearly shown by the figure, to the subspecies improvisa and this is also true of those from Tokio examined by Miers, the rostrum bearing ouly from 7 to 14 dorsal teeth.

From these facts it may be concluded that the subspecies is found only in the north-eastern parts of the main island of Japan and, if this is true, the specimens recorded by Ortmann from Tokio, by Doflein from Yokohama and by Balss from Koitcgawa in Kadzuza province are probably to be referred to the subspecies. This is no doubt also the case with the material used by Ishikawa in his account of the development of the species. ${ }^{1}$

The iypes are from Lake Haruna and bear the number 9679/10 in the register of the Zoological Survey of India.

Paratya curvirostris (Heller).

```
1862. Caridina curairostris. Heller. Verhandl. sool.-bot. Gey Wien. XII, p. 525-
1065. Ceridina curvirastris, Meller. Voy. Notara. Crmst., p. 105.
1876. Ceridina curtivastris. Miers, Caf. V. Zealand Crmat., p. \(7 \mathbf{B}\).
1874. Ieander fiuriatilis, Thomson. Trams. V.Z. Inst. XI, 5878, p. 2.31, pl. x. fig. A 2.
1qu3. Niphocaris curvirostris. Thomson Trans. Linn. Sor., Zool. (2). VIll, p. H7. pl. xxix, figs. 2-13.
1ght. Siphocaris curatostris. Chilton. Prac. Zool. Soc. Londan. p. 703.
Igm. . Wiphocaridina furiatrlis, Bouvier. Comptes vendus Acel. Sai. Paris. P. 1728.
1yl2. Niphocaridina curtirasfris. Kemp. Rec. Ind. Mus. VII, p 113 -
```

In this species' the rostrum reaches to or a little beyond the apex of the antennal scale and is armed above with from 10 to 17 teeth. These teeth do not form an uninterrupted series, as in all other species of Paratya, but are separated, usually quite distinctly, into three groups. The hindmost group consists of 2 or 3 teeth, all of which are on the carapace behind the orbital notch; the second group is composed of 4 to 8 teeth, situated in the basal half of the rostral length; the third group is placed just behind the apex and comprises 3 to 7 teeth. In most cases 1 or 2 solitary teeth are to be found bet ween the second and third groups. On the lower margin there are from 3 to 8 teeth, usually 4 to 6 . The teeth are larger than is customary and are rather widely separated, extending on to the distal third of the rostral length.

The lateral process of the antennular peduncle reaches to the middle of the second segment.

The carpus of the first peracopods (text-fig. 4a) is from $1 \cdot 7$ to 2.4 times as long as broad; it is decidedly more stender in males than in females. That of the second perreopods (text-fig. 4b) is from 5% to 6.7 times as long as broad. The propodus of the third peraeopods (text-figs. $4 c, f$) is from 2.5 to 3.9 times the length of

[^4]the dectylas, the former segment being proportionately shorter in makes. Rududing the spines the dactylus is 3.4 or 3.5 times as long as broad in females, rather marrower in males. In females the spines (the terminal one incladed) are from 9 to $I I$ in number, very rarely 8 ; in males they are more numerous, from 13 to 17 , rarcis 18. In the fifth peraeopods (text-figs. 48, h) the propodus is from 3.1 to 37 times the length of the dactylus. The latter segrent bears froen 46 to 71 spinales, excluding which it is from 3.2 to 3.7 tines as long as broad.

In males the propodus of the third and fourth peracopods is modifed ach as in P. compresse (tert-figs. 4e,f). The dactylus is sujhtly sboormal in form, but is without recurved spines and the propodes does not seem to attain as extreme a development as in large males of P. compresse subap. improvisa. In very old females additional spinules are sorsetimes found on the propodi of

the third and fourth peracopods (text-fig, 4c), thus resembling adult males.

The equ are from 0.40 to 0.45 mm . in length and from 0.25 to 0.26 mm . in breadth. Large specimens reach a total length of 42 man
P. curminostris is known from both morth and south islands of New Zealand and from Upper Asmam. It has been recorded by Chilton from the Chatham Is. In the Indian Museum it is represented by a namber of specimems from the River Avon at Christcharch (Ches. Chitroa coll.) and by one from the Shag River (Paris Man.), both localities being in the soathern island. There are shos einenty-four specimens from Tezpar, in the Darrang district of Asman, and three from the Manipur Hills, all collected by Col. H. H. God in-Austen.

The views bere advanced on the taxonomy of the species of Paratyen, malke it more than ever difficult to ofer any explanation of the curious distribation of this species; the new observations
indicate that the methods I adopted in 1912, in comparing the specimens fron Assam with those from New Zealand were reliable and that had specific diferences existed they would infallibly have been detected. If the record from Assam were based on specimens from one locality I would have rejected it as untrust worthy, but the fact that samples exist from two distinct places renders it improbable that any mistake can have arisen.

Paratya australiensis, sp. nov.

1891. Miersia compressa, Ortmann, Fenaische Dewhschrift, VIII (=Semon's Zool. Forschungrois. in Australien etc. V), p. to.
1892. Tiptoceris comprese. Thomson, Trens. Linm. Sor. Zod. (2) VIII, p. 449 (part).
1gus. Xiphocaris compresma, Boovier, Ame. Sci. France Belgique, XXXIX. fig. i. p. 6 .
Hitherto the Australian representative of the genus Paratye has been considered to be specifically identical with that from

Japan, but judging from the specimens in the Indian Museum it is undoubtedly distinct. Three samples of Australian specimens have been examined, all of which differ in certain well-marted features from the Japancse examples. They also differ rather considerably inter se and it appears not unificely that recognimable races exist in different parts of the Australien continent. As types of P.amstaliensis I have selected a number of specimens from Clyde, near Sydney in New South Wales.

The rostrum in P. anstratiomsis varies considerably in length. extending to the end of the antennular peduncle or far beyond the apex of the antennal scale, sometimes (in specimens from Sydrey) reaching beyond the latter point by as much as one quarter its length. On its upper border it bears an uninterrupted series of
[Vol. XIII,
19 to 32 teeth ${ }^{1}$ (nsually 22 to 31) of which 1 or 2 , rarely 3 , are placed on the carapace behind the orbital noteh. On the lower border there are from 1 to 14 teeth (usually 2 to 9); the distal thind of the lower margin is in most cases unar med.

The lateral process of the amtennular peduncle sometimes reaches only to the end of the basal segment, in other cases to aboart ane-third the length of the second segment.

The carpus of the first peraeopods is comparatively slender. froe 2.0 (Lake Torrens) to 2.9 times as long as broad and is sometimes, as shown in text-fig. 5 a, much less deeply excavate than in other species. Tbe carpus of the second pair (text-fig. 5^{b}) is from 5.8 to 7.5 times as long as broad. The propodirs of the third pair (text-fig. 5c) is from 3.5 to 40^{2} times as long as the dactylus (terminal spine included). The dactylus (tert-fig. 5d) bears from 9 to 13 spines, usually 9 to II; excluding these its length is from 30 to 3.6 times its breadth. In the fifth peraeopods (text-figs. $5 e, n$ the propodus is from 30 to (rarely) 3.8 times the length of the dactylus. The latter segment, spinules excluded, is very variable in form, from $3 \cdot 3$ to nearly 5° times as long as wide. The spinules vary in number from 28 to 82 ."

The third and fourth legs of the male show no signs of sexual modification.

No ovigerous females are present in the material examined. The largest of the Sydney specimens is 27 mm . in length; an individual from "S. Australian waters" is rather larger, abott 31 mm.

The specimens examined are from Clyde, near Sydney, from Lake Torrens in S. Australia and from "S. Anstralian waters." The first of these samples includes the type specimens" which bear the number $7590-2 / 10$ in the Zoological Survey register. The specimens recorded by Ortmann from Burnett in Queensland, by Bouvier from Melbourne and by Thomson from Victoria and New South Wales are presumably to be referred to this species. The identity of von Martens' examples from Adenare near Flores is quite uncertain.

The material I have examined shows an unusually great range of variation and it is possible, as noted above, that more than one defimable race of the species exists in Australia; the specimens in my hands are, however, not sufficiently numerous to afford evidence that this is really the case.

[^5]subsp. norfolkensis, nov.
1903. Xiphocaris cumpressa, Thumson. Trans. Linn. Soc. Zaol. 12) VIII. p.
1907. Xiphocaris) compressa, (irant and Mc(ulloch, Proc. Lime. Soc. N.S.U., XXXII, P. 156.
Specimens from both sides of Norfolk I., collected by Mesars. Laing, are in the Indian Museum. Examples from the east side of the island are smaller than those from the west, but do not appear to be distinguished by any other constant character. The material examined does not bear out Grant and McCulloch's state ment that the rostrum is proportionately shorter in apecimens from the east side.

The rostrum varies greatly in length and is frequently very

1.iu. ll... Parabva nlestrili,isis subup. Mirfolkensis, now.
d. Pirst peraeopod.
d. Dactylus of third perseopod.
b. Secund peraeopod.
c. Third peraeopod.
c. Pifth peraeopod.
i. Dactylun of fifth perazopod.
moch shorter than in any other race of Paratya. In specimens from the west side it reaches, in one instance, only to the end of the second antennular segment, in others almost or quite to the end of the peduncle and in one individual a little beyond the apex of the scale. Among those from the east side the rostrum in one case reaches barely beyond the end of the first antennular segment, in others to the end of the second segment, to the end of the peduncle or a trifle beyond the apex of the scale. The upper border bears from 21 to 32 teeth, 'forming an uninterrupted series from the base to the aper. The hindmost 2 to 5 teeth ${ }^{2}$ are placed on the carapace. On the lower border there are from 3 to 8 teeth ${ }^{1}$ which almost always extend on to the distal third of the rostral length and not infrequently reach almost to the apex.

[^6]The lateral process of the antennular peduncle reaches to the end of the basal segreent, or as far as the middle of the second segment.

The carpas of the first peraeopods (text-fig. 6a) is much broeder than in any other race or species of Parelya that I have seen; in females it is only from 13 to 1.6 times as long as broad and in males from I' 7 to I'9 times. It is very deeply excavate anteriorly. The carpus of the second peraeopods (text-fig, 66) is from 4.2 to $4^{\circ} 9$ times as long as broad. In the third peraeopods (text-figs. $6 \boldsymbol{c}, \mathrm{~d}$) the propodus, in females, is from 4.3 to 5.2 times as long as the dactylus, from 377 to 3.9 times in males. Excluding the spines the dactylus is oaly from ZI to 27 times as long as broad, being rather more siender in males than in females. The spines are less numerous than in the typical form; they vary from 6 to 8, the number occasionally riving to 9 in males. In the fifth peracopods (text-fas, $6 e, f$) the propodus is from 42 to 44 times as long as the dactylas, the proportion in males rarely falling to $3{ }^{3} 9$. The dactylos, excluding the spinales, is from 2.4 to 2.8 times as long as broad. The spinules are from 35 to 43 in number and differ conspicuously from those of the typical form in one particular. In the Australian race, as in all other members of the genus save the present one, the spinules towards the apex increase successively in size by even gradatioms. In the Norfolk I. form the spinules are fine and regular throaghout the greater part of the dactylar length, but close behiad the tip there is a sudden break in continuity, the three, less commonly two terminal teeth being veatly larger than the adjacent members of the series (text-fig. 6) .

As in the typical form the third and fourth legs of the male show no signs of sexual modification.

There are no ovigerous females among the specimens examined. Examples from the west side of the island reach = length of 32 mm .; those from the east side do wot exceed 18 mm .

It appears to me not improbable that the Norfolk I. form deserves rank as a full species, but further work on the Australian races is necessary before its precise position can be determined.

The types are from the west side of the island and bear the number $8500 /$ Io in the register of the Zoological Survey of India.

[^0]: 1 Miers was evidently unaware that von Martens in 1872 (Arch.f. Nafurgesch.. XXXVIII, i. P. 139) had founded the genus Xiphocaris on this wery character. Xiphocaris, however, was based on specimens from the West Indies and, as Bouvier has shown, is distinguished from the Pacific genus by the greater number of branchiae $=\mathrm{d} \boldsymbol{d}$ other important characters.

 - The type of this genus is Risso's Efinyra pelagica, probably a Hoplophorid.

[^1]: 1 The extreme length of the dactytus. terminal spine inchuded.

 - Including the terminal spine.

 The character is also valid for males of P. australiensis and its subspecies: in males of P. curzirostris the proportion occasionally falis as low as 25 .

[^2]: Excluding all spines, both terminal and lateral.

[^3]: 1 This statement is based on an examination of a few specimens from Havena in Cuba, preserved in the Indian Museum

 * Bourvier. Rull. Wus. d'Hist. naf. Paris, 1913. p. Gos

[^4]: ' Ishikawa, Quart. Fomrn. Microsc. Sci., XXV. p. 391 (1885).
 ${ }^{2}$ The information here given is mostly abstractod from my priper of 1912, supplemented by a number of fresh observations.

[^5]: 1 The rostral formulace in the three samples are as follows: -In 12 specs. from
 ian vaters" ${ }^{1}$ i: :n

 I In a female from I-ake Torrens.
 33 to 40 in most cases. The specimen with a proportion of nearly 5 is pertaps an abnormality.

 From 28 to 65 in the Sydney specimens.

 - Owing to a very unfortunate accident the types have been destroyed since the description was drawn up. The only portions of them that remain are certain appendages monnted on slides for microscopic examination

[^6]: 'Acourding to thomson's observations the teeth vary from if to 34 above and from 2 to 9 below.

 2 2 or 3, rarely 4 , in specimens from the east side ; 4 , rarely 5 , in those from the west.

