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The vast majority of life on the Earth is physically small, and is classifiable as
micro- or meiobiota. These organisms are numerically dominant and it is likely
that they are also abundantly speciose. By contrast, the vast majority of taxo-
nomic effort has been expended on ‘charismatic megabionts’: larger
organisms where a wealth of morphology has facilitated Linnaean species
definition. The hugely successful Linnaean project is unlikely to be extensible
to the totality of approximately 10 million species in a reasonable time frame
and thus alternative toolkits and methodologies need to be developed. One
such toolkit is DNA barcoding, particularly in its metabarcoding or meta-
genetics mode, where organisms are identified purely by the presence of a
diagnostic DNA sequence in samples that are not processed for morphological
identification. Building on secure Linnaean foundations, classification of
unknown (and unseen) organisms to molecular operational taxonomic units
(MOTUs) and deployment of these MOTUs in biodiversity science promises
a rewarding resolution to the Sisyphean task of naming all the world’s species.

This article is part of the themed issue ‘From DNA barcodes to biomes’.

I hope there’s an animal somewhere that nobody has ever seen. And I hope nobody
ever sees it.

Wendell Berry ‘To the unseeable animal’ [1].

1. The Linnaean revolution: biology’s enduring megaproject
Physics and astronomy are replete with megaprojects, such as the Large Hadron
Collider and the Mars missions, that dwarf other modern investments in basic
science. But these projects, and the recent huge projects in biology—ENCODE
[2], the Human Genome Project [3], the Structural Genomics project [4]—are
dwarfed by the longest-running, most successful and most impactful biology
megaproject of all: the 263-year old Linnaean project [5,6]. The revolution in
biology initiated by Linnaeus in proposing a binomial system for ‘naming’
groups of plants and animals that were recognizable as distinct natural types
has changed the world. These names are a lingua franca that can be used to com-
municate complex concepts and understanding across the globe, helping to
organize agriculture, trade and industry, and that is the standard against which
we can measure human impact on the planet’s ecosystems. The project has
been delivered by hundreds of thousands of taxonomists, working lifetimes to
describe an estimated 1.2 million species [7]. For every krona, euro, dollar or
yen invested in taxonomy, the world economy has likely reaped many-fold
returns through identification of disease organisms, invasive species, important
biomaterial sources and biomarker taxa.

But how many species of life are there on the Earth? And how close are we to
completing the great catalogue? Through careful modelling of species diversity in
different groups and encompassing both terrestrial and marine ecosystems, Mora
et al. [8] estimated that there are 8.7 million species on the Earth, or seven times as
many as have been described in the first quarter century of the Linnaean Project.
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Their estimate, based on careful modelling of known and
predicted species numbers in different phyla and kingdoms,
sits near the middle of previous estimates [9,10]. Most of the
species (7.7 million) are predicted to be Metazoa, and most of
the Metazoa are Arthropoda. The catalogue is not complete.
As Mora et al. [8] said: ‘In spite of 250 years of taxonomic classi-
fication and over 1.2 million species already catalogued in a
central database, our results suggest that some 86% of
existing species on Earth and 91% of species in the ocean still
await description.’

The nature of Linnaean taxonomy is such that naming a
new species takes a finite amount of effort, but this effort
increases as the Linnaean catalogue becomes more complete.
Each proposal for new species must be carefully and precisely
placed with reference to existing knowledge. Specific diagnosis
has to be offered, and the literature and specimens that under-
pin the diagnoses of closely related taxa must be minutely
examined. Naming the remaining 86% of species is going to
become ever more difficult, and even with accelerated publi-
cation and digitally available descriptions is likely to require
a millennium or more of focused effort. It is thus unlikely
that the Linnaean catalogue will ever be complete. This is not
to say that it is credible that the Linnaean project should
stop, but rather that we cannot expect this Sisyphean task to
be completed.

For his continued lack of respect for the order of the gods,
Sisyphus was condemned for eternity to roll an immense
boulder up a steep hill. Each time he neared the summit, and
was about to release the boulder to roll down the other side
to freedom, the boulder escaped his grasp and thundered
back to the plain. Sisyphus had to return to the foot of the
hill to restart his task, forever [Homer Odyssey 11.13]. For
Linnaean species description, the near-endless task might be
cut short by mass extinction.

2. DNA sequencing, barcoding and species
description

Molecular data have been included in the primary descriptions
of new taxa for 20 years or more. For example, in 1996, the first
description [11] of the nematode Pristionchus pacificus, a species
now used as a genetic, developmental and ecological model
organism [12], included nuclear small subunit ribosomal
RNA sequence. These sequences that accompany the primary
species descriptions have been christened ‘genetypes’ [13]. In
bacterial taxonomy, molecular data are necessary for species
definition, and soon species descriptions for eukaryotic taxa
will also include whole genome data. In a retrofit operation,
the taxonomy curators at the National Center for Biotechnol-
ogy Information’s GenBank database have been assigning the
label ‘sequence type’ to sequence accessions where there is
clear evidence that they derive from a submitted type culture
or specimen [14]. This NCBI effort now includes (April
2016) over 25 000 taxa, with 13 219 Bacteria, 509 Archaea and
11 471 Eukaryota (of which 1141 are Metazoa). The Metazoan
species are largely associated with cytochrome oxidase 1
(COI) barcode submissions. A global effort to determine
genome sequences for bacterial type strains is underway
[15,16]. These data are significantly augmented by the DNA
barcode data amassed by the DNA barcoding community
and presented in the BOLD System database [17]. BOLD
DNA barcode data are associated (in the main) with specimens,

the majority of which in turn have expert morphological
species identifications. Thus, sequence-species links are
available for over 250 000 Linnaean species of Viridiplantae,
Metazoa and Fungi (and approximately 1000 species from
four phyla of protists).

3. Neglected animals are largely small
Numerically, the overwhelming majority of individual organ-
isms are microscopic, with major body axes less than 1 mm.
While this size class obviously includes (most) Bacteria,
Archaea and protists, it also includes the majority of Metazoa,
a group famed for its charismatic megataxa. For example, in
beach sediments the meiofauna outnumber the indwelling
meso- and megafauna by orders of magnitude [18]. However,
these massive populations might have a small impact on over-
all diversity if they include relatively few distinct species.
Species number estimates for phyla that are largely meiofaunal,
for example, those of Mora et al. [8], suggest relatively low total
species counts, based on low counts of described species. These
estimates can be at odds with focused analyses carried out on
smaller branches of the tree of life.

Underestimation of species numbers is particularly
prevalent in meiofauna, where lack of easily recognized mor-
phological characters (when the whole specimen is 200 mm
long, species specific characters may be at the limit of light
microscopy), the incompleteness of early descriptions, the var-
iance and environmental plasticity of form, and the sheer
abundance of individuals challenge the working method-
ologies of systematists. In phylum Nematoda, there are
approximately 24 000 described species. Hallan, in a painstak-
ing encyclopaedic effort completed in 2007, catalogued 22 136
species level taxa [19], and nematode taxonomists have been
busy since then adding to the catalogue (e.g. 15 new species
of Caenorhabditis in one paper [20]). However, for Nematoda,
the modelling of Mora et al. [8] estimated a total species
number less than the current described species number.
Other authors, using data collected from geographically or eco-
logically restricted sampling, suggest that true Nematoda
species numbers may be anywhere between 1 and 100 million
[21–25]. While the upper estimates are deprecated, in particu-
lar, owing to a more restricted diversity than expected in deep
sea benthos communities [25–27], support for a total of
approximately 1 million nematode species is credible. Evidence
is also emerging of many cryptic species in Nematoda. For
example, the widespread and long-studied Pellioditis marina
has been shown to be a complex of dozens of reproductively
isolated metapopulations (i.e. species) that can be distinguished
by DNA sequence and mating tests, but not morphology [28].
A similar finding of extensive crypsis in large nematodes
(greater than 1 cm) [29] suggests that crypsis may be a
common reason for underestimation of species numbers.

There are likely to be many undescribed meiofaunal
species, particularly in marine sediments. As marine enoplid
nematode specialist Ashleigh Smythe said ‘Marine nematolo-
gists get excited when we find a known species’ (personal
communication to M.B. 2016). The high estimates of global
nematode species numbers [23] are based not on identification
of specimens to Linnaean taxa but of sorting of samples into
operational taxonomic units (OTUs), and these OTUs are, in
turn, likely to conflate cryptic taxa. Identification of nematodes
to species is time consuming and requires a high level of
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expertise, such that comprehensive nematode species invento-
ries are practically impossible using traditional methodologies
[30]. The same set of issues (hyperabundance, hyperdiversity,
crypsis and lack of distinguishing morphology) are likely
to challenge species identification and diversity assessment
in other meiobiotal eukaryotes, such as Tardigrada [31],
Oribatida [32] and the many single-celled eukaryote phyla.

4. Metabarcoding accesses meiofauna
It is trivial to set a plankton net or sieve a few tens of grams of
sediment and collect hundreds of thousands of specimens
of meiofauna. Nematodes achieve astounding numerical
abundances, up to a record of 27 ! 106 m22 in an estuary
sediment [33]. Like other animals, meiofaunal species abun-
dances follow overdispersion curves, with a few species
present in large numbers and most species present rarely.
Sifting by eye through a cloud of swimming larvae or thrash-
ing nematodes for rare novelty is a thankless task, and
current methodologies subsample from a preserved sample
to estimate taxon abundances rather than to enumerate
novelty. By repeated sampling, the likely pattern of taxon
abundance and diversity can be estimated, but this is costly
in researcher time. Advances in sequencing technologies
now permit bulk sampling of barcoding genes from a popu-
lation without the need to individually separate, amplify and
sequence each specimen. This approach, pioneered for analy-
sis of the expected 99% of unculturable prokaryotes and
microbial eukaryotes [34–36], has been termed metagenetics,
environmental barcoding or metabarcoding [37–39]. While
the individual specimens are never seen or assessed for
Linnaean taxonomy, it is possible to use their sequences as
proxies for both their presence (and perhaps abundance) and
systematic affinities. The use of PCR in complex mixtures and
the inherent errors and biases of the new sequencing technol-
ogies mean that careful filtering for errors and artefacts is
essential before robust molecular operational taxonomic unit
(MOTU) estimation can be carried out [40,41]. With current
technologies that involve amplification before sequencing, for-
mation of chimaeric fragments remains a significant issue [41].
The power of new sequencing technologies (generating tens to
hundreds of millions of sequences at a time [37]), advanced
computational toolkits [42] and ever faster processors
now mean that this task is relatively trivial, and as analysis is
algorithmic it can be programmed to run automatically [43].

Using this metabarcoding approach a number of groups
have started to probe the meiofauna of sediments and soils
to ask what is there and to assess whether the ‘extreme’ asser-
tions of meiofaunal species number are likely to be true. Tens
of thousands to millions of sequences from a variety of meio-
faunal assemblages have now been determined and analysed
as MOTU sets [43–46]. These analyses have many notable
features. As expected, Nematoda and Arthropoda dominate
marine sediments in terms of numbers of reads and of
MOTUs. In the same sediments high numbers of Platyhel-
minthes taxa [44,46] have been found, against expectation.
Flatworms are not often observed in abundance in sediments.
The disparity between the morphological and barcoding
approaches may be because meiofaunal flatworms must be
sampled live for morphological identification, as when pre-
served they are effectively indistinguishable from detritus.
However, DNA extraction is agnostic as to appearance and

thus delivers flatworm DNA for amplification and sequencing.
Importantly, the DNA barcoding approach was able to affirm
the presence of 1000–2500 eukaryote MOTUs per survey
[43–46], and classify these robustly by comparison with exist-
ing databases of marker genes. The paucity of species-tagged
reference sequence data for many phyla sampled in these
experiments precludes (in most cases) assignment to species-
equivalent in the Linnaean system, but the MOTUs can be
robustly assigned to genera or families. This is, in most cases,
enough to infer likely life-history characteristics such as
mode of feeding.

5. Molecular operational taxonomic units as
species

DNA barcode data can be used to define OTU. We originally
called these MOTU and suggested that MOTUs were useful
proxies for ‘species’ level taxa, and could be used in a similar
way to OTUs [47,48]. Importantly, the algorithm used for
MOTU definition can be explicit, and largely deterministic.
This permits both hypothesis testing and interoperability of
MOTU analyses. It is possible to aggregate data across studies
and robustly synonymize taxa in different datasets, desynony-
mize cryptic taxa, co-cluster larval and adult specimens, and
identify prey-derived sequences from gut or faecal samples.
The BOLD System database [17] now includes a clustering of
barcode sequences into MOTUs, called BINs (Barcode Identifi-
cation Numbers), wherein DNA barcode sequences have been
clustered [49] to define groups that have congruent internal
divergence and are distinct from groups generated from related
sequences. The BIN system has been critical in advancing dis-
cussion and discovery of new taxa, and provides a working
example of a post-Linnaean taxonomic system. Importantly,
as BOLD System and the Barcode of Life project generally are
specimen-based, BINs can be linked to specimens, and the Lin-
naean diagnoses of those specimens. Similarly, the UNITE
project aims to deliver a MOTU-based clustering of fungal iso-
late internal transcribed spacer (ITS) sequence linked, where
possible, to named taxa [50]. UNITE currently presents 53
891 ‘fungal species hypotheses’ based on ITS data.

But are MOTUs ‘species’? In the early years of the DNA
barcoding field, there was animated debate as to whether
COI data, and particularly the partial COI target chosen for
DNA barcoding, was sufficient to distinguish animal species,
and whether it was an honest marker of species membership.
This debate has not been resolved, but it is clear that for most
animal taxa the COI barcode is good at distinguishing
species, and that exceptions to this general success are both
real and interesting, but not fatal to the programme as a
whole. In animals, for example, COI generally accumulates
substitutions rapidly enough so as to be informative between
all but the most recently diverged taxa, and population gen-
etic processes serve to assure that the coalescence of the
mitochondrial haplotype is usually before coalescence of
the nuclear haplotypes in a species. Issues arise where mito-
chondria have introgressed between species, sometimes
because of other cytoplasmic genetic elements such as intra-
cellular symbionts like Wolbachia [51]. In complex species
groups, joint analyses of nuclear and mitochondrial markers
may be necessary to distinguish species [52]. Alternative mar-
kers, such as the nuclear ribosomal RNA subunits, also have
promise, particularly as it is possible to derive near-universal
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primer sets that amplify all taxa. However, the greater con-
servation of ribosomal RNA genes that permits universal
primer design also limits the specific diagnosis possible
with ribosomal RNA sequence. Closely related taxa can be
identical in small ribosomal RNA sequence, or so close as
to be indistinguishable from sequencing error [48].

Despite these caveats, specimens assigned to MOTUs or
BINs can be used in ecological and other surveys just
as would specimens assigned to Linnaean taxa [37,43–46].
Individual MOTUs can be assigned abundances and the
presence–absence statistics, samples can be compared both
within and between studies, and ecological parameters inferred
from interaction with abiotic factors and from inferred taxo-
nomic affinities. For meiofaunal surveys, where morphological
taxonomy is unable, for operational reasons, to identify OTU
to Linnaean species, it can be impossible to cross-compare differ-
ent ecosystems because it is not possible to synonomize between
‘Daptonema sp. 1’ in one publication and the several unallocated
Daptonema species identified in a second [53].

6. Outlook
Some dung beetles famously collect and roll relatively huge pel-
lets of dung in order to provision their offspring, and are a
living model for Sisyphus’s task. Like all biological mechan-
isms, this activity has no greater purpose than an attempt by
dung beetle genes to produce additional copies of themselves
in the future. Camus was fascinated by the myth of Sisyphus
[54], in particular, in the way it perhaps echoed the

pointlessness of human existence: no matter how hard Sisy-
phus worked, no matter how often he nearly reached the
summit, he always watched his boulder rolling out of control
back down the hillside to the plains. But Camus was interested
in Sisyphus as he walked back down to restart his task: what
was Sisyphus thinking, what did he feel? During the period
of this endless return, Camus suggests we must consider Sisy-
phus happy: happy that the task is still there to be done [54].
Similarly, while we may never complete the cataloguing and
systematizing of life on our planet, it is deeply illuminating to
attempt to do so. Knowing the limits of diversity, the edges
of the puzzle, may be as important as filling in every piece.
Especially, as we experience the sixth great extinction it may
be a hollow victory to develop a species or MOTU list for a dis-
appearing ecosystem. That said, metagenetics is, I believe, the
only way we are going to glimpse the majority of life on the
Earth, and, while we may never see the organism we sequence,
we will be able to infer its place in phylogeny, impute its
biology and consider its roles in driving ecosystem function.

‘La lutte elle-même vers les sommets suffit à remplir un coeur
d’homme. Il faut imaginer Sisyphe heureux.’

[The struggle to the summit in itself is enough to fill the heart. We
must imagine Sisyphus happy.]

Albert Camus, Le Mythe de Sisyphe [54].
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