MACRO-INVERTEBRATE ASSEMBLAGES AS INDICATORS OF SEDIMENTARY ENVIRONMENTS IN EAST MISSISSIPPI DEL'TA REGION ${ }^{1}$

ROBERT H. PARKER ${ }^{2}$
La Jolla, California

Abstract

As a result of a study based on three years of biological sampling in the east Mississippi Delta region, eight macro-invertebrate assemblages are recognized, each characteristic of a specific sedimentary environment ranging from the Mississippi Delta marshes to the edge of the continental shelf northeast of the Delta proper. The eight assemblages and their corresponding environments are: (I) the delta marshes, (II) delta front and lower distributaries, (III) lower Breton Sound and lower pro-delta clayey slopes, (IV) upper Breton Sound, (V) inlets, or areas of strong currents, (VI) the shallow continental shelf of the Gulf of Mexico from 0 to 12 fathoms, (VII) the deeper part of the continental shelf from approximately 13 fathoms to 60 fathoms, and (VIII) the living oyster reefs of the shallow protected bays of the Delta region. The boundaries of these environments were established by plotting the distributions of both living and dead representatives of species of invertebrates furnishing hard parts plus the distributions of living soft-bodied animals which were so abundant as to characterize regions where animals with hard parts were scarce though present.

Comparison of the distribution of the hydrographic factors with the physiography of the landmasses in this area with the macro-organism distributions made it possible to formulate criteria for the interpretation of ancient environments as far back as the Miocene on the Gulf and Atlantic coasts. Paleontologic literature shows that most of the present-day delta species have been found in the Pliocene, and most of the diagnostic forms have existed since the lower Miocene. The primary factors influencing distributions of these organisms are bottom type, salinity and temperature (especially the degree of variability), turbidity of the water, and currents. It was also found that comparative rates of deposition could be estimated by the ratio of the number of living to the number of dead, in equal-size samples. A series of marine bottom communities based on the community concept of European marine ecologists is recognized on the basis of the most abundant and widespread animals.

INTRODUCTION

This paper describes one of a series of studies of nearshore sedimentary environments in the northern Gulf of Mexico, supported by the American Petroleum Institute as Project ${ }_{51}$, at Scripps Institution of Oceanography under the direction of Francis P. Shepard. The study was made on the east side of the Mississippi Delta in Breton Sound and beyond in the open Gulf of Mexico from the shore to approximately the 90 -fathom contour (Figs. I and 2). The work was begun in October, 195 I ; biological collections and observations were made during the fall and early winter of 1951, the spring and early summer of 1952, and the last week of May and first week of June, 1953. Bottom-sediment samples for mechanical analysis yielding biological information were also obtained in the fall of 1953 and in February, 1954 . Biological collections were made at more than 280 stations, and in addition 130 bottom-sediment sampling sites provided some biological data. Two maps (Figs. 3 and 4) show the locations of all stations providing biological data. Positions for most of the inshore biological stations were

[^0]${ }^{2}$ Scripps Institution of Oceanography.
located by the use of horizontal sextant angles; the offshore stations were made by dead reckoning and are, therefore, approximate.

Acknowledgments.-For assistance in preparing the manuscript and for helpful suggestions on many aspects of this problem, the writer thanks Joel W. Hedgpeth of the Scripps Institution of Oceanography. Thanks are also due to Robert L. Miller of the University of Chicago for suggesting various methods of analyzing the field data and presenting it in statistical form. The writer is particularly grateful to Miss Joan Demond, formerly with this Project, for her assistance in identifying and establishing the synonomy of the mollusks (to be published

Fig. I.-General map and place names of east Mississippi Delta region.

Fig. 3.-Station locations of biological samples taken from 1951 to 1954 in inshore Mississippi Delta region.
separately); and also to Thomas E. Pulley of the University of Houston who identified many of the pelecypods. He also thanks Harald A. Rehder and Joseph P. E. Morrison of the Division of Mollusks, United States National Museum, and R. Tucker Abbott of the Philadelphia Academy of Natural Sciences, for help in identifying many of the mollusks, and William K. Emerson of the American Museum of Natural History for identification of the scaphopods. Appreciation is also extended to J. Wyatt Durham and Elton L. Puffer of the Museum of Paleontology at Berkeley for identification of the echinoderms and corals and for furnishing some of the photographs used in the faunal plates; and to Donald J. Reish of the Allan Hancock Foundation, University of Southern California, for identification of the polychaete worms. James R. Moriarty of the Geology Division at Scripps prepared the charts and illustrations in this paper, and Thomas E. Mahnken made most of the photographs.

Previous work.-With the exceptions of various collections of mollusks (Vanatta, 1903; Clench, 1929; Hadley, 1936; Richards, 1954), there has been little investigation of the bottom fauna of this area before or since the preliminary survey of the clam and scallop beds in the vicinity of the Chandeleur Islands and Breton Island by Spaulding (1906), and the faunistic surveys by Cary (1905) and Cary and Spaulding (igO9). Many of the species of mollusks collected during the present investigation were previously recorded only in Dall's monographs (1886, 1889) on the collections near the Mississippi Delta by the Blake and the Albatross. Rehder and Abbott (195I) described several species of mollusks which were also taken near the Mississippi Delta in the same localities where project collections were made, and Richards (1954) listed many of the Delta mollusks from borings made in the region now being studied. A general history of investigations in the Gulf of Mexico may be found in Galtsoff et al. (1954, pp. 25-32, 203-13).

GENERAL DESCRIPTION OF AREA

The principal physiographic features of this area (Fig. 1) are the low delta plain of the Mississippi River with its active distributaries which empty into Breton Sound or directly into the Gulf of Mexico, and the small barrier islands (Breton and Gosier), which lie about 6 miles offshore. Wide inlets have formed between Breton Island and the shores of the Delta and between Breton and Gosier islands. Both of these inlets are $26-45$ feet deep and are characterized by strong tidal currents. The barrier islands are narrow and of low relief, but seem to be an effective barrier to both fresh water pouring out of the Mississippi River distributaries toward the southwest and to the high-salinity waters of the open Gulf of Mexico. Breton Island has a shallow lagoon on the south side of the island with a stand of honey mangrove (Avicennia nitida) on the island edge of this lagoon.

Breton Sound, although it is broadly connected with the Gulf, is shallow and fairly well enclosed by land except where it joins Chandeleur Sound on the north.

Fig. 4.-Station locations of biological and geological sediment samples taken in offshore Delta region.

Breton Sound is 8-15 feet deep in its northwest part, increasing to $18-26$ feet in the southeast part (Fig. 5). A brief physical description of the region is given in a paper by Scruton (1956).

The sediments and sedimentary processes of the area are described in detail by Scruton (1956), who proposed sediment units based on the particle size and gross appearance of the deposits. Inman (1956) has also compiled a chart of sediment types of the inshore region, based on the parameters of the size distribution of the sediments. Two maps (Figs. 6a and 6b) were also compiled for this study to show the size distribution of the sediments based on their percentages of sand.

Fig. 5.-Bottom contours of inshore Mississippi Delta region (as compiled by F. P. Shepard).
silt, and clay, by the classification described by Shepard (1954). These two maps will be shown to have close agreement with the distribution of macro-organisms.

In general, both chlorinity (chlorinity rather than salinity is used here because normal ionic ratios used to calculate salinities may not hold in these areas diluted by river water) and temperature are extremely variable in this region, except in the bottom waters of the offshore parts of the Gulf of Mexico (discussed in detail by Scruton, manuscript). The northeast parts of Breton Sound are somewhat more stable and generally possess higher chlorinity and water temperature than the waters in the vicinity of the delta shores and distributaries (Figs. 7, 8, 9, and ro). According to Marcus A. Hanna of the Gulf Oil Corporation (personal

Fig. 6a.-Areal distribution of sediment types as determined by sand-silt-clay contents for inshore Delta region (compiled by Parker and D. G. Moore).

Fig. 6b.-Areal distribution of sediment types as deternined by sand-silt-clay contents of offshore Delta region (compiled by Parker and D. G. Moore).

FIG. 7.-Areal distribution of chlorinities in parts per thousand as observed in fall of 1951 during time of minimum river discharge (compiled by P. C. Scruton).

Fig. 8.-Areal distribution of chlorinities in parts per thousand as observed in spring of 1952 during time of maximum river discharge (compiled by P. C. Scruton).

Fig. 9.-Water-temperature profiles of inshore Mississippi Delta region at times of low and high river discharge (compiled by P. C. Scruton).
communication) a semi-permanent wedge of high-salinity water impinges on the shores of the delta near Coquille and Denisse bays.

Although the chlorinities are variable in Breton Sound and in the vicinity of the delta, they are not typical of normal low-chlorinity bays, such as San An-

Fig. 10.- Depth distribution and annual variation of water temperatures in offshore Delta region (compiled by P. C. Scruton).
tonio and Galveston bays (Galtsoff, 1931), or Copano Bay (Collier and Hedgpeth, 1950) in Texas. The bottom chlorinities in Breton Sound seldom fall below 16% (parts per thousand) even during the flood stages of the Mississippi River (Fig. 8). The only parts of the project area which have chlorinities below 5 or 6% are the river distributaries less than $3-5$ feet deep of the Delta front and the waters of the Delta marshes. The waters of the open Gulf of Mexico at depths greater than ${ }^{12-I}{ }^{2-1}$ fathoms ($7^{2-7} 8$ feet) seldom fall below 19% chlorinity and have a very narrow range of chlorinity ($19.6-20.2 \%$) and temperature (20° $25^{\circ} \mathrm{C}$.). Scruton (manuscript) discusses the inter-relationships of the hydrographic factors in the Delta region. Turbidity of the waters in this region may also be important in influencing the distribution of many of the invertebrates in the area. Scruton and Moore (1953) discussed turbidities in this region.

METHODS OF STUDY

Most of the biological samples were obtained with an orange-peel bucket approximately $\frac{1}{3}$ cubic foot in capacity. Because of varying hardness of the bottom sediments, samples were not of equal size; therefore, samples comparable on an unweighted basis were not obtained. On particularly hard sand bottom, a snapper grab sampler was used. Because this device took no more than a handful of sediment, several samples were taken at each station. Several dredges and trawls were used for the large animals and those organisms which were too mobile to be taken by grab samplers. Coring devices also produced valuable biological data, since comparative distribution figures could be obtained by analyzing the top 5^{-} 20 centimeters of sediments in the cores. Most of the shells from cores were collected from the sand fractions of sediment analyses from these cores.

An attempt was made to list all organisms taken at every station while in the field. Most of the material was preserved in iso-propyl alcohol for later study. From the field notes and from the condition of the preserved material it was possible to get approximate living and dead counts of all organisms at each station, although each single valve was counted as one dead individual. All major faunal groups were sorted from each sample, and all except the bryozoans, crustaceans, and fish were sent to specialists for identification. A complete list of invertebrate species and the biological station numbers at which each species was taken is listed in Table I. Most of the specimens taken in the study are at Scripps Institution of Oceanography, except the scaphopods, echinoderms, and corals, which are at the Museum of Paleontology at Berkeley. Most of the organisms used in defining the macro-organism assemblages will be illustrated in a catalogue of invertebrata of the Gulf Coast, in preparation.

From the collections in the east Mississippi Delta region the following numbers of species were found: 93 gastropods (and 7 pteropods), ir 6 pelecypods, 6 scaphopods, I chiton, 3 cephalopods, 7 anthozoa (coelenterates), 8 echinoderms, 3I polychaete worms, 8 identifiable bryozoa, and 34 crustaceans, a total of 314 species. A series of species distribution maps for the more important invertebrates

Table I. Species and Station Occurrences of Invertebrate Animals Collected in Mississippi Delta Region

$\overline{\overline{S p e c i e s}}$
mOLLUSCA
Gastropoda
Diodora cayenensis Fissurella barbadensis Neritina reclivata

Littorina irrorata Littoridina sphinctosloma(?)
Modulus modulus Architectonica nobilis Cerithium muscarum Cerithiopsis subulaia Bittium varium Calyptraea ceniralis Crucibulum auricula Crepidula jornicata. Crepidula plana

Strombus alaius
Polinices duplicalus

Polinices uberinus
Nalica pusilla
Nalica canrena
Sinum perspectivum
Phalium granulatum
Distorsio clathrata
Sconsia striata
Tonna galea
Murex recurvirosirus rubidus
Murex cabriiii
Murex Morifer arenarius Thais haemastoma floridana
Thais haemastoma haysae
Anachis (Astyris) perpicta
Anachis obesa

Anachis iontha
Anachis avara semiplicala
A nachis avara similis
Mitrella lunata
Colubraria lanceolata
Seila adamsi
Nassarius ambiguus consensus
Nassarius acutus

Nassarius vibex
Cantharus cancellarius
Odostomia impressa Busycon contrarium
Busycon spiratum plagoswh
Oliva sayana
Oliva caribaeensis
Olivella mutica

Epilonium, species
Marginella aureocincta
Marginella denticulata
Mangelia citronella
Mangelia serga
Mangelia jewetti
Mangelia ceroplasta
Melanella bilineata
Turbonilla hemphilli
Turbonilla, specjes
Liostraca bilineala
Rissoina cancellala
Polystira albida
Polystira tellea
$33,62,74,75,76,246,247,309,3$ It
247
33, $35,38,52,62,74,75,76,8 \mathrm{I}, \mathrm{I} 22, \mathrm{I} 46 \mathrm{a}, \mathrm{I} 5 \mathrm{I}, 153,180,188,190,220,22 \mathrm{I}, 227,240,246,277,278$, 284,3 11, 323, 398, 402, 457, 57t, 642, 643, 672
I2, I3, I5, 244, 32 I
426, 043, 670
II
309
33
75
643
244, 308, 309, 311, 316
308, 309, 311 , 393
$33,34,62,68,77,142,151,244,308,309,311,321,393$
$4,13,17,32,33,34,36,37,38,62,73,74,76,80,153,154,155,157,160,180,188,251,268,316,321$, $322,383,429,575,642,643$
13, 244, 32 I, 393, 443
I, $2,4,9, \mathrm{II}, \mathrm{I} 2,13, \mathrm{I} 5, \mathrm{I} 7,20,28,32,33,35,37,43,48,52,62,69,7 \mathrm{I}, 77,142,143, \mathrm{I} 53,154,155,160$, 17I, I8I, 183, 189, 233, 246, 247, 248, 250, $25 \mathrm{I}, 254,255,256,257,26 \mathrm{I}, 32 \mathrm{I}, 322,323,405,406,424$, $642,643,669,672$
$244,308,309,311,316,317,387,393$
$8,10,54,43,73,82,88,171,188,190,197,248,283,294,308,309,315,313,316,321,345,346,366$ $382,402,424,584,643,669,670$
308, 309, 311
189, 322, 366
13, 244, 443
308, 309, 311
316,366,560
443
244, 308, 309
309
309
4,9, 工 $2,15,37,74,180,249,250,32 \mathrm{I}, 323,458$
13, 143, 252, 261
$244,308,309,31 \mathrm{I}, 342,364,365,367,382,383,384$
$4,6,7,8,11,12,15,17,20,21,32,33,38,39,43,48,50,52,53,55,56,62,68,69,72,73,75,76,79$,
 $254,257,277,278,280,288,311,313,323,345,346,347,348,350,352,362,363,366,367,368,375$,
$382,393,406,4 \mathrm{I} 3,4 \mathrm{I} 5,419,420,424,428,460,57 \mathrm{I}, 572,573,575,642,643,669,670,672$
244, 309, 311
$7,39,43,62,70,142,143,152,154,155,188,246,247,250,252,254,321,322,401,575,581,642,670$ 17, 76, 8r, 142, 254, 257, 26I, $288,323,393,643,669$
7, 142, 250, 311, 404, 642, 643, 670
309
74, 76, 250, 311
$244,308,309,31 r, 316,317,366,382,385,386,387,391,393,560$
$2,4,5,6,7,8, I O, I I, I 2, I 5, I 7, I 9,20,2 I, 22,23,25,26,27,29,30,3 I, 32,33,35,38,39,40,41,42$, $43,46,49,51,52,56,61,62,68,69,70,71,72,73,76,77,78,79,82,84,86,88,142,142 \mathrm{a}, \mathrm{I} 43,146 \mathrm{a}, \mathrm{I} 50$,
 $182,183,187,188,190,196,205,213,246,247,248,250,254,261,262,268,276,277,290,292,293$, $300,309,321,322,323,326,330,33 I, 336,367,383,384,402,404,405,406,407,410,414,417,4 I 9$, $420,424,426,428,435,455,459,46 \mathrm{I}, 49 \mathrm{I}, 573,58 \mathrm{I}, 584,642,643,666,667,669,670,67 \mathrm{I}, 672,673$, I5,643
$7,12,15,32,33,34,35,43,51,62,73,74,75,78,80,81,143,144,146 a, 155,160,171,186,188,189$,
197, 246, 247, 248, 250, 254, 277, 278, 321, $322,323,346,404,457,571,643$
I53
I2, I3, $15,33,43,62,73,80,246,247,251,259,321,443$
$12,13,37,45,244,261,321,443,642$
I2, $33,62,171,244,308,311,321,322,346,347,367,387,399,560$
311

$173,178,180,18 \mathrm{I}, 188,190,244,276,277,281,282,283,290,292,294,308,309,321,398,450,414$, $419,420,424,428,429,457,571,572,58$ I, $584,642,643,669,670,672,673$
308, 643
308, 309, $3 \mathrm{II}, 3 \mathrm{I} 6,39 \mathrm{I}$
244, 3II
382
393
382
309
$77,80,154,160,180,3^{82}, 642,643$
$32,40,53,76,155,309,3 I 1,316,317,348,349,571,642$
154, 244, 3II, 317
308
308
393
316

Table I-(continued)

Species
Conus clarki
Niso inlerrupia
Litiopa melanostoma
Liotia variabilis
Ancystosyrinx radiata
Janlhina, species
Trigonosloma smithi
Mathilda yuatecana
Aedeobis supranitidis
Terebra cinerea
Terebra dislocala
Terebra protexla
Retusa canaliculata
Arene variabilis
Acteon canadensis
Scaphander watsoni
Cychichna alba
Truncatella, species
Allanta peroni
Pelecypoda
Nucula proxima
Nuculana acuta nearshore form)
Nuculna acula (deep shelf form)
Vuculana eborea

Yoldia solenoides
Limopsis sulcala
Arcopsis adamsi
Barbatia domingensis
Anadara chemnitzi
Anadara campechiensis

Anadara lienosa floridana
Anadara transversa
Anadara baughmani
Anadara brasiliana
Noetia ponderosa
Volsella demissa granosissima
Brachidontes recurvus
Brachidonies exustus
Alrina rigida
Atrina serrata
Pinna carnea
Pecten raveneli
Pecten papyraceum
Chlamys sent is
Chlamys benedicii
Aequipecten gibbus gibbus
Aequipecten irradians concentricus
Aequipecten irradians amplicostatus
Cyclopecten nanus
Plicatula gibbosa
Anomia simplex
Crassostrea virginica

Ostrea equesiris
Lima pellucida
Euccrassatella speciosa
Crassinella marinicensis
Itiplodonta punctata
Diplodonta semiaspera
Lucina amianlus
Lucina crenella
Lucina sombrerensis
Lucina pennsylvanica
Phacoides nassula
Divaricella quadrisulcata
Echinochama cornuta

Biological Station Numbers at Which Species Was Collected.
244, 308, 309, 393
I83,308, 309, 311, 316
244
308, 315, 316
316
309
244, 351, 316, 317
316
251, 669
$33,75,76,80,122,180,382,673$
10, $12,35,38,62,63,70,73,76,152,154,247,398,606,672$
I4, $21,27,30,31,32,40,54,70,72,73,76,150,151,154, I 55,157,159,160,171,262,316,428,457$, $459,460,57 \mathrm{I}, 573,642,643,672$
316,317
309
309, 311, 316
305, 316, 317, 348, 398, 643
46 T
316

244, 308 , 309, $311,316,317,344,345,348,349,363,366,367,382,387,391,393,396,560$ $15,17,31,53,54,74,76,77,82,188,201,244,257,277,279,308,309,311,343,642,643$ 242, 244, 308, 309, 311, 316, 317, 319, 362, 306, 367, 382, 38 3, 384, 385, 387, 391, 393, 560 $5,6,8,16,17,19,21,25,27,29,32,33,34,35,38,39,40,4 \mathrm{I}, 46,49,57,61,70,73,74,79,115,142 \mathrm{a}$,
 $349,366,382,393,419,420,424,428,429,642,670$
$244,308,309,311,316,382,384,385,387,390,391,393,560$
317
308
308
${ }_{1}{ }^{2} 1$
$4,5,8,9,10,12,15,23,27,28,32,33,37,38,39,42,49,55,57,62,68,70,73,76,80,112,143,153$, $154,155,157,159,160,167,17 \mathrm{I}, 178,180,200,244,257,268,277,278,279,293,294,316,402,419$, $424,428,455,642,669,670,672$
244, 308, 309, $31 \mathrm{II}, 316,560$
$3,11,15,16,28,34,40,42,43,55,62,70,74,75,76,77,80,81,146 \mathrm{a}, 153,156,159,160,178,180$,
188, 189, 247, 278, 200, $321,322,382,402,404,405,417,424,428,458,461,642,643$
311, 316, 366, 382,387
$12,13,16,17,36,62,64,74,75,76,155,159,167,171,178,188,257,321,322,367,643$
$32,33,45,70,171,250,443,642$
13, 251, 322, 443
$33,34,37,74,76,82,153,180,189,322,402,642$
246
I 3,33
I 3,443
348, 367
244, 308, 309, 311, 316,560
244, 309, 377
309, 316
308
$244,250,308,309,316,317,382,383,385,386,387,393,560$
13, 443
3, 45, 443
244, 308, 309, 3г1, 316, 3 17, 382, $385,386,387,393,394,560$
316, 560
12, 13, 15, 33, 62, 153, 244, 308, 309, 31I, $316,317,363,366,382,391,393,396,402,420,455,643$
$3,4,13,15,17,23,33,34,35,36,37,43,45,62,72,74,75,76,77,82,152,153,154,155,160,178,180$, I88, $190,233,244,247,25 \mathrm{I}, 26 \mathrm{I}, 268,277,278,308,322,323,393,402,417,419,420,443,455,46 \mathrm{I}$, $571,575,642,672$
$34,35,36,38,74,75,76,15 \mathrm{I}, 15^{2}, 153,155,160,16 \mathrm{I}, 178,188,190,277,309,394,398,406,458,459$, $64,2,643$
244, 311, 316, 317, 349, 393
244, 308, 300, 31 II
$33,34,38,43,74,75,76,80,82,112,153,169,180,18 \mathrm{I}, 182,188,190,246,247,252,277,278,31 \mathrm{r}, 322$, 386, 417, 424, 429, 458, 459, 461
$34,75,180,246,420,455,458,642$
I2, I4, I5, I6, $30,32,35,36,38,62,68,70,72,74,76,146 \mathrm{a}, 152,154,155,169,188,244,316,32 \mathrm{I}, 4 \mathrm{I} 4$, 457, 642, 64.3
3, 10, $14,15,35,41,62,64,68,74,75,76,78,80,81,82,84,85,154, ~ 159,160,169,178,180,181, ~ 183$, $188,190,192,246,276,277,278,28 \mathrm{I}, 282,309,31 \mathrm{I}, 316,32 \mathrm{I}, 323,344,345,346,348,363,366,367$, $386,393,398,399,417,420,457,458,461,571,575,584,642,643,672,673$
$3,10,14,17,73,74,76,77,79,82,112,115,155,159,169,180,181,183,188,197,311,316,321,346$, $347,402,456,457,459,571,642.643,672,673$
244, 308, 309, 3II, 316
244
244, 308
244, 308, 309, 311
244, 308, $309,311,316,386,393$

Table I-(continued)

Species
Chama congregala
Trachycardium muricalum
Dinocardium robustum
Dinocardium robusium vanhyningi
Laevicardium laerigaium
Laevicardium fski
Laevicardium sybariticum
Microcardium transversum
Papyridea soleniformis
Gouldia cerina
Pitar cordata
Pitar simpsoni
Spisula solidissima similis
Mactra fragilis
Macrocallista maculaia
Dosinia discus

Cyclinella teruis
Antigona strigillina
Mercenaria campechiensis texana

Chione cancellata
Chione intapurpurea
Chione grus
Chione clenchi
Petricola pholadiformis
Periploma jragilis
Periploma inaequalis
Mulinia lateralis

Rangia cuneata
Rangia fiexuasa
Labiosa plicatella
Labiosa lineata
Donax tumida
Donax deniculata(?)
Tagelus divisus

Tagelus plebeius
Semele proficua
Semele purpurescens
Semele bellastriata
Abra aequalis

Abra lioica
Tellina allernata

Ouadrans lintea
Tellina versicolor

Tellina georgiana
Tellina texana
Phylloda squamifera
Strigilla mirabilis
Tellidora cristata
Macoma tageliformis
Macoma tenta

Macoma extentuata
 Macoma mitchelli
 Macoma consiricta
 Ensis minor
 Solecurtus cummingianus

Biological Station Numbers at Which Species Was Collected
308
$9,13,33,34,37,38,39,62,74,75,76,80,82,153,154,155,178,180,188,189,191,233,246,247,248$, $250,268,278,308,321,323,406,420,429,458,642,643,673$
$4,13,15,37,69,76,181,248,321,398,443,571$
244
244, 308, 317, 367
244, 308, $309,31 \mathrm{I}, 316,382,393,560$
309
308
308, 309, 3 I6
309
244, 308, 309, 311, 316, 383, 386, 393
245, 31I, 349, 382
244, 309
62, 74, 329, 443
250
244, 351, 319
$3,4,5,9,10,12,13,14,15,17,32,33,35,36,37,38,42,45,55,69,70,72,73,75,76,77,82,115,152$,
 $316,32 \mathrm{I}, 322,344,346,347,364,366,367,383,308,399,402,410,414,415,419,420,424,428,443$ $455,457,461,572,574,575,576,642,643,669,672,673$
321, 322
244, 309, 3 г 6
$3,4, \mathrm{II}, \mathrm{I} 2,13,14,15,16,28,30,32,33,34,36,37,38,62,68,70,72,73,75,76,77,82,122,152,153$, $154,155,159,160,169,180,182,183,186,187,188,196,251,277,278,280,321,322,420,428,443$ $457,458,575,576,642,643,672,673$ 12, 244
$3,244,309,346,367,387,396,398$
244, 308, 309, 311,386
$244,308,309,311,316,317,319,344,348,366,367,382,393,397,560$
38, 70, 76, 8I, 146a, 151, 323, 4OI
30, 79, т6т
38
$3,5,6,9,10,11,12,14,15,16,17,19,21,26,27,28,29,30,31,32,33,34,35,36,37,38,40,41,42$, $43,48,49,50,51,52,57,58,59,60,61,62,63,64,66,68,69,70,71,72,73,74,75,76,80,81,82,87$, $115,120,142 \mathrm{a}, 146 \mathrm{a}, 150,151,152,153,154,155,156,157,158,159,160,167,168$, $169,170,171,173$, $174,177,178,179,180,183,186,187,188,190,197,205,213,244,247,248,276,281,282,283,284$ $288,290,292,293,294,300,308,309,311,316,319,32 \mathrm{I}, 322,323,327,331,334,345,346,382,383$, $393,394,402,404,406,407,410,414,417,419,420,424,426,427,428,429,437,442,455,457,459$, $46 \mathrm{I}, 642,643,644,666,669,670,672,673$
$13,28,246,250,268,271,410,672,673$
$15,33,76,153,246,250,257,420,443,643,672$
13, $3^{8}, 252,346,420,428,443,673$
13, 5I, 443
14, 16, 33, 62, 64, 82, 178, 18r, 193, 244, 309, 345, 394, 402, 410, 419, 420, 672, 673 72
10, $12,13,15,17,20,30,32,33,34,35,36,37,38,39,62,68,69,70,72,73,74,75,76,77,79,80,82$, 152 , $153,154,155,157,158,159,160,167,170,171,178,180,181,183,186,187,188,189,246,249$, $268,277,279,308,316,32 \mathrm{I}, 322,323,363,404,407,4 \mathrm{I} 4,420,424,429,455,457,458,46 \mathrm{I}, 573,642$, 643, 670
$37,155,160,443$
12, 32, $33,34,62,74,75,76,77,153,154,155,180,188,246,247,268,321,322$
$74,308,309,321,458$
244, 3 II
$5,9,11,12,15,16,57,20,33,34,36,37,38,39,40,41,42,49,52,53,54,56,60,62,68,75,72,74,75$
 181, 186,188 , 189 , 201, $244,246,247,248,252,272,279,316,321,322,345,346,348,366,367,382$, $404,405,406,407,414,415,419,420,424,428,458,46 \mathrm{I}, 642,643,669,670,672$
$53,6 \mathrm{I}, 205,324,325,326,329,334,336,34 \mathrm{I}, 342,343,344,345,348,349,350,362,363,364,463$, $642,669,670$
$1,5,9,10,12,14,15,16,32,35,36,37,40,45,62,72,73,76,77,154,155,156,160,169,17 \mathrm{r}, 178$, $180,182,183,186,197,246,247,290,311,321,322,344,366,367,398,406,410,415,420,424,428$, 643, 669, 672
12, 74, 197, 201, 244, 321, 367, 393, 398
$5,6,9, \mathbf{I I}, 15,16, ~ 17,30,31,35,37,38,39,40,42,49,53,54,60,62,68,70,71,72,73,74,76,8 \mathbf{1}, 82$,
 $308,309,316,321,322,343,344,345,346,347,348,349,363,365,366,367,306,404,406,413415$. $420,424,428,429,435,437,457,573,642,643,669,670,672,673$
244, 308, 309, 3 II
308, 309, 316
244, $308,309,311,316,317,348,366,386,393$
$62,72,75,87,88,283,311,362,382,394,419$
І2, 15, 32, 36, 38, 76, 77, 142a, 154, I60, $187,188,311,316,321,345,424,457,043,673$
180, 325, 372, 674, 675
$5,12,15,17,32,38,39,42,73,79,152,157,158,160,167,160,183,188,192,201,205,244,247,308$, $31 \mathrm{I}, 3 \mathrm{I} 6,32 \mathrm{I}, 344,345,348,363,39 \wedge 404,407,420,572,642,643,669,670,672$
$244,308,309,31 \mathrm{I}, 317,366,382,393$
$76,149,151,215,227,609,643,674$
37, 171
$6,13,32,37,42,51,52,53,73,76,85,87,154,169,349,402,417,442,457$
308, 3 II

Table I-(coulinued)

Species	Biological Staion Numbers at Which Species Was Collected
Panope bitruncata	443
Varicarbula operculata	$244,308,309,3$ II, 3 I6, 3 [7, $363,366,367,382,387,393,500$
Corbula contracta	3, 34, 73, 74, 75, 76, 80, 180, 185, $188,277,278,279,309,672$
Corbula dielsiana	$244,309,316$
Corbula stwifliana	$33,38,154,155,169,188,244,308,309,351,316,317,325,322,344,346,348,363,364,365,366,367$, $382,384,385,386,387,390,393,396,427,560,642$
Cyrtopleura costala	I, I3, I4, 22, 31, 33, 37, 42, 62, 74, $76,173,188,190,244,321,402,42 S, 443,672$
Pandora trilineata	$\begin{aligned} & 10,12,14,39,42,53,62,68,73,87,154,158,160,162,169,170,173,178,183,189,280,322,402,419, \\ & 420,424,642,643,669,673 \end{aligned}$
Pandora bushiana	$308,309,311,316,366,382,393,398$
Cuspidaria ornatissima	$244,308,309,3$ II, 316
Cuspidaria media	309, 317
Cuspidaria granulata	244, 308, 309, 3II, 316
Cuspidaria je ffreysi	309
Cuspidaria costellata	244
Cuspidaria perrostrata	309
Vericordia ornata	$244,308,309,3$ Ir, 3 I6, 3I7, $345,366,382,384,386,393,560$
Scaphopoda	
Dentalium laqueatum	309, 317
Dentalium texasianum	$40,76,178,277,311,316,317,344,345,347,348,349,365,366,367,398$
Dentalium sowerbyi	244, $308,309,3 \mathrm{II}, 3 \mathrm{5} 6$
Cadulus mayori	$311,316,317$
Cadulus carolinensis	$244,308,309,31 \mathrm{I}, 3 \mathrm{I} 6,346,347,348,349,366,367,378,379,393$
Cadulus arctus	244, 309, 311, 344, 382
Pteropoda	
Cavolina uncinaia	171, 201, 244, 308, 309, 311, 316,303
Cavolina longirostris	$244,308,309,342,345,350,362,363,364,366$
Euclio pyramidata	244,309
Creseis virgula	309
Creseis acicula	309, $311,366,393$
Diacria quadridentata	309
Chitons	
Chaelopleura apiculata	247, 323
Cephalopoda	
Lolliguncula brevis	I7, 20, 37, 43,62, 69, 143, 144, 246, 249, $252,254,256,257$
Loligo pealei	243,366
Argonauta argo	244

COELENTERATA

Hydrozoa

Hydractinia, species
32 I
Asthozoa
Anenomes
Calliactis tricolor

Hexacorals

Eutpsamnia floridana
Balhycyathus, species Astrangia astreiformis

Octocorals
Leptogorgia setacea
Eugorgia stheno
$12,143,244,257,323$

Pennatulids
Renilla mulleri
308, 309, 315
309
$11,13,15,16,33,72,74,75,76,77,167,188,321,413,6+3,672$

ECHINODERMATA

Asteroids

Luidio clathrata . 4, 12, 62, 144, 246, 247, 261, 346
Astropecten articulatus valenciennesi $243,346,366$

Ophiuroids

Hemipholis elongata
5, 12, 15, 45, 50, 188, 246, 247, 242, 323
Amphiodia limbata
$9,15,28,29,33,34,35,36,38,40,70,75,76,77,146 \mathrm{a}, 154,155,168,169,182,189,21 \mathrm{I}, 250,32 \mathrm{I}, 404$ Ophiolepis elegans Unidentified species

Eceinoids

Mellita quinquiesperforala
Clypeaster prostratus
Clypeaster raveneli

167, 343, 362, 364

3,4, II, 12, 15 $, 43,62,82,83,246,247,248,249,250,254,255,256,278,283,322,419,420,672,673$ 244, 319 317

Table I-(continued)

Species	Biological Station Numbers at Whieh Species Was Collected
ANNELIDA	
Polychaeta	
Lepidonotus sublevis	70
Polydontis lupina	39
Slhenelais articulata	33, 81, 322, 404
Paeurythoe, species	25,26
Aglaophamus dicirris	51, 54, 56, 57, 84, 86, 344
Glycera americana	5, 工5, 33, 34, 35, 36, 39, 154, 205, 328
Marphysa sanguinea	${ }_{1} 53$ 1
Diopatra cuprea	$2,4,5,9,15,16,21,22,33,45,50,56,62,71,77,80,81,171,174,247,362,399$
Lumbrineris erecta.	I5, 188
Lambrineris bifilaris	26, 27, 52, 150, 200, 201
Lumbrineris, species	$25,29,57,322,325,336,349,366$
Prionospio, species	54
Nerine agilis	150
Chaetopterus variopedatus	38, 77, 155
Spiochaetopterus oculatus	31,70
Maldane sarsi	77
Clymenella torquala calida	I54, 346, 349
Owenia fusiformis	5, 16, 321, 349
Sternapsis scutata	54
Sthenelais, species	345
Eurythoë complanata	324
Nereis, species	343, 3^{62}
Nephlys pricla	404
Nephtys, species	324, 325,336, 339, 350
Glycera dibranchiata	404
Lumbrineris? bassi	336
Ancistrosyllis bassi	324
Cossura, species	328, 335, 336, 339
Prionospio treadruelli	322,335
Magelona (near) cerae	363
Branchioasychis americana	366
BRYOZOA	
Bugula neritina	$2,4,7,9,12,15,16,17,20,22,28,33,37,43,45,48,51,53,55,69,70,71,76,80,81,142,142 a, 143,$ $187,188,189,246,247,248,249,250,252,254,255,257,268,321,322,323,346,428$
Zoobytron, species	$7,12,37,43,45,51,53,55,62,74,76$
Schizoporella foridana	244, 308, 300, 311, 316
Schizoporella unicornis	244, 308, 309, 311, 316
Mamillopara cupula	244, 308, 309, 311, 316, 321, 346
Cupuladria canariensis	244, 308, 309 , 311, 316, 321, 322, 349, 410
Smiltina trispinosa	244, 308, 309, 311, 316
Membranipora, species	$17,32,33,74,75,76,80,81,246,322,323,424,428,455$
ARTHROPODA	
Decapoda	
Libinia emarginata	17, 37, 55, 246, 247, 250, 256, 321
Petrolisthes armatus	33
Helerocrypla granulata	$75,8 \mathrm{I}, 246,322,323$
Portunus spinimanus	1, 37, 247, 321, 322, 323
Portunus gibbesi	4, 7, 20, 43, 50,60
Porcellana sayana	4, I 2, I7, 323
Veopanope packardi	
Callinectes sapidus Callinectes danae	(1), AMP-BBT, AMP-BOT, 20, 28, 32, 53, 55, 143, 144, $242,246,247,250,252,253,254,255,256$, 257, 259, 260, 261, 262, 321
Calatopas springeri	(1) , 37,62, 142, 143, 242, 243, 261, 262, 268,360
Calappa springeri Polyonyx macrocheles	${ }_{16}^{2.44,365}$
Fuceramus praelongus	17,62, 322, 399
Pilumnus dasypodus	17
Persephone punctata	29
Chasmocarcinus, species	39
Ovalipes occellatus	62
Hepaius epheliiveus	321
Metoporhaphis calcatus	322
Crangon heterochaelis	17, 33, 36, 74, 80, 321
Pagurus foridanus	1, 2, 12, 13, 15, 17, 33, 37, 62, 69, 71, 251, 321, 322
Pagurus longicarpus	12, 321
Clibinarius vittatus	12, $142,32 \mathrm{I}$
Squilla empusa (stomatopeda)	I, (1) , 7, 20, 53, 55, 142, 143, 242, 253, 254, 257, 259,261, 262, 310, 360
Xiphopenaeus kroyeri	AMP-BOT, 262
Penacus setiferus	I, (I), AMP-BOT, $12,17,45,50,55,59,142,143,2+2,249,268$
Penaeus duoarum	I, AMP-BOT, 7, 20, 28, 33, 37, 43, 55, 62, 142, 252
Palaemonetes, species	17
Sicyonia dorsalis	242, 319, 323 (marsh stations)
Uca mordax	214 to 2.39 (marsh stations)
Uca pugnax	Marsh stations
Uca pugilator	Marsh stations
Craydish (Cambarus, species)	Fresh-water marsh stations
Xiphosura	
Limulus polyphemus	13

is included in the discussion of macro-organism assemblages. The physical and chemical data taken at each of the biological stations have been discussed in full by Scruton (op. cit.).

MACRO-ORGANISM ASSEMBLAGES

Seven divisions of the region were recognized on the basis of the distribution of the macro-organisms collected in this study, published distribution records of the same organisms, and consideration of the environmental factors which affect animal distribution. These seven divisions are: (I) the delta marshes; (II) delta

Fig. Ir.-Areal distribution of environments as characterized by macro-invertebrate assemblages in inshore Delta region. Actually, marsh environment is of far greater extent, but area in black represents only part studied.
front and lower distributaries; (III) lower Sound and pro-delta slopes; (IV) Upper Breton Sound and Chandeleur Sound; (V) inlets; (VI) shallow continental shelf of the Gulf of Mexico from the barrier islands to I_{2-13} fathoms; and (VII) the deep continental shelf of the Gulf of Mexico from ${ }_{3}$ fathoms to the outer edge of the continental shelf. A possible eighth environment or assemblage is represented by the living oyster reefs, most of which are outside the project area and accordingly not discussed in any detail here. The approximate boundaries of these seven major environments and their characteristic assemblages are illustrated in Figures if and 12 . Table I shows the station distribution of all the important faunal elements of these divisions in the east Mississippi Delta region. Table II
shows the environmental distribution of most of the common invertebrates found in these environments, with their comparative abundance living and dead, and Table III is a similar table of macro-organism distribution compiled from published data.
I. Delta marshes.-Although the marshes are not strictly a marine environment, they do contain macro-invertebrates which are tolerant of salt water, and which are occasionally found as remains in reworked marine deposits. The vegetation of the Mississippi Delta marshes has been discussed in detail by O'Neil (1949). The only part of the delta marsh sampled for macro-organisms was in the vicinity of Baptiste Collette Bayou. This marsh area contains both

Fig. I 2.-Areal distribution of environments as characterized by macro-invertebrate assemblages in offshore Delta region. (Key to Roman numerals: III, Lower sound and pro-delta slope; VI, Shallow shelf; VII, Deep shelf).
fresh- and salt-water marsh vegetation which grows in from several inches to 2 feet of water.

Animals which can produce fossil remains are rare in the marsh environment. The principal mollusk found in this study was Neritina reclivata (Say), a snail found from a few inches to a foot or so above the surface of the water on the stems of the grasses and sedges (Fig. r3a). ${ }^{3}$ Another littoral gastropod reported from these and neighboring marshes (Hadley, 1936, p. 404; Fisk et al., 1954, p. 89) is Littorina irrorata (Say). No living specimens of this gastropod were found, although empty shells were common in old shell deposits in Breton Sound and on the shores of the inner side of Breton Island. It has been reported to be living

[^1]

Fig. iza.-Distribution of marsh snail Nerilina reclivala as related to areal distribution of environments. Circled numbers indicate living occurrences; numbers indicate number of individuals at each station.

Fig. rab.-Distribution of pelecypod Macoma mitchelli, indicative of delta front and distributaries. Circled numbers indicate living occurrences.

Table II. Distribtition of Marine Organisms Taken in East Mississippi Delta Region

Species	Marsh	Pella Front	hower Sound	Upper Sound	Indets	Shallow, Shelf	Deep Shelt
Neritina reclivala M	mexyx		- -	---	-----		
Uca, sp. C	xxyxx						
Cambarus, sp. C	xXxix						
Littorina irrorata M	XXXXX		- - -	- -	- --		-
Lillordina, sp. M		- -					
Macoma milchelli M		xxexx		-. -	,		
Macoma tagelijormis M		xixix				- -- -	
Mulinia lateralis M		xxexi	nxxym	xxyxy	- - -	yxxxx	
Crassostrea virginica M		xxyex	- X -	xxax	...--...	(xx\%	-
Rangia lexuosa M	x	-	-	-----	- - -		
Lumbrineris biflaris ${ }^{\text {P }}$		$\mathrm{x} \times \mathrm{x}$				x	
Lumbrineris erecta P		$\mathrm{x} \times \mathrm{x}$				x	
Nassarius acutus M		myxys	xxxxx	xyxys	xxpxx	mixix	
Penaeus setiferus C		xxyry	mxxex	xxxix	xxyxx	xyxxy	
Portunus spinimanus ${ }^{\text {C }}$		x		$x-\mathrm{x}-\mathrm{-}$			
Nuculana eborea M		-	xxrxx	x	- - -	- -	
Polinices duplicalus M		-	Xxixx	$\mathrm{x}-\mathrm{x}-\mathrm{x}$	$\mathrm{X}-\mathrm{X}-\mathrm{X}$	$\mathrm{x}-\mathrm{x}$	
Squilla empusa C			xexxs		$x \mathrm{x} x$	$\mathrm{X} \times \mathrm{x}$	
Portumus gibbesi C			$\mathrm{x} \times \mathrm{x}$	x	$\mathrm{x} \times \mathrm{x}$		
Anachis avara similis M			xxyxy	- x	x x		
Anachis obesa M		$\mathrm{x}-\mathrm{x}-\mathrm{x}$	$\mathrm{x}-\mathrm{x}-\mathrm{x}$	xxxxx	xaxyx		-----
Callinetes sapidus C		xxxxy	xxxxx	$\mathrm{x} \times \mathrm{x}$	xxxxx	xxxyx	
Penaeus duoarum C			xXxxx	Xxxax	xxxx\%	xxxex	xxxxx
Prionospio, sp. P			mexix				
Diopatra cuprea P			yxexy	x x x	gxexy	xysixi	
Callinectes danae C			xxxyx	$\mathrm{x} \mathrm{x} \times$	xxxx\%	mxyex	
Bugula neritina B			xxxxx	xxxix	xxxxx	xxxxx	
Thais haemastoma floridana M			x x x			xxxxy	
Abra lioica M			xxycx	- $\mathrm{x}-$		mxaxi	$\mathrm{x}-\mathrm{x}-\mathrm{x}$
Zoobytron, sp. B			xxxyx	yxxix	exxxi	nxyxy	
Corbula coutracta M				xxxxx			
Petrolisthes armatts C				$\mathrm{x} \times \mathrm{x}$			
Crangon heterochelis C				xxixix			
Chatoplerus variopedalus \mathbf{P}				$\mathrm{x} \mathrm{x} \times$			
Lumbrineris, sp.				$\mathrm{x} \times$			
Brachidontes exusius M				x			
Nassarius vibex M				x			
Diplodonta punctaia M				------			
Relusa canaliculata M			-	-----			
Periploma fragilis M				- - -			
Periploma inaequalis M				-			
Cerithum muscaram M				-			
Amphiodia limbata E			x	xxxxx	x $\mathrm{x} \times$	x	
Diplodonta semiaspera M				$\mathrm{x}-\mathrm{x}-\mathrm{x}$	x		
Semele proftrua M				--x-		-	
Sthenelais ariculata P				x X	x		
Tagelus gibbus M				- x -		-	
Astrangia astreiformis CO				-----	- -		
Donax lumida M				-----		-----	
Macoma tenta M				xxxxy	- - -	$\mathrm{x}-\mathrm{x}-\mathrm{x}$	
Pagurus floridanus C .		x		xxxxy	xxxxx		
Thais haemastoma haysae M				$\mathrm{x}-\mathrm{x}-\mathrm{x}$	--x--	-	
Lolliguncula brevis M				xnxxx	mxxyx	xxxix	
Libinia emarginata C				$\mathrm{x} \times \mathrm{x}$	$\mathrm{x} \times \mathrm{x}$	x	
Pagurus longicarpus C				x x X	$\mathrm{x} \times \mathrm{x}$	$\mathrm{x} \times \mathrm{x}$	
Mercenaria campechiensis texama M				$\mathrm{x}-\mathrm{x}-\mathrm{x}$	--	- -	
Glycera americana P				$\mathrm{x} \times \mathrm{x}$	x	x	
Tellidora cristata M			-	--x-	x -		
Brachidonies recurvus M			-	-----	-		
Osirea equestris M				-----	- - --	- -	
Terebra dislocala M			-	- - -	- -		
Nuculana acta (nearshore form) M				------	-	- -	
Aequipecten irradians amplicostatus M				- -	-	-	
Tagelus diwisus M			- -	xxxix	$\mathrm{x}-\mathrm{x}-{ }^{-}$	- -	
Crepidula plama M			-.	xxyex	$\mathrm{x}-\mathrm{x}-\mathrm{x}$...	
Neopamope packardii C			X	myxys	xxayx	$\mathrm{x} \times \mathrm{x}$	
Anudara brasiliana M			-	--x--	--x--	- -	
Ensis minar M		-		- X	-	--x--	
Crassinella marlinicensis M			-	--x--	-	-	
Lucina crenella M			-	--..--	-		- -
Moira atropos E			- -	-----	-----	----	
Crepidula fornicala M			-	-----		-	----
Abra aequalis M		-	- - -	xxxys	--x-x	-----	
Tellina allernata M		-	- -	$\mathrm{x}-\mathrm{x}-\mathrm{x}$	$\cdots{ }^{--}$	--x-	
Dosinia discus M			-.-	--x--	--x--	--x--	- -
Cyrtoplewra costala M		- -	- - -	-----	----*	- - -	
Melerocrypia granulala (mxxyx		
Hemipholis elongata E					yxxxx		
Mitrella lunata M					xxxxy		
Ophiolepis elegans E					$\mathbf{x x x x} \times$		

Table II-(continued)

Species	Marsh	Delta Front	Lower Sound	Upper Sound	Sniets	Shallow Shelf	Dee b Shelf
Chaetopleura apiculata M Modulus modulus M							
Calliautis tricolor CO					xixix		
Mamillopora cupula B					X X ${ }_{\text {x }}$	S S .	-
Cupuladria canariensis B					$\times \mathrm{x} \times$		----
Diodora cayenensis M					$\mathrm{x}-\mathrm{x}-\mathrm{x}$		-
Chione cancellata M					$x-x-x$	-	
Owenia fusiformis P				$\boldsymbol{\lambda}$	x X		
Porcellana sayana C				x :	$\mathrm{x} \times \mathrm{x}$		
Turbonilla hemphilli M				,			
Rangia chreata M		(xXXXX$)$. - -		
Sinum perspectivum M					. ..-	-	
Petricola pholadiformis M					-	- - -	
Terebra protexta M				-	--.		
Olivella muica M				----	xxxxx	-	
Cantharus cancellarius M				-----	xexix	xxxys	
Mellita quinquiesperforata E				x	XXXXX	xxixs	
A nachis avara semiplicata M				-	xxxxx	- x -	
Busycon spiratum plagosum M			-	- - .	-x-x-	\cdots	
Trachyeardium muricatum M				---	(-x-x		
Anadara transversa M			- - -	$x-\mathrm{x}-\mathrm{x}$	$x-\mathrm{x}-\mathrm{x}$	- x	
Busycon conlrarium M			- x	- x	$x-x-x$	-	
Natica pusilla M				x	$x-x-x$	- - -	
Lucina amiantus M		-	- -	-x--	$x-x-x$	$\mathrm{x}-\mathrm{x}-\mathrm{x}$	--x--
Pandora trilineata M							
Aglaophamus dicirrus P			$\mathrm{x} \times$			xxxxx	
Alrina serrata M						xxixx	
Volsella demissa granonissima M						- -	
Aequipecten irradians concentricus M						- - -	
Anadara chemnitsi M							
Labiosa lineata M						- -	
Spisula solidissima similis M						- -	
Tonna gatea M							
Panope bitruncata M						-	
Xiphopenaeus kroyeri C						x $x \times x \times x$	xxxxx
Luidia clathrata E					$\mathrm{x} \times \mathrm{x}$	xxxxx	
Renilla mulleri CO					$\times \mathrm{x} \times$	xxyxi	
Noetia ponderosa M					$\underline{-} \times$	xxxx	
Strombus alatus M						- -	- - -
Phalium granulatum M						- .-	-
Labiosa plicalella M					-	\ldots	
Chione iniapurpurea M							
Strigilla mirabilis M				-	-	---.--	
Oliva sayana M				- - .-	-	- -x--	- -
Quadrans lintea M - . - . - - -							
Dinocardium robustum M			-	- .	- -	.-----	
Tellina versicolor M			- x	--x-	--x-	xxxxx	xxxxx
Anadara campechiensis M		- -	-	-x-	--x--	x-x-x	
Anomia simplex M - - - - -							
Eugorgia silheno CO							$\mathrm{x} \times \mathrm{x}$
Clypeaster prostratus \mathbf{E}							$\mathrm{x} \times \mathrm{x}$
Verticordia ornata M							$x-x-x$
Anadara baughmani M							$x--x$
Eucrassatella speciosa M							- $\mathrm{x}-\mathrm{x}-$
Polystira albida ${ }^{\text {Loligo pealii }} \mathrm{M}$							x x
Pitar cordata M --x--							
Pecten papyraceum M							--x--
Limopsis sulcata M							- X
Cuspidaria ornatissima M --..							
Varicorbula operculata M							
Tellina texana M							------
Masoma extenualo M							
Laevicardium fiski M - - - - -							
Divaricella quadrisulcata M							
Lucina sombrerensis \mathbf{M}							
Chlamys muscosus M							
Nassarius ambiguus consensus M							
Anadara lienosa foridana M							
Y \%oldia solenoides M							
Cyclopecten nanus M							
Gouldia cerina M							
Echinochama cornuta M							
Marginella aureocincta M							
Cavolinict uncinata M							
Polinices uberinus M							
Calyptraea centralis M							
Dentalium sowerbyi M							
Chione grus M							-----

Table II-(continued)

Species	Delta Front	Lower Sound	Upper Sound	Inlets	Shallowe Shelf	Deep Shelf

Cuspidaria granulala M Cavolinia longirostris M Schizoporella foridana B
Smittina irispinosa B
Corbula swiftiana M
Nuculana acuta (offshore form) M
Chione clenchi M
Aequipecten gibbus gibbus M
Nucula proxima M
Astyris perpicta M
Dentalium texasianum M
Phacoides nassula M
Cadulus carolinensis M
Cadulus mayori M
Crucibulum auricula M
Corbula dietsiana M
Pecten raveneli M
Macrocallista maculata M
Tellina georgiana M
Lima pellucida M
Anachis iontha M
Chlamys benedicti M
Microcardium transversum M
Cuspidaria perrostrata M
Scaphander watsoni M
Mangelia jewetti M
Melanella bilineala M
Ancystocyrinx radiata M
Pandora bushiana M
Eupsamnia foridana CO
Bathycyathus, sp. CO
Oliva caribaeensis M

Murex recurvirostrus rubidus M
Plicatula gibbosa M

[^2]on the vegetation on the inner side of the Chandeleur Islands by Cary and Spaulding (1909, p. 20). Cary and Spaulding found that Rangia cuneata Gray was common in the fresh-water marshes along the Louisiana coast, but only one living specimen of this species of pelecypod was found in the delta region during this study. Characteristic crustaceans of the marshes are two species of fiddler crab of the genus $U c a$ and at least one species of crayfish (Cambarus) which are mentioned as preserved in marsh sediments by Fisk (1954). The fiddler crab, $U c a$ mordax Smith, was also mentioned by Cary and Spaulding (p. ir) as a common inhabitant of the salt marshes of the coastal parishes. The diagnostic macroinvertebrates for the delta marshes are the following (Pl. I).

$\begin{array}{ll}\text { Nerilina reclivata-Common } \\ \text { Littorina irrorata-Somewhat less common } \\ \text { Rangia cuneata } & \text {-Common in some areas } \\ \text { Uca pugilator } & \text { Common in salt or brackish marshes } \\ \text { Uca pugnax } & \text {-Common in salt or brackish marshes } \\ \text { Uca mordax } & \text {-Common in salt or brackish marshes } \\ \text { Cambarus, sp. } & \text {-Very common in fresh-water marshes }\end{array}$
II. Della front and lower distributaries.-The delta front region with its characteristic low chlorinity ($2-10 \%$), wide range of temperature ($21^{\circ} \mathrm{C}$.), fine, clayey silt substrate, shallow water, and proximity to the marshes is also charac-

Table III. Distribution of Marine Organisms, East Mississippi Delta Region, from Published Data

Marsh	Delta Front	Lower Sound	Upper Sound	Inlets	Shallow Shelf	Deep Shelf

Cary and Spaulding, 1909
Gastropons

Bulla striata		$\mathrm{x} \times \mathrm{x}$	
Haminoea succinea			
M elampus flavus		$\mathrm{x} \times \mathrm{x}$	
Terebra cinerea		$\mathrm{x} \times \mathrm{x}$	
Cancellaria reliculata			- - -
Oliva sayana		- -	- - -
Fasciolaria distans			- - -
Busycon spiratum plagosum			- - -
Busycon contrarium			- - -
Nassarius vibex			- - -
Anachis avara			- - -
Anachis obesa		xxxxx	
Mitrella lunata		$\mathrm{x} \times \mathrm{x}$	
Murex fulvescens			
Murex pomum			- - -
Thais haemastoma			xxxxx
Epitonium sayana		$\mathrm{x} \times \mathrm{x}$	
Janihina, sp.			- - -
Disiorsio clathrata			- - -
Phalium granulatum			- - -
Tonna galea			- - -
Sirombus alatus			- - -
Seila terebralis			- - -
Cerithiopsis, sp.			- - -
Bitium nigrum		- -	
Bittium varium		- - -	
Cerithium muscarum		- -	
Cerithidea varicosa(?)		- - -	
Modulus modulus			
Lillorina irrorala	$\mathrm{x} \times$	$\begin{gathered} x \times x \\ \text { (on land) } \end{gathered}$	
Architectonica nobilis			- -
Rissoina chesneli			- - -
Crepidula fornicata			x $\mathrm{x} \times$
Crepidula convexa			x x
Crepidula plana			X
Polinices duplicatus			- - -
Sinum perspectivum			---
Neritina reclivata	$\mathrm{x} \times \mathrm{x}$	$\begin{gathered} x \times x \\ \text { (on land) } \end{gathered}$	
Chaetopleura apiculata		¢ $\times \mathrm{x}$	
Spirula spirula			- - -
Lolliguncula brevis			xxxxx

Pelecypons					
Crassosirea virginica					---
Anomia simplex			x x x		
Aequipecter irradians amplicoslatus			xxxxx		
Alrina rigida			xxxxx		
Atrina serrala					$\mathrm{x} \times \mathrm{x}$
Brachidontes recurvus					- - -
Volsella americana	$\mathrm{x} \times \mathrm{x}$		$\mathrm{x} \mathrm{x}{ }^{\text {d }}$		
A nadara campechiensis					- - -
Nuculana actuta (eborea?)					
Lucina floridana			$\mathrm{x} \times \mathrm{x}$		
Dinocardium robustum					$\mathrm{x} \times \mathrm{x}$
Trachycardium muricatum				$\mathrm{x} \times \mathrm{x}$	$\mathrm{x} \times \mathrm{x}$
Laevicardium laevigatum					- - -
Callocardia lexasianum					- - -
Mercenaria campechiensis texana			xxxxx		
Macrocallista maculata					- - -
Dosinia discus					- - -
Petricola pholadiformis		-			---
Dorax tumida					xxxxx
Tagelus gibbus					---
Tagelus divisus			-		---
Tellina alternata					- -
Rangia cuneala	xxxxx				
Spisula solidissima similis					x \times x
Mactra brasiliana		$\mathrm{x} \times \mathrm{x}$			-
Labiosa lineata		---			- - -
Labiosa plicatella		- - -			- - -
Ensis minor					---
Pholas campechiensis					---
Cyriopleura costata					- -

Sponges

Cliona sulphurea $\quad \mathrm{x} \times \times$

Table III-(continued)							
Species	Marsh	Delta Front	Lower Sound	Upper Sound	Inlets	Shallow Shelf	Deep Shelf
Coelenterates							
Bougainvillea supercilioris						$\mathrm{x} \times \mathrm{x}$	
Bougainvillea carolinensis						$\mathrm{x} \times \mathrm{x}$	
Hydractinlia dolyclina						$\mathrm{x} \times \mathrm{x}$	
Porporita lineana					$\mathrm{x} \times \mathrm{x}$		
Renilla muilleri						$\mathrm{x} \times \mathrm{x}$	
Calliactis tricolor.						$\mathrm{x} \times \mathrm{x}$	
Cerianthus americanus						$\mathrm{x} \times \mathrm{x}$	
Echinoderms							
Luidia clathrata						$\mathrm{x} \times \mathrm{x}$	
Luidia allernata						$\mathrm{x} \times \mathrm{x}$	
Mellita quinquiesperjorala						$\mathrm{x} \times \mathrm{x}$	
Moira atropos.						$\mathrm{x} \times \mathrm{x}$	
Ophiura brevispina				x x xix			
Polychaete Worms							
Nereis pelagica						$\mathrm{x} \times \mathrm{x}$	
Diopatra cuprea				$\mathrm{x} \times \mathrm{x}$			
Chaetopterus pergamenlaceous						$\mathrm{x} \mathrm{x} \times$	
Arenicala, sp.						$\mathrm{x} \times \mathrm{x}$	
Sabellaria vulgaris						$\mathrm{x} \times \mathrm{x}$	
Crustaceans							
Lepus antifera						xxxyx	$\mathrm{x} \times \mathrm{x}$
Penaeus setiferus						xxxxy	xxxxx
Crangon heterochelis						$\mathrm{x} \times \mathrm{x}$	$\mathrm{x} \times \mathrm{x}$
Hyppolyte zostericola				$\mathrm{x} \times \mathrm{x}$			
Tozewma carolinense				$\mathrm{x} \times \mathrm{x}$			
Palaemon temuicornis			$\mathrm{x} \times \mathrm{x}$				
Conchordia gibberosa				$\mathrm{x} \times \mathrm{x}$			
Palaemonetes carolinensis				$\mathrm{x} \times \mathrm{x}$			
Emerita talpoidea						xixyx	
Eupogebia affinis						x $\mathrm{x} \times$	
Pagurus floridanus						x x x	
Clibinarius vilattus						$\mathrm{x} \times \mathrm{x}$	
Uca mordax	xxxxx						
Pinnotheres mactulatus				$\mathrm{x} \times \mathrm{x}$			
Eupanopeus herbstii				$\mathrm{x} \times \mathrm{x}$			
Eupanopeus rugosus				$\mathrm{x} \times \mathrm{x}$			
Neopanope texana						$\mathrm{x} \times \mathrm{x}$	
Menippe mercenaria				$\mathrm{x} \times \mathrm{x}$			
Menippe nodifrons						$\mathrm{x} \times \mathrm{x}$	
Callinecies sapidus			$\mathrm{x} \times \mathrm{x}$	$\mathrm{x} \times \mathrm{x}$	x \times x	$\mathrm{x} \times \mathrm{x}$	
Petrolisthes armatus			$\mathrm{x} \times \mathrm{x}$	$\mathrm{x} \times \mathrm{x}$	X. $\mathrm{X} \mathbf{x}$	$\mathrm{x} \times \mathrm{X}$	
Libinia dubia						$\mathrm{x} \times \mathrm{x}$	
IIepatus ephiliticus				$\mathrm{x} \times \mathrm{x}$			
Squilla empusa						$\mathrm{x} \times \mathrm{x}$	
Hadley, 1936							
Gastropods							
Littorina irrorala	xxxyx	- - -					
Busycon contrariunt		- -					
Busycon spiratum		-					
Cantharus cancellarius		- -					
Neritina rechivala		- -					
Oliva sayana		- -					
Polinices duplicatus		- -					
Crepidula plana		$\mathrm{x} \times \mathrm{x}$					
Thais haemastoma floridina							
Pelecypods							
Anadara campechiensis		- - -					
Anadara brasiliana		- -					
Cyrtopleura costala		- -					
Dinocardium robusium		- - -					
Dosinia discus		- -					
Ensis minor		-----					
Macoma constricta		- -					
Mulinia lateralis		-					
Crassostrea virginica		-----					
Atrina, sp.		- -					
Labiosa plicatella		- -					
Rangia cuneala		-					
Tagelus gibbus		---					
Mercenaria campechiensis texana		-------					
Periploma inaequalis		----					

[^3]terized by a scarcity of species and individuals of macro-organisms. Biological material from cores and the few biological stations taken in this environment indicates a distinct fauna. Living Macoma mitchelli Dall was collected only in this region (Fig. I3b). In Texas it has been reported to be very abundant in the waters near the Guadalupe River Delta where environmental conditions are somewhat similar (Ladd, 1951, p. 142, as Tellina texana; Parker, 1955). Another species, Macoma tageliformis Dall, was also common, living in the delta front region, especially in the vicinity of the mouth of Pass a'Loutre. At several stations during the fall of $195 \mathbf{I}$ there were large numbers of very small Mulinia lateralis (Say) in the delta front region when the Mississippi River was at a low stage.

Fig. i4.-Location of living oyster reefs (Crassostrea airginica) in cast Mississippi Delta area.
This pelecypod can not be considered a characteristic mollusk of this area alone, since its shell was taken in varying numbers from almost every station in Breton Sound and on the shallow part of the continental shelf. ${ }^{4}$ In certain areas near the delta shores the common commercial oyster, Crassostrea virginica (Gmelin) could be considered the characteristic invertebrate. Extensive reefs of living oysters were found in the large indentations or bays of the Delta, especially Quarantine, Coquille, and California bays, several miles northwest of the area studied (Fig. 1). ${ }^{5}$ A small oyster reef was observed in Blind Bay, which lies be-

[^4]tween Pass a'Loutre and Southeast Pass in the southern part of the Delta, and also another small reef was located behind Breton Island in the lagoon on the Sound side. Figure 14 shows the locations of living oyster reefs in the east delta region. The fauna which one might expect to be associated with oyster reefs in the delta region is similar to that described by Puffer and Emerson (1953). Although Puffer and Emerson's paper deals with the oyster-reef biota of the central Texas coast, the same species were found dead in old oyster-reef deposits in upper Breton Sound, and are illustrated in Puffer and Emerson's paper. The polychaete Lumbrineris bifilaris (Ehlers) was found living very close to the delta shore. Fresh shells of Rangia cuneata and Rangia flexuosa were observed in the delta front region, although no living Rangia was found. A similar assemblage of mollusks is discussed by Van Andel (1954, pp. 113-17) as occurring in the shallow waters surrounding the Orinoco River Delta. The characteristic macroorganism species for the delta front and lower distributaries are the following (Pl. I).

Macoma mitchelli -Few living and dead, should be found more abundant with more intensified collecting
Macoma tageliformis -Fairly common, living in Pass a'Loutre region
Rangia cuneata -Probably common in certain areas
Rangia flexuosa -Less common than R. cuneata
Crassosirea virginica
Lumbrineris bifilaris \quad May be found abundant with better sampling
-Very common, forming reefs in protected areas
Anachis obesa -Common, although equally as common in inlets
Littoridina sphinctostoma-Several specimens thought to be this species were taken in delta front region, and it is one of most characteristic forms of Guadalupe River Delta region in Texas (Ladd, 1951, p. 143).
III. Lower Breton Sound and pro-delta slopes.-This subdivision of the Breton Sound-shallow shelf region, corresponds roughly with Scruton's "ProDelta silty clay" sedimentary unit (Scruton, 1956), and is based primarily on the small numbers of species and individuals which live in this fluid clayey bottom. As can be expected in a division where no topographic boundaries exist, there is no definite boundary between faunas. There is a gradation from an area where few or no animals are found to increasing populations on the north and to the rich and varied faunas of the upper sound. If a boundary exists it can be found at the farthest extent of the most turbid waters pouring out of Baptiste Collette Bayou, Main Pass, and Pass a'Loutre, producing the clayey silt and silty clay bottoms shown in the general area in Figure ir. The physical characteristics which differentiate this region from surrounding areas are: a somewhat more variable chlorinity than surrounding waters of equal depth; a very fine silty clay to clayey silt bottom; and a generally year-round occurrence of high turbidity (suspended sediments) from the river distributaries. Although little is known concerning the influence of high turbidity and fine fluid bottom upon the particular animals living in the delta region, there is some reason to believe that

[^5]

MARSH

DELTA FRONT-DISTRIBUTARIES

LOWER SOUND AND PRO-DELTA SLOPE
the filter-feeding of some animals and the larval settlement of many invertebrates may be inhibited by these two factors; thus only certain types of organisms may occur in the lower sound and pro-delta slope area.

Only 20 species of macro-invertebrates were found living in the lower sound and pro-delta slope area as compared with more than 50 species living in the upper sound region. A few mollusks and other invertebrates can be considered indicative for the lower sound area and are common enough to make good environmental indicators. Of these, the pelecypods, Nuculana eborea (Conrad) and Mulinia lateralis, and the two gastropods, Polinices duplicatus (Say) and Anachis avara similis (Ravenel), are the most abundant and distinctive. The distributions of Nuculana eborea and Mulinia lateralis are shown in Figure 15 a and b, and those of Polinices duplicatus and Squilla empusa in Figure i6a and b. The macroorganisms which can be considered characteristic for the lower sound and prodelta slope area are as follows (Pl. I).

Mulinia lateralis	---Extremely abundant, living on clayey slope near Main Pass. Dead through out inshore delta region
Nuculana eborea	--Common living in northwestern part of this environment, dead throughout inshore regions of Mississippi Delta area
Polinices duplicatus	-Common living here, a few scattered in upper sound and inlet environments
Anachis a. similis	-Few living and dead, few also found in inlets
Anachis a semipl	Few, more common in near-by inlet region
Squilla em pusa	-Mantis shrimp are strangely common in this region
Portunus gibbesi	-This swimming crab is also common in inlet between Breton Island a Main Pass
Nassarius aculus	-Abundant, especially where there are large populations of Mulinia. N strictly characteristic of lower sound and delta, as occurs in varying num bers throughout whole delta region
Abra lioica	-Although primarily shallow-shelf species, this pelecypod is common Lower delta region in vicinity of Pass a'Loutre

PLATE I

I. Marsh Assemblage

Fig. i.-Neritina reclivata (Say, i822), size-II $\times 13 \mathrm{~mm} .$, a. side view, b. front.
Fig. 2.-Littorina irrorala (Say, 1822), size- $19 \times 14 \mathrm{~mm}$., a. back view, b. aperture.
Fig. 3.-Uca, species, size- $24 \times 17 \mathrm{~mm}$., side view.
Fig. 4.-Cambarus, species, size- 125 mm ., top or dorsal.
II. Delta Front and Distributaries Assemblage

Fig. 5.-Littoridina sphinctostoma Abbott and Ladd, 1951, size- $3 \times 2 \mathrm{~mm}$., a. back view, b. front or aperture.

Fig. 6.-Crassostrea virginica (Gmelin, 1790), size-170×70 mm. a. exterior, b. interior.
Fig. 7.-Macoma mitchelli Dall, 1895 , size- $2 \mathrm{I} \times \mathrm{I} 2 \mathrm{~mm}$., a. exterior, b. interior.
Fig. 8.-Macoma tageliformis Dall, i900, size $-44 \times 25 \mathrm{~mm}$., a. exterior, b. interior.
Fig. 9.-Rangia cunenta (Gray, i831), size-42 $\times 30 \mathrm{~mm}$., a. exterior, b. interior.
Fig. io.-Rangia flexuosa (Conrad, 1840), size $36 \times 30 \mathrm{~mm}$., a. exterior, b. interior.
III. Lower Sound and Pro-Delta Slope Assemblage

Fig. it.-Anachis avara similis (Ravenel, i861), size $-8 \times 3 \mathrm{~mm}$, a. back, b. front view.
Fig. 12.-Nassarius acutus (Say, 1822), size-II $\times 4 \mathrm{~mm}$., a. back, b. front view.
Fig. r3.-Polinices duplicatus (Say, 1822), size $-39 \times_{41} \mathrm{~mm}$., a. top, b. aperture.
Fig. i4.-Nuculana eborea (Conrad, 1846), size-ri $\times 6 \mathrm{~mm}$., a. exterior, b. interior.
Fig. r5.-Mulinia lateralis (Say, 1822), size-ıо $\times 7 \mathrm{~mm}$., a. exterior, b. interior, c. typical association with barnacle, commonly occurring in the Delta Slope environment.
Fig. ı6.-Portunus gibbesi (Stimpson, 1859), size- $49 \times 22 \mathrm{~mm}$. , a. dorsal, b. ventral, c. side view.
Fig. i7.-Squilla empusa Say, 18 ± 8, size- 95 mm ., a. ventral, b. dorsal side.

Fig. 15a.-Distribution of pelecypod, Nuculana eborea, indicative of lower sound and pro-delta slope. Circled numbers indicate living occurrences, uncircled numbers, dead occurrences.

Fig. isb.-Distribution (all living) of pelecypod, Mulinia lateralis, indicative of lower sound and pro-delta slope environment.

Fig. 16a.-Distribution of gastropod, Polinices duplicatus, indicative of lower sound and pro-delta slope environment. Circled numbers indicate living, uncircled-dead occurrences.

Fig. I6b. -Distribution of stomatopod, Squilla empusa, indicative of lower sound and pro-delta slope environment.
IV. Upper Breton Sound and Chandeleur Sound.-This part of the east Mississippi Delta area is more like the typical high-chlorinity bay environments along the Texas coast (Ladd, 195I, pp. 149, 152-54) than any other part of the Delta region. The physical characteristics of these waters resemble to some extent those of lower Aransas Bay, Matagorda, and Corpus Christi bays on the Texas coast (Galtsoff, i931; Collier and Hedgpeth, 1950; Hedgpeth, 1953; and Parker, 1955), and many of the organisms are common to both areas. The chlorinity of the upper sound region is somewhat more constant than in the lower sound area, and normally ranges from about 10 to 19%. These relatively unstable but rather high chlorinities apparently exclude any extensive living oyster reefs of Crassostrea virginica (except for a small one behind Breton Island), and also exclude many of the very low-chlorinity animals such as Rangia and Macoma mitchelli.

Many species were found only in the upper sound region, although many of these were represented by a few specimens. Of the more than 90 species of invertebrates collected in the area, 20 species were characteristic and abundant, both living and dead. Most of the species found in the upper sound environment are listed in Tables I-III. These tables also demonstrate the difference in the number and abundance of species between the two sound environments. Several distribution maps of the more characteristic upper sound animals are given: the pelecypods, Tagelus divisus (Spengler) (Fig. i 7a) and Abra aequalis Say (Fig. $\mathrm{I}_{7} \mathrm{~b}$) and the gastropod, Retusa canaliculata (Say) (Fig. ı8a), and the brittle-star, Amphiodia limbata (Grube) (Fig. I8b). A more complete list of the characteristic macro-invertebrates of the upper sound region follows (Pls. IIIII).

Mollusks
Pelecypons
Anadara transversa -Fairly common, few living

Noetia ponderosa
Nuculana acuta
Brachidontes yecurvus Crassostrea virginica

Diplodonta semiaspera
Lucina crenella
Mercenaria c. texana
Dosinia discus
Abra aequalis
Tagelus divisus
Tagelus plebeins
Semele proficua
Tellina alternata
Tellidora cristata
Macoma tenta
Corbula contracta
$\begin{array}{ll}\text { Ostrea equestris } & \text {-Very common dead, mixed with dead C. virginica }\end{array}$
Crassinella martinicensis - In some localities extremely common dead, although very few found living
Diplodonta punctata -Fairly common dead, uncommon living
--Few, some living
-These specimens lack characteristic ridges and shape of variety of Nuculana acuta consistently found offshore in $\mathrm{I}_{3}-50$ fathoms
-Rather common as dead fragments
-Very common as dead shell reefs
-Common, both living and dead
-Common, dead
-Very common dead as juveniles, few living adults, reported living in large beds back of barrier islands
-Very common dead, scarce living (juveniles), indications that living adults more common in shallow shelf region
-Common both living and dead in both upper sound and shallow shelf near barrier islands
-Very abundant living and dead (most characteristic pelecypod)
-Few, one living
-Common, few living
--Common, few living, probably common on shallow shelf also
-Common, few living in both upper sound and inlets
-Abundant, living and dead, also very characteristic
-Common, few living

Fig. i 7 a .-Distribution of pelecypod, Tagelus divisus, indicative of upper sound environment. Fig. ryb.-Distribution of pelecypod, Abra aequalis, indicative of upper sound environment.

Plate II

Cary and Spaulding (1909) list many organisms living in Breton and Chandeleur sounds which were not collected by the writer, but are common in the other high-salinity bays of the northern Gulf of Mexico. Those species collected as fragments by the writer and collected abundantly, living, by Cary and Spaulding are: Epitonium sayana, Anomia simplex, Aequipecten irradians amplicostatus, and Atrina rigida, the more common mollusks, and many species of crustaceans. Of particular interest is Spaulding's (igo6; see Galtsoff, 1954, p. 209) report on the extensive beds of Mercenaria campechensis texana and Aequipecten irradians amplicostatus, the commercial clam and scallop, in the lagoons behind the Chandeleur and Breton islands. No living scallops and only a few large living clams were collected on this survey, although the method of sampling may be responsible for not finding these beds.
V. Inlets or passes.-The inlets (Fig. ri) are distinct from the rest of the environmental regions in the delta area, both in the biological assemblage and en-

PLATE II

IV. Upper Sound Assemblage

Fig. I.-Nassarius vibex Say, 1822, size-I $2 \times 8 \mathrm{~mm}$., a. back, b. aperture.
Fig. 2.-Thais haemastoma haysae Clench, 1927, size- $59 \times 33 \mathrm{~mm}$., a. back, b. front.
Fig. 3.-Cerithidea pliculosa (Menke, 1824), size- $32 \times$ I mm., a. back, b. front.
Fig. 4.-Terebra dislocata (Say, 1822), size $-27 \times 7 \mathrm{~mm}$., front or aperture view.
Fig. 5.-Cerithium muscarum Say, 1832 , size- $19 \times 7 \mathrm{~mm}$., front or aperture view.
Fig. 6.-Crepidula plana Say, 1822, size- $22 \times 12 \mathrm{~mm}$., a. exterior, b. interior.
Fig. 7.-Retusa canaliculata (Say, I827), size- $6 \times_{3} \mathrm{~mm}$., a. back, b. aperture.
Fig. 8.-Nuculana acuta Conrad, 1832 (nearshore form), size- $6 \times_{4} \mathrm{~mm}$., a. exterior, b. interior.
Fig. 9.-Anadara transversa (Say, 1822), size-15 $\times 10 \mathrm{~mm} .$, a. exterior, b. interior.
Fig. ıo.-Aequipecten irradians amplicostatus (Dall, 1898), size $\sigma_{5} \times 63 \mathrm{~mm}$, a. exterior, b. interior.
Fig. 11.-Ostrea equestris Say, r834, size-a. clump- $-38 \times 50 \mathrm{~mm} .$, b. exterior, c. interior19× 14 mm .
Fig. 12.-Crassinella martinicensis (d'Orbigny, 1842), size $8 \times 7 \mathrm{~mm}$., a. exterior, b. interior.
Fig. i3.-Brachidontes exustus (Linné, 1758), size-17 $\times 9 \mathrm{~mm}$., a. exterior, b. interior.
Fig. I4.-Brachidontes recurvus (Rafinesque, 1820), size- $16 \times$ II mm., a. exterior, b. interior.

Plate III
vironmental factors. Physically, the inlets are characterized by strong tidal currents (Scruton, manuscript), a firm bottom of sand, sandy, silty clay, and old shell material concentrated by the currents, and greater depths with narrower ranges of temperature and chlorinity than those of surrounding areas. The inlets show close faunal affinities with both the upper and lower sound environments and the shallow shelf, which is to be expected, since the currents bring water into this environment from each direction. Although faunal elements are present from environments on each side of the inlets, there are at least 12 species of macroorganisms which were found only in the inlets. Of the 100 species collected in the inlets, 56 were found alive, and 44 dead. The distribution of Anachis avara semiplicata (Stearns) and Hemipholis elongata (Say), the two species restricted mostly to inlets, is illustrated in Figure aga and b. Two species which are not restricted entirely to the inlets and are represented by occasional individuals in other environments are the gastropod, Olivella mutica (Say), and the pelecypod, Trachycardium muricatum (Linné) (Fig. zoa and b). Those macro-invertebrates which may be considered characteristic of the inlets are the following (Pl. IV).

Mollusks	
Pelecypods	
Anadara brasiliana	-Common dead, few living
Trachycardium muricatum	--Common living and dead
Chione cancellata	-Few living
Lucina amiantus	-Abundant living and dead, but also occurs commonly in upper sound and shallow-shelf region
Petricola pholadiformis	-Few living, fairly common dead
Cyrtopleura costata	- Common dead, at times abundant as dead shell on barrier-island
Pandora trilineata	-Few living, fairly common dead, but also found in upper sound near inlets
Gastropods	
Diodora cayenensis	--Few living, common dead
Nalica pusilla	-Few living, common dead

PLATE, III

IV. Upper Sound Assemblage (continued)

Fig. i.-Atrina rigida (Solander, 1786), size $-188 \times 108 \mathrm{~mm}$., a. exterior, b. interior.
Fig. 2.-Diplodonta punctata (Say, 1822), size-12 $\times 1$ I mm., a. exterior, b. interior.
Fig. 3.-Diplodonta semiaspera Philippi, 1836 , size-ro $\times 9 \mathrm{~mm}$., a. exterior, b. interior.
Fig. 4.-Lucina crenella (Dall, igor), size $-5 \times 5 \mathrm{~mm}$., a. exterior, b. interior.
F1g. 5.-Mercenaria campechiensis texana (Dall, 1go2), size-102 $\times 94 \mathrm{~mm}$., a. exterior, 1. interior.
Fig. 6.-Abra aequalis (Say, 1822), size-12 \times Io mm., a. exterior, b. interior.
Fig. 7.-Tagelus plebeius (Solander, 1786), size-42×16 mm., a. exterior, b. interior.
Fig. 8.-Tagelus divisus (Spengler, 1794), size- $27 \times 9 \mathrm{~mm}$., a. exterior, b. interior.
Fig. 9.-Semele proficua (Pultney, 1799), size-r $3 \times$ I 1 mm., a. exterior, b. interior.
Fig. ı0.-Tellidora cristata (Recluz, 1842), size-15 $\times 13 \mathrm{~mm}$. , a. exterior, b. interior.
Fig. in.-Tellina alternata Say, 1822 , size- $52 \times 29 \mathrm{~mm}$., a. exterior, b. interior.
Fig. 12.-Macoma tenta (Say, 1834), size-io $\times 9 \mathrm{~mm}$. , a. exterior, b. interior.
Fig. 13.-Corbula contracta Say, 1822 , size $-7 \times 5 \mathrm{~mm}$., a. exterior, b. interior.
Fig. i4.-Amphiodia limbata (Grube), size-disc diameter-6 mm., a. top, b. disc.
Fig. I 5.-A strangia astreiformis Milne-Edwards and Haime, size -clump or colony, 25 mm .
Fig. 16.-Petrolisthes armatus (Gibbes), size-10 \times_{12} carapace, a. dorsal, b. ventral.
FIG. I7.-Crangon heterochelis (Say), size- 37 mm ., a. dorsal, b. side view.
Fig. ı8.-Neopanope packardi (Kingsley, 1789), size- 8×7 (carapace), ventral view.

Fig. i8a,-Distribution of gastropod, Retusa canaliculata (all dead), indicative of upper sound environment.

Fig. i8b.-Distribution of brittle star, Amphiodia limbata (all living), indicative of upper sound environment.

Fig. rga.-Distribution of gastropod, A nachis avara semiplicata, indicative of inlet environment. Fig. ıgb.-Distribution of brittle star, Hemipholis elongala, indicative of inlet environment (all living).

Plate IV

Thais haemastoma floridana-Few living, common dead, although not restricted to inlets A nachis obesa -Common living and dead, center of population in inlets
Anachis a. semiplicata -Common living and dead
Mitrella lunata -Few living and dead
Busycon contrarium -Common living and dead, but not entirely restricted to inlet
Busycon spiratum plagosum-Less common than other species of Busycon, and probably is more common on shallow shelf
Sinum perspectivum
-Few dead in inlets only
Olivella mutica
-Abundant both living and dead with center of abundance in inlets
Turbonilla hemphilli
-Common dead in inlets and upper sound
Chitons
Chaetopleura apiculata -Few living in inlets only
Echinoderms
Hemipholis elongata
Ophiolepis elegans
-Abundant living
-Abundant living, found also in deep channels of Chandeleur Sound
Luidia clathrata, Mellita quinquiesperforata, and Moira atropos all range into inlets, although are more indicative of shallow shelf
Crustaceans
Heterocrypta granulata
-Common, living
Porcellana sayana
Polychaete worms
Owenia fusiformis
Coelenterates
Calliactis tricolor -Fairly common, attached to hermit shell
BryozoA
Discoporella umbellata -Few, living
Cupuladria canariensis
Membranipora, sp.
-Few living
-Few living
-Few, living
-Abundant, living

Cary and Spaulding (1909) list the following species from the inlets of the Chandeleurs: the gastropods, Modulus modulus and Sinum perspectivum; the

PLATE IV

V. Inlet Assemblage

Fig. I.-Anachis avara semiplicata Stearns, r873, size-II $\times 5 \mathrm{~mm} .$, a. back, b. front.
Fig. 2. - Anachis obesa C. B. Adams, 1845 , size $-4 \times 2 \mathrm{~mm}$., a. back, b. aperture.
Fig. 3.-Mitrella lunata (Say, 1826), size $-4 \times 2 \mathrm{~mm}$., a. back, b. aperture.
Fig. 4.-Thais haemastoma floridana (Conrad, 1837), size- $47 \times 29 \mathrm{~mm}$., a. back, b. front.
Fig. 5.-Olivella mutica (Say, 1822), size- $2 \times 8 \mathrm{~mm}$. , a. back, b. aperture.
Fig. 6.-Busycon contrarium (Conrad, 1840), size- $80 \times 39 \mathrm{~mm}$., a. back, b. aperture.
Fig. 7.-Sinum perspectivum (Say, 183 I), size- $3 \mathrm{I} \times 3 \mathrm{I}$ mm., a. top, b. aperture.
Fig. 8.-Natica pusilla Say, 1822 , size- $3 \times 4 \mathrm{~mm}$., a. top view, b. aperture.
Fig. 9.-Modulus modulus (Linné, 1758), size- $9 \times$ io mm., a. side view, b. aperture.
Fig. io.-Diodora cayenensis (Lamarck, 1822), size- $12 \times 7 \mathrm{~mm}$., a. exterior, b. interior.
Fig. I i.-Turbonilla hemphilli (Bush, 1899), size- $2 \times 8 \mathrm{~mm}$., front or aperture.
Fig. i 2.-Terebra protexta (Conrad, 1843), size- $26 \times 6 \mathrm{~mm}$., front or aperture.
Fig. I3.-Chaetopleura apiculata Say, 1830, size- $10 \times 7 \mathrm{~mm}$., exterior or top view.
FIG. I4.-Anadara brasiliana (Lamarck, 18 Iq), size- $13 \times 9 \mathrm{~mm}$., a. exterior, b. interior.
Fig. I5.-Trachycardium muricatum (Linné, 1758), size- 42×44 mm., a. exterior, b. interior.
Fig. ı6.--Lucina amiantus (Dall, ı90r), size- $6 \times 6 \mathrm{~mm}$., a. exterior, b. interior.
Fig. 17.-Chione cancellata (Linné, 1758), size- $26 \times 22 \mathrm{~mm}$., a. exterior, b. interior.
Fig. 18.-Pandora trilineata Say, 1822 , size- $20 \times$ II mm., a. exterior, b. interior.
Fig. Ig.-Petricola pholadiformis Lamarck, 18 I 8 , size- $23 \times 8 \mathrm{~mm}$., a. exterior, b. interior.
Fig. 20.--Cyrtopleura costata (Linné, 1758), size- $9 \times 39 \mathrm{~mm}$., a. exterior, b. interior.
Fig. 21.-Ophiolepis elegans (Lütken), size-disc-20 mm., arms 55 mm ., a. ventral, b. dorsal, c. disc.

Fig. 22.-Hemipholis elongata (Say), size-disc 7 mm ., a. ventral, b. dorsal, c. disc.
Fig. 23.-Heterocrypta granulata (Gibbes, 1849), size-15×1о (carapace), a. top, dorsal, b. ventral.
Fig. 24.-Mamillopora cupula Smitt, size-22 mm., colony.
Fig. 25.-Cupuladria canariensis Busk, size-18 mm., colony.
Fig. 26.-Porcellana sayana (Leach), size- $12 \times$ ir mm., a dorsal, b. ventral.

Fig. 20a.-Distribution of gastropod, Olivella mutica, indicative of inlet environment.
Fig. 2ob.-Distribution of pelecypod, Trachycardium muricatum, indicative of inlet environment.
pelecypod, Trachycardium muricatum; and the crab, Petrolisthes armatus (Gibbes).
VI. Shallow continental shelf of Gulf of Mexico from o to I3 fathoms, off barrier islands.-Although no exact boundary can be drawn between the inlets and shallow continental shelf of the Gulf where the inlets are very wide, the shallowshelf assemblage is distinct from that of the other areas. It does not extend to the vicinity of the shores of the active Mississippi Delta and other parts of the Gulf coast where rivers empty directly into the Gulf, because of the effect of the fresh water and sediments discharged directly into the open Gulf of Mexico. However, where the open Gulf meets the barrier islands and sandy peninsulas or coastline without barrier islands or large rivers, wave action forms sandy shores, and there is a typical high-salinity shallow-shelf fauna close to shore with characteristic surf-zone animals. In the typical shallow-shelf region, the chlorinities are generally above 14%, and usually above 17%, while the water temperatures are variable according to the season of the year. The fauna of this region is related to the warm-temperate waters of the Carolina coast, with occasional forms typical of the west coast of Florida (Hedgpeth, 1953; Pulley, 1953).

Although the characteristic invertebrates of the shallow-shelf region are many and varied, few were taken alive on this project because of inadequate collecting methods. The shells of many of the shallow-shelf species of mollusks often occur in large drifts on the beaches after storms, and their presence should characterize Gulf beach deposits in older formations. Eighty-one species of macroinvertebrates were collected in this area during the investigation, of which 32 species were living and 49 were dead remains. The distribution maps for some of the characteristic shallow-shelf organisms collected on this project are shown as follows: the gastropod, Cantharus cancellarius (Conrad) (Fig. 2ra); the sea pansy, Renilla miulleri Kölliker (Fig. 2Ib); the polychaete worm, Aglaophamus dicirris Hartman (Fig. 22a); the starfish, Luidia clathrata (Say) (Fig. 22b); and the sand dollar, Mellita quinquiesperforata (Leske) (Fig. 23a). A pelecypod which is found in the shallow-shelf region that borders the active delta, but does not live on the sand bottoms near the barrier islands, is Abra lioica Dall, whose distribution is shown in Figure 23b.

The mollusks observed on the Gulf beaches in large numbers and reported living in the shallow part of the shelf by other investigators (Cary and Spaulding, 1909; Harry, 1942; Behre, 1950; Pulley, i953; Hedgpeth, 1953 ; Parker, 1955) are the pelecypods, Dinocardium robustum (Solander), Alrina serrata (Sowerby), Aequipecten irradians concentricus (Say), Callocardia texasiana Dall, Cyrtopleura costala (Linné), Labiosa plicatella (Lamarck), Labiosa lineata Say, Macoma constricta Bruguière, Spisula solidissima similis (Say), and Dosinia discus (Reeve); and the gastropods, Phalium granulatum (Born), Olvia sayana Ravenel, Tonna galea Linné, Murex fulvescens Sowerby, Murex pomum Gmelin, and Strombus alatus Gmelin. Of particular interest was the presence of the valves of the giant clam, Panope bitruncata Conrad, a close relative of the geoduck (P. generosa) of the Pacific coast, on the beach of Gosier Island. According to Abbott (1954)

Fig. 2ra.-Distribution of gastropod, Cantharus cancellarius, indicative of shallow-shelf and inlet environments.

Fig. 2rb.-Distribution of pennatulid, Renilla milleri, indicative of shallow-shelf environment (all living).

Fig. 22a.-Distribution of polychaete worm, Aglaophamus dicirris, indicative of shallow-shelf environment (all living)

Fig. 22b.-Distribution of starfish, Luidia clathrata, indicative of shallow-shelf and inlet environments (all living).

[^0]: ${ }^{1}$ Contribution from the Scripps Institution of Oceanography, New Series No. 840. This investigation was supported by a grant from the American Petroleum Institute, Project 51. Manuscript received, August 15, 1955.

[^1]: ${ }^{3}$ Neritina reclivata and Rangia cuneata proved to be abundant in marshes adjacent to natural levees at North Pass as determined by a reconnaissance of this area in November, 1955.

[^2]: $x=$ Living. \quad Frequency of x 's and -'sindicate relative abundance.
 $-=$ Dead.
 M-Mollusks. C-Crustacean.
 E-Echinoderm. P-Polychaete worm
 CO-Coelenterate B-Bryozoan.

[^3]: $x=$ Living. Frequency of x 's and -'s indicate relative abundance.

 - Dead.

[^4]: ${ }^{4}$ In November, 1955, a survey of the submarine natural levee at North Pass showed a predominance of living Macoma mitchelli, Nerilina reclivata, Rangia flexuosa, and dead shell composed of Mulinia lateralis, Petricola pholadiformis, Macoma constricta, and Rangia cuneala.

[^5]: ${ }^{5}$ A representative sample obtained in November, 1955, from one of these reefs contained many living Crassostrea virginica, Brachidontes recurvus, Crepidula plana, Martesia sp., and barnacles.

