With Thanks for your help ! Nomas El Souman Bowman, 1979

Hydrobiologia vol. 44, 4, pag. 431-441, 1974.

Library of

The California Freshwater Isopod, Asellus tomalensis, Rediscovered and Compared with Asellus occidentalis

by

THOMAS E. BOWMAN

Department of Invertebrate Zoology Smithsonian Institution, Washington, D. C. 20560, U.S.A.

Abstract

Asellus tomalensis is redescribed from topotypes collected near Bolinas Lagoon, California, and compared with A. occidentalis, the only other epigean asellid restricted to the Pacific coast of North America. Both species show more resemblence to eastern North American species now assigned to Conasellus than to Asiatic genera or subgenera.

In his recent revision of North American epigean species of *Asellus*, WILLIAMS (1970) listed 14 species of which only 1, *A. occidentalis*, was restricted to the Pacific coast (Oregon, Washington, British Columbia). Two eastern species were reported from Echo Lake, Washington, but since they may have been introduced, have clear affinities with other eastern species, and are widely separated taxonomically from *A. occidentalis*, they are not considered further in this paper.

WILLIAMS (loc. cit.) chose to designate his Pacific coast Asellus as a new species (A. occidentalis) rather than to identify it as A. tomalensis HARFORD (1877) as others had done (FEE, 1926; CARL, 1937; HATCH, 1947; ELLIS, 1971). His justification was that published descriptions of A. tomalensis were entirely inadequate for diagnostic purposes; the single type-specimen in the California Academy of Sciences had been destroyed in the 1906 San Francisco fire and earthquake, and attempts by colleagues to collect specimens from the type-locality had been unsuccessful.

WILLIAMS indicated that A. occidentalis was possibly conspecific with A. tomalensis, but that the question could not be resolved until topotypes of the latter became available for comparison.

Received March 16, 1973.

Figs. 1—8. Asellus tomalensis 1. Head, male. 2. Perconites 5—7, male. 3. Perconites 5—7, female. 4. Antenna 2, distal segments (setae omitted). 5. Incisor of left mandible. 6. Labium. 7. Maxilla 1, apex of outer ramus. 8. Maxilla 1, apex of inner ramus. Figs. 9—11. Asellus occidentalis. 9. Head, male. 10. Perconites 5—7, male. 11. Antenna 2, distal segments.

432

Figs. 12—17. Asellus tomalensis. 12. Telson and uropods, male. 13. Right uropod, male, ventral. 14. Left uropod, female ventral. 15. Maxilliped male. 16. Pereopod 1, male. 17. Pereoped 1, female, distal segments. 18—20. Asellus occidentalis. 18. Telson and uropods, male. 19. Right uropod, male, ventral. 20. Pereopod 1, male, distal segments.

The type-specimen of *A. tomalensis* was obtained by LOCKINGTON while collecting in "Tomales Bay and vicinity". Tomales Bay, in Marin County, California (north of San Francisco) is a narrow bay about 23 km long and 1.6 km wide (Figure 38). Its water is fully saline and a freshwater isopod could not live in it. HARFORD's specimen must have come from a freshwater source in the vicinity of Tomales Bay and not from the Bay itself.

During a visit to San Francisco and Berkeley in December 1971 I searched for *Asellus* in several streams that feed into Tomales Bay (Figure 38): Stemple Creek, Keys Creek, Walker Creek, Millerton Gulch Creek and a creek north of it, and Lagunitas Creek. My search was unsuccessful as had been that of WILLIAMS' colleagues. Fortunately, however, I later received specimens of an *Asellus* collected from a shallow pond adjacent to nearby Bolinas Lagoon (Figure 38, inset), sent to me by ERNEST IVERSON, California Academy of Sciences. Since this pond is less than 24 km from Tomales Bay, it may be considered part of "Tomales Bay and vicinity", hence the isopods collected by IVERSON are topotypes of *A. tomalensis*. Subsequently 2 additional samples of *A. tomalensis* in the collections of the California Academy of Sciences were loaned to me by Mr. IVERSON (see Material examined, below).

IVERSON'S specimens proved to be very similar to A. occidentalis but clearly distinct in several important charcters, thus vindicating WILLIAMS' decision not to identify his specimens as A. tomalensis. Since A. tomalensis has never been described adequately, it is described below and compared with A. occidentalis.

Asellus tomalensis HARFORD

Figures 1—8, 12—17, 21—25, 31—34

Asellus tomalensis HARFORD, 1877, pp. 54—55. – HOLMES, 1904, pp. 321—322, pl. 37, figs. 39—42. – VAN NAME, 1936, pp. 459—461, fig. 288 (part).

Material examined

California: Marin County, shallow freshwater pond on Audubon Canyon Ranch, Volunteer Canyon (one of several canyons leading from Bolinas Ridge to Bolinas Lagoon; see Figure 38). 21 February 1972, 10 Å, 4 \circ , collected by E. IVERSON and J. CARLETON (USNM 141809); 1 December 1971, 5Å, 2 \circ , collected by MOLLY SCHNEIDER (California Academy of Sciences). San Francisco County, Lake Merced, NE side of north lake, 16 January 1971, 1Å, collected by ERIC BOGATIN (California Academy of Sciences). San Mateo County, unnamed pond adjacent to Skyline Boulevard, about 100 m S of Kings Drive, 1 April 1966, 13Å \circ , collected by D. CHIVERS (California Academy of Sciences).

Figs. 21—25. Asellus tomalensis 21. Mandibular palp, 2nd. segment, male. 22. Pereopod 4, male. 23. Dactyl of pereoped 4, male. 24. Pleopod 1, male. 25. Pleopod 2, female. 26—28. Asellus occidentalis. 26. Mandibular palp, 2nd. segment, male. 27. Pereopod 4, male. 28. Pleopod 2, female.

Description

Length (excluding antennae and uropods), \mathcal{J} up to 10 mm, \mathcal{Q} up to 7.5 mm. Body gradually increasing in width to perconite 7; greatest width about 1/3 length. Head twice as wide as long; anterior margin moderately concave; postmandibular lobes short, obtuse; eye oval, moderate-sized. Pereonal epimera rounded, not posteriorly excavate in \mathcal{J} , with broad, shallow posterior excavations in \mathcal{Q} pereonites 5-7. Telson about as long as wide; caudomedial lobe rather low; lateral margins densely setose. Antenna 1 reaching distal third of last segment of antenna 2 peduncle; flagellum 11merous in 3, 7–8-merous in \mathfrak{P} . Antenna 2 about as long as head and pereonites 1-4 combined; flagellum 35-45-merous. Mandible with 4-toothed incisors and lacinia mobilis; spine-row of 11 spines plus 2 small setae at molar end; second segment of palp moderately broad. Maxilla 1, outer ramus with 12 apical spines and 1 subterminal seta; inner ramus with 5 terminal spines. Maxilla 2, outer ramus with 22 setae on outer lamina and 14 setae on inner lamina. Maxilliped with 5 retinaculae on endite; first segment of palp unarmed, second to fifth segments densely setose medially. percopod 1, propus about twice as long as wide, palm slightly convex, without processes, with 3 robust spines in proximal half; dactyl armed with teeth on posterior margin. \mathcal{Q} percopod 1 similar, but palm nearly straight, bearing 2 robust spines. Pereopod 4 sexually dimorphic, shorter in male, with posterior margin of merus thickened and more spinose. \mathcal{J} pleopod 1 a third longer than pleopod 2; protopod half as long as exopod, with 2 retinaculae; exopod suboval with nearly straight medial margin, bearing about 10 long plumose setae and numerous shorter setae on distal and lateral margins; anterior aurface also with few setae. Male pleopod 2, protopod about $\frac{1}{4}$ longer than wide, bearing 5-6 distomedial setae; exopod slightly more than half as long as protopod, proximal segment with 2 lateral and 1 medial marginal setae; distal segment ovate, with about 6 straight lateral and 8 retrorse medial setae; endopod bent abruptly above base, outer basal apophysis nearly quadrate, inner basal apophysis subconical; tip of endopod with orbicular lateral process partly covering cannula, cannula reaching distal third of lateral process, its lateral lip broadened and fixed to lateral process. Female pleopod 2 semiovate, apex and distal half of lateral margin with about 9 setae. Pleopod 3, exopod 2-merous, with setae on distal and lateral margins; endopod fleshy, narrowly obovate. Pleopods 4-5, exopods unarmed except for a few proximolateral setae. Male uropod, exopod and protopod subequal in length; endopod linear, 6.5 time as long as wide, 1.3 times as long as protopod. Female uropod, endopod only slightly longer than exopod, 4.2 times as long as wide, 1.2 times as long as protopod.

Figs. 29—30. Asellus occidentalis. 29. Pleopod 2, male, posterior. 30. Same, tip of endopod. 31—34. Asellus tomalensis. 31. Pleopod 2, male, posterior. 32. Same, tip of endopod. 33. Pleopod 2, male, anterior. 34. Same, tip of endopod.

Habitat

The shallow pond on Audubon Canyon Ranch contains essentially still water; there was only a slight inflow of fresh water from the adjacent Volunteer Canyon. Mr. IVERSON did not find Asellus in in Olima Creek; he suggested that its absence from this creek and the creeks that I examined indicates a requirement for slowly moving water containing considerable vegetation. The closely related A. occidentalis appears to have similar requirements according to ELLIS (1971), who found it in an intermittent pond adjoining the South Fork of the Klaskanin River in Clatsop County, Oregon, but not in apparently favorable habitats of the South Fork above and below the pond.

Asellus occidentalis WILLIAMS

Figures 18—20, 26—30, 35—37

Asellus tomalensis HARFORD. – RICHARDSON, 1904a, pp. 224—226, figs. 110—112; 1904b, pp. 668—669, figs. 15—17; 1905, pp. 431— 433, figs. 487—489. – JOHANSEN, 1922, p. 156. – FEE, 1926, pp. 20—21. – VAN NAME, 1936, pp. 459—461, fig. 288 (part); 1940, р. 133. – Сакь, 1937, р. 451. – Натен, 1947, рр. 170—171, figs. 31—32. – Ellis, 1971, passim.

Asellus occidentalis WILLIAMS, 1970, pp. 69-73, figs. 53-56.

The above synonymy assumes that A. tomalensis does not occur north of California, that none of the above records are of the eastern species reported from Washington (A. communis, A. racovitzai racovitzai, see WILLIAMS, 1970), and that no undescribed species occur within the range of A. occidentalis. Additional collecting is needed to test these assumptions.

Material examined

Oregon: Clatsop County, about 4 km S of Olney, intermittant pond within an abandoned channel of the South Fork of the Klaskanine River, many specimens collected by ROBERT J. ELLIS (see ELLIS, 1971). Kimball State Park, in pond at headwater of Wood River, 6 September 1968, 6 \Im ^Q collected by BILL LIGHT and RUTH STEWART.

	A. occidentalis	A. tomalensis
Head width/length	<2	ca. 2
Head, postmandibular lobes	rather acute	blunt
♂ pereonites 5—7, lateral margins	with incisures	without incisures
Telson, median caudal lobe	sides steeply inclined	sides gradually inclined
♂ uropod, endopod/protopod	1.5	1.3
♂ uropod, endopod length width	ca. 6.0	ca. 6.5
Antenna 2 flagellar segments	more elongate	less elongate
♂ pleopod 1 exopod, anterior		
surface	without setae	with setae
\mathcal{J} pleopod 2 exopod, setae on		
proximal segment	0-1 lateral, 0 medial	2 lateral, 1 medial
3 pleopod 2 protopod, medial		
setae	ca. 10	ca. 7
♂ pleopod 2 endopod, lateral		
process	triangular, bent at apex	circular
ð pleopod 2 endopod, cannula	outer lip narrow	outer lip broad
\bigcirc pleopod 2, lateral margin	angular, with 10—17 setae	evenly rounded, with ca. 9 setae

Since this species was described in some detail by WILLIAMS (1970), it will suffice to point out in the table above the most obvious differences between A. occidentalis and A. tomalensis and to give a few illustrations to supplement those of WILLIAMS.

Relationships of Asellus tomalensis and A. occidentalis

BIRSTEIN (1951) and HENRY & MAGNIEZ (1970) both maintained that neither A. tomalensis nor the subterranean A. californicus MILLER

(1933) was related to the eastern North American species assigned by STAMMER (1932) to the subgenus *Conasellus*. STAMMER stated that *A. tomalensis* did not fall into *Conasellus* because the male percopod I lacked an apophysis on the palm, but did not assign it to a subgenus because the structure of the male pleopod was unknown. BIRSTEIN

Figs. 35—37. Asellus occidentalis, female, posterior views of pleopods. 35. Pleopod 3. 36. Pleopod 4. 37. Pleopod 5.

Fig. 38. Map of Tomales Bay and vicinity, showing sites where Asellus tomalensis was searched for unsuccessfully. 1. Stemple Creek. 2. Keys Creek. 3. Walker Creek. 4. Creek, name not known. 5. Millerton Gulch Creek. 6. Lagunitas Creek. 7. Olema Creek. Inset. Bolinas Lagoon and vicinity. 8. Volunteer Canyon. 9. Audubon Canyon Ranch, where A. tomalensis was collected.

(1951) stated that A. californicus undoubtedly belongs to the subgenus Mesoasellus, which at that time contained Japanese species now placed in the subgenus Phreatoasellus MATSUMOTO (1962). For this reason he maintained that A. californicus is derived from Asian ancestors that migrated across the Bering Strait. Like STAMMER, BIRSTEIN regarded the taxonomic position of A. tomalensis as uncertain, but was certain that it did not belong to Conasellus. HENRY & MAGNIEZ (1970) thought it likely that the 2 Californian species were related to Far Eastern asellids, perhaps Asellus (Asellus) or Nipponasellus MATSUMOTO (1962).

While the relationship of A. californicus to oriental asellids is apparent, it is difficult to relate A. tomalensis and A. occidentalis to Asiatic forms. All the genera occurring in Japan (Asellus, including the subgenera Asellus and Phreatoasellus; Nipponasellus; Uenasellus) have a long medial basal apophysis on the endopod of the male pleopod 2. Asellus (Asellus) differs further from A. tomalensis and A. occidentalis in having 5 terminal setae on the endopod of maxilla 1 and in the oval female 2nd pleopods that overlap medially. Nipponasellus differs in having a 1-merous mandibular palp.

Except for the absence of an apophysis on the palm of pereopod 1, the Pacific coast species fit into *Conasellus* as defined by HENRY & MAGNIEZ (1970). But until the generic partition of the North American species is more satisfactorally established, it seems premature to assign the western North American species other than to *Asellus* sensu latu.

Summary

Asellus tomalensis is redescribed from topotypes collected near Bolinas Lagoon, California, and compared with A. occidentalis, the only other epigean asellid restricted to the Pacific coast of North America. Both species show more resemblance to eastern North American species now assigned to Conasellus than to Asiatic genera or subgenera.

Acknowledgments

ERNEST IVERSON, California Academy of Sciences, provided me with specimens of *Asellus tomalensis* and information about the locality where they were collected. ROBERT J. ELLIS, National Marine Fisheries Service Biological Laboratory, Auke Bay, Alaska, contributed specimens of *A. occidentalis*. MARY JO BOWMAN, JUDY BOWMAN, SUSAN BOWMAN, RICHARD JANOSKO, and KEITH PARSONS aided me in searching for *A. tomalensis* in the field. HORTON H. HOBBS, Jr., JOHN R. HOLSINGER, and E. L. BOUSFIELD read the manuscript and offered helpful suggestions.

References

- BIRSTEIN, J. A. 1951 Freshwater isopods (Asellota). Fauna of USSR, Crustacea 7 (5): 1—140. [in Russian: English translation by Israel Program for Scientific Translation, 148 pp., 1964].
- CARL, G. C. 1937 Flora and fauna of brackish water. Ecology 18: 447-453.
- ELLIS, R. J. 1971 Notes on the biology of the isopod Asellus tomalensis in an intermittent pond. Trans. American Micros. Soc. 90 (1): 51-61.
- FEE, A. R. 1926 The Isopoda of Departure Bay and vicinity with descriptions of new species, variations, and colour notes. *Contrib. Canadian Biol. Fish. Sta. Canada, n.s.* 3: 13-46.
- HARFORD, W. G. W. 1877 Description of a new genus and three new species of sessile-eyed Crustacea. Proc. California Acad. Sci. 7: 53-55.
- HATCH, M. H. The Chelifera and Isopoda of Washington and adjacent regions. Univ. Washington Publ. Biol. 10: 155-274.
- HENRY, J. P. & MAGNIEZ, G. 1970 Contribution à la systématique des Asellides (Crustacea Isopoda). Ann. Spéléol. 25 (2): 335-367.
- HOLMES, S. J. 1904 On some new or imperfectly known species of west American Crustacea. Proc. California Acad. Sci. 3: 307–328.
- JOHANSEN, F. 1922 A freshwater-isopod new to Canada. Canadian Field-Nat. 36 (8): 156.
- MATSUMOTO, K. 1962 Two new genera and a new subgenus of the family Asellidae of Japan. Annot. Zool. Japonenses 35 (3): 162-169.
- MILLER, M. A. 1933 A new blind isopod, Asellus californicus, and a revision of the subterranean asellids. Univ. California Publ. Zool. 39 (4): 97-110.
- RICHARDSON, H. R. 1904a Isopod crustaceans of the northwest coast of North America. Harriman Alaska Expedition 10: 213-230.
- RICHARDSON, H. R. 1904b Contributions to the Natural History of the Isopoda. V. Isopod crustaceans of the northwest coast of North America. Proc. United States Nat. Muse. 27: 657—671. [reprint of RICHARDSON 1904a.]
- VAN NAME, W. G. 1936 The American land and fresh-water isopod Crustacea. Bull. American Mus. Nat. Hist. 71: 1-535.
- WILLIAMS, W. D. 1970 A revision of the North American epigean species of Asellus (Crustacea: Isopoda). Smithsonian Contrib. Zool. 49: 1-80.