AMERICA, WITH DESCRIPTIONS OF TWENTY-TWO NEW SPECIES

HARRIET RICHARDSON

KEY TO THE ISOPODS OF THE PACIFIC COAST OF NORTH AMERICA, WITH DESCRIPTIONS OF TWENTY-TWO NEW SPECIES.

By Harriet Richardson.

The isopods of the Pacific coast of North America have claimed the attention of a number of naturalists during the last half of the nineteenth century. Among the first to contribute to the knowledge of the fauna of that region was Dana. Stimpson also belongs to the earlier part of that period; his work on the Crustacea and Echinodermata of the Pacific shores of North America, published in 1857, was the first special treatise on the forms of that locality. In connection with the work of the later part of the past fifty years, the names of Stuxberg, Lockington, and Harford form one group as contemporaneous workers (1875-76), those of Schiœdte and Meinert, and BadeLand, another group (1883-85), while the publications of Dr. Hansen and Dr. Benedict represent the latest (1898) work on the isopods of that coast.

The number of species already described is 75 , and 22 are added in the present work. These species represent 44 genera and 16 families, as shown in the following table:
LIST OF TRIBES, FAMILIES, GENERA, AND SPECIES.
I. Cifelifera
Page.
Family I. Tanaide 819

1. Tanais 819
2. loricatus Spence Bate 819
3. alascensis, new species 819
II. Flabellifera 820
Family II. Limnoriidæ 821
4. Limnoria 821
5. liguorum (Rathke) 821
Family III. Cirolanida. 824
6. Cirolana 822
7. harfordi (Lockington) 822
8. linguifrons, new species 823
9. Eurydice 824
10. caudata, new species 824
Family IV. Corallanide 825
11. Corallana 825
12. truncata, new species 825
II. Flabellifera-Continued. Page.
Family V. Ægide 825
13. $E g a$ 826
14. microphthalma Dana 826
15. lecontii (Dana). 826
16. Rocinela 827
17. cornuta Richardson 827
18. belliceps (Stimpson) 827
19. laticauda Hansen 828
20. tuberculosa Richardson 828
21. aries Schiœdte and Meinert 828
Family VI. Cymothoide 828
22. Meinertia 829
23. gaudichaudii (Milne-Edwards) 829
24. Livoneca 829
25. californica Schiœdte and Meinert 829
26. vulgaris Stimpson 830
27. panamensis Schiœdte and Meinert 830
28. Nerocila 830
29. californica Schiœdte and Meinert. 830
30. Anilocra 830
31. occidentalis, new species 830
Family VII. Spheromida 831
32. Dynamene 832
33. dilatata, new species 832
34. tuberculosa, new species 833
35. benedicti, new species 834
36. glabra, new species 834
37. Spheroma 835
38. amplicauda Stimpson 835
39. rhomburum, new species 835
40. octoncum, new species 836
41. oregonensis Dana 836
42. Tecticeps 836
43. alascensis Richardson 837
44. convexus, new species 837
45. Cilicala 838
46. cordata, new species 839
47. caudata gilliana, new subspecies. 840
48. granulosa, new species 841
Family VIII. Serolida 842
49. Serolis 842
50. carinata Lockington 842
III. Valvifera 842
Family IX. Idoteidae 842
51. Glyptonotus 843
52. entomon (Linnieus) 843
53. sabini (Krфyer) 844
54. Idotea 844
55. resecata Stimpson 844
56. gracillima Dana 844
57. urotoma Stimpson 845
58. rectilineata Lockington 845
59. wosnesenskii Brandt 846
60. ochotensis Brandt 846
no. 1175.
III. Valvifera-Continued.
Family IX. Idoteidæ-Continued.
61. Idotea-Continued. Page.
62. stenops Benedict 846
63. whitei Stimpson 846
64. Synidotea 847
65. pallida Benedict 848
66. erosa Benedict 848
67. nebulosa Benedict 848
68. angulata Benedict 848
69. consolidata (Stimpson) 848
70. bicuspida (Owen) 848
71. laticauda Benedict 849
72. harfordi Benedict 849
73. nodulosa (Krojer) 849
74. lavis Benedict 849
75. muricata (Harford) 849
76. picta Benedict 849
77. Colidotea 849
78. rostrata (Benedict) 849
79. Cleantis. 850
80. occidentalis, new species 850
81. heathii, new species 851
82. Eusymmerus 852
83. antennatus, new species 853
Family X. Arcturidæ 853
84. Arcturus 853
85. beringanus Benedict 854
86. longispinis Benedict 854
87. intermedius, new species 854
88. murdochi Benedict 855
89. glaber Benedict 855
IV. Asellota 856
Family XI. Asellida 856
90. Asellus 856
91. tomalensis Harford 856
Family XII. Janiridae 856
92. Jara 857
93. wakishiana Spence Bate 857
94. Tanthe 857
95. triangulata, new species 857
96. erostrata, new species 858
97. Jonira 859
98. occidentalis Walker 859
99. Jeropsis 859
100. lobata, new species 859
V. Oniscomea 860
Family XIII. Oniscidæ 861
101. Porcellio 861
102. formosus Stuxberg 862
103. lavis Latreille 862
104. scaber Latreille 863
105. Metoponorthus 863
106. pruinosus Budde-Lund 863
Proc. N. M. vol. xxi- 52
V. Oniscoidea-Continued.
Family XIII. Oniscide-Continued. Page.
107. Alloniscus 864
108. mirabilis (Budde-Lund) 864
109. cornutus Budde-Lund 864
110. perconcexus Dana 864
111. Lyprobius 864
112. pusillus Budde-Lund 864
Fámily XIV. Armadillididæ 865
113. Cubaris 865
114. californica (Stuxberg) 865
115. affinis (Dana) 865
Family XV. Ligiidæ 865
116. Ligia 866
117. occidentalis Dana 866
118. pallasii Brandt 866
119. exotica Roux. 866
120. Ligidium 866
121. hypnorum (Cuvier) 867
122. tenue Budde-Lund 867
123. Styloniscus 867
124. gracilis Dana 867
VI. Epicaridea 867
Family XVI. Bopyridæ 867
125. Argeia 868
126. pugettensis Dana 868
127. depauperata Stimpson 868
128. Phyllodurus. 868
129. abdominalis Stimpson 868
130. Bopyroides 868
131. acutimarginatus Stimpson 868
132. Pseudione 868
133. giardi Calman 869
134. galacanthe Hansen 869
135. Bathygyge 869
136. grandis Hansen 869
137. Cryptione 869
138. elongata Hansen 869
139. Parargeia 869
140. ornata Hansen 869
141. Ione 869
142. cornuta Spence Bate 869
The author has used Dr. Benedict's keys for the genera Synidotea and Arcturus, and is indebted to Professor Sars for many suggestions obtained from his excellent work on the Crustacea of Norway. In many places his synopses of the families and genera have been used in entirety. Other authors have been most helpful; Hansen on the Cirolanidce; Schiœedte and Meinert on the Cymothoida; Budde-Lund on the Oniscidce, and others, to whose works specific references are made.
The present paper is based on material contained in the U.S.National Museum.

ANALYTICAL KEY TO TRIBES OR SUPERFAMILIES OF PACIFIC COAST ISOPODA. ${ }^{1}$
a. Legs of first pair cheliform. Uropodia terminal. Pleopoda, when distinctly developed, exclusively natatory
I. Chelifera (p. 819).
a^{\prime}. Legs of first pair not cheliform.
b. Uropoda lateral.
c. Uropoda forming together with the terminal segment of the metasome a caudal fan. Pleopoda for the most part natatory II. Flabellifera (p. 820). c^{\prime}. Uropoda valvelike, inflexed, arching over the pleopoda, which to a great extent are brauchial............................... III. Valvifera (p. 842).
b^{\prime}. Uropoda terminal.
c. Free forms.
d. Pleopoda exclusively branchial, generally covered by a thin opercular plate (the modified first pair).............................. IV. Asellota (p.856).
d^{\prime}. Pleopoda fitted for air-breathing.................. V. Oniscoidea (p.860).
c^{\prime}. Parasitic forms. .. VI. Epicaridea (p. 867).

I. CHELIFERA.

Family I. TANAIDE.

Body scarcely attenuated behind. Mandibles without palp. Coxal plates inconspicuous. Superior antenne with one multiarticulate flagellum. Anterior maxillae with only a single masticatory lobe; posterior ones quite rudimentary. Second pair of legs ambulatory in character. Epignath of maxillipeds narrow, falciform.

1. TANAIS Audouin and Milne-Edwards.

Antennæ short, subequal. Pleon five-jointed; fourth joint short; fifth joint terminated by a pair of single-branched filamentary uropoda. Only three pairs of pleopoda. Palp of anterior maxillæ biarticulate. Eyes well developed. Superior antennæ three-articulate, with small terminal flagellum.

ANALYTICAL KEY TO TIE SPECIES OF TANAIS.

a. Inferior antennce scarcely half the length of superior antennæ. Pereiopoda having the first three joints short and broad, affixed to sides of pereion like plates of mail.

1. Tanais loricatus Spence Bate. a^{\prime}. Inferior and superior antenure of ner rly equal length. Pereiopoda with joints not dilated, slender
2. Tanais alascensis, new species.

1. TANAIS LORICATUS Spence Bate.

Tantis loricatus Spence Bate, Lord's Naturalist in Sritish Columbia, II (1866), p. 282.

Habitat.-Esquimault Harbor, British Columbia.
2. TANAIS ALASCENSIS, new species.

Body three and a half times longer than broad.
Head large, narrowed anteriorly. Frontal margin almost straight.

[^0]First pair of antennæ short, stout, consisting of four joints, the first joint being the longest. Second pair of antenuæ more slender, a little longer, consisting of four joints, the first joint being

Fig. 1.-Tanais alasCENSIS, NEW SPECIES. $\times 8$. a, DORSALVIEW; b, LAST TWO JOINTS OF LEG OF THE FIRST PAIR. longest, and a rudimentary flagellum. Eyes small and pedunculated.
The first segment of the thorax is confluent with the head. The second, third, fourth, and fifth seg. ments increase slightly in length; the fifth and sixth are about equal; the seventh is not quite so long as the preceding one.
The abdomen is composed of five segments, the first three of which are subequal; the fourth is short, about half as long as any of the others and also narrower; the terminal segment is as long as the two preceding ones together, and is rounded posteriorly, with a slight median notch. The segments of the abdomen decrease in width gradually from the first to the terminal segment. The terminal filaments are seven-jointed and single-branched, and are furnished at their extremities with a few long hairs.

The first pair of legs are stout and chelate; the propodus is produced into a strong immovable finger, irregular in shape, having its central portion raised and truncate on its upper surface, which is distinctly serrate. The dactylus is likewise serrate on its inner surface. The other legs are slender, with a gradual increase in stoutuess.
Color brown, marked in some specimens with a darker brown, and having oval patches of the darker color on the head.

Kyska Harbor, Alaska; Mr. W. H. Dall collector; depth, 6 to 8 fathoms.

Type.-No. 22563, U.S.N.M.

II. FLABELLIFERA.

ANALYTICAL KEY TO THE FAMILIES OF FLABELLIFERA.
a. Pleon consisting of six segments.
b. Uropoda with one of the branches almost obsolete or rudimentary-not lamelliform .. Family II. Limnoriide (p. 821).
b^{\prime}. Uropoda with both branches developed; mostly lamelliform.
c. ${ }^{l}$ Maxillipeds with the palp free, the margins of the last two joints more or less setose, never furnished with hooks.

[^1]d. Mandibles with the rather broad, more or less tridentate, cutting edges meeting squarely behind the large upper lip; the secondary plate and peculiar equivalent for the molar well developed. First maxilla having the plate of the first joint armed with three spines, that of the third with many. Second maxille of moderate size, the three free plates very setose. Maxillipeds with the palp rather broad, very setose.

Family III. Cirolanide (p. 822).
d^{\prime}. Mandibles with the distal part produced into a long prominent process, the pair much overlapping; the secondary plate and molar evanescent. First maxille having the plate of the first joint unarmed, of the third carrying one very long spine. Second maxillæ small and feeble, the free plates almost rudimentary, with few seta. Maxillipeds with the palp narrowed, not very setose............. Family IV. Corallanide (p. x25).
c^{\prime}. Maxillipeds with the palp embracing the cone formed by the distal parts of the mouth organs, the inner upper margin and apex never setose, the apex and sometimes the inner upper margin at least in the males and females without eggs, being furnished with outward curved hooks.
d. Mandibles with the secondary plate very often risible; palp with no inflated joint. Maxillipeds commonly seveu-jointed, sometimes four-jointed, the last joint in the latter case rather short, obtuse. Antenne ${ }^{1}$ long, unequal, with well-defined peduncle and flagellum.... Family V. Agide (p. 825).
d^{\prime}. Mandibles with no secondary plate; the palp in adults with first joint or both first and second joints inflated. Maxillipeds always four-jointed, last joint rather long and narrow, subacute. Antennes ${ }^{1}$ much reduced withont clear distinction between peduncle and flagellum.

Family VI. Cymothoide (p. 828).
a^{\prime}. Pleon consisting of less than six segments.
b. Pleon with two segments. Uropoda with one branch fixed, immovable. Family VII. Spheromid.e (p. 831).
b^{\prime}. Pleon with four segments. Uropoda with both branches movable.
Family VIII. Serolid.e (p. 842).

Family II. LIMNORIIDA.

2. LIMNORIA Leach.

3. LIMNORIA LIGNORUM (Rathke).

Cymothoa lignorum Rathke, Skrivt. af Naturh. Selsk., V, 1799, p. 101, pl. 3, fig. 14 (White).
Limnoria tenebrans Leach, Ed. Encscl., VII, 1813, p. 433 (Am. ed., p. 273); Trans.Linn. Soc., XI,1815, p.371; Dict.Sci.Nat., NII, 1818,p.353.-1)esmarest, Consid. Crust., 1825, p. 31.-Lathehlef, Règue Inim., IV, 1829, p. 135.Edwards, Annot. de Lamarck, V, 1838, p. 276 ; Hist. Nat. des Crust., III, 1840, p. 145; Rigne Anim., Crust., 1849, p. 197, pl. 67, fig. 5.-Gould, Invert. Mass., 1840, pp. 338-354.—Verrill, Proc. Am. Assoc., 1873 (1874), p. 367.
Limnoria lignorum White, Pop. Hist. Brit. Crust., 1857, p. 227, pl. 12, fig. 5.Bate, Rep. Brit. Assoc., 1860 (1861), p. 225.-Bate and Westwood, Brit. Sess. Crust., II, 1868, p. 351.-Nomman, Rep. Brit. Assoc., 1868 (1869), p. 288.Verrill, Am. Journ. Sci., 3d ser., VII, 1874, pp. 133, 135; Proc. Am. Assoc., 1873 (1874), p. 371 ; Report U.S.Commissioner of Fish and Fisheries, 1874, Pt. 1, p. 379 (85).-Harger, Report U. S. Commissioner of Fish and Fisheries, 1874, Pt. 1, p. 571 (277), pl. Vi, fig. 25 ; Proc. U. S. Nat. Mus., II, 1879, p. 161.— Stebbing, Trans. Devon. Assoc., 1874, p. 8 ; Ann. Mag. Nat. Hist., 4th ser., XVII, 1876, p. 79.—Smith, Proc. I. S. Nat. Mus., II, 1879 (1880), p. 232, fig. 2.

[^2]Limnoria uncinata Heller, Verh. k. k. Zool. Bot. Ges. Wien, XVI, 1866, p. 734.
Limnoria lignorum Harger, Report U. S. Commissioner of Fish and Fisheries, 1878, Pt. 4, pp. 373, 376. (See Harger for further synonymy.)
Limnoria californica Hewston, Proc. Cal. Acad. Sci., V, 1874, p. 24 (nomen nudum).
Habitat.-Pacific Ocean; Bering Island. Also found on East coast of North America from Florida to Halifax, on the coast of Great Britain, and in the North Sea. Specimens from San Diego, California, collected by Mr. Henry Hemphill and labeled "Limnoria californica Hewston" are in the National Museum.

Family III. CIROLANID x.

ANALYTICAL KEY TO THE GENERA' OF CIROLANIDAE. ${ }^{1}$

a. Peduncle of second antennæ five-jointed. Plate of second joint of maxillipeds furnished with hooks. First and second pleopods alike, with at least inner branch submembranaceous. Uropoda with inner angle of peduncle produced.
3. Cirolana.
a^{\prime}. Peduncle of second antennæ four-jointed. Plate of second joint of maxillipeds without hooks. Pleopoda with both branches submembranaceous. Uropoda with inner angle of peduncle very little produced. Superior antennæ with first joint of peduncle quite short, and extended straight in front at a right angle to remaining part of the antenna
4. Eurydice.

3. CIROLANA Leach.

ANALYTICAL KEY TO SPECIES OF CIROLANA.
a. Head without median process. First pair of antennte reach apex of peduncle of second pair of antennæ. Terminal abdominal segment subtriangular, armed on its posterior margin with twenty-six spines. Both branches of the uropoda rounded posteriorly and armed with spines.
4. Cirolana harfordi (Lockington).
a^{\prime}. Head with long, straight median projection. First pair of antenne reach the posterior margin of the third thoracic segment. Terminal abdominal segment rounded and crenulate on its posterior margin and fringed with long hairs. Inner branch of the uropoda obliquely truncate posteriorly.
5. Cirolana linguifrons, new species.

4. CIROLANA HARFORDI (Lockington).

Ega harfordi Lockington, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 46.
Cirolana californica Hansen, Vidensk. Selsk. Skr., 6th ser., natur. og math. Afd. V, 1890, pp. 338, 339.
Habitat.-Victoria, British Columbia; California: Santa Rosa Island, San Diego, Catalina Harbor, Pacific Grove, Monterey Bay; Lower California, specimens lighter in color.
Miers ${ }^{2}$ remarks upon having examined specimens of Ega harfordi, sent by Mr. Lockington to the British Museum and designated Idotea

[^3]harfordi in a manuscript note of the author. He cousiders tiat the specimens belong to the genus Cirolana, or a closely allied type, without further identifying them. Hausen ${ }^{1}$ also states that, according to Miers, Ega harfordi is probably a Cirolana. He had not seeu Lockington's description, but followed Miers regarding the systematic position of the species.
Specimens of Wga harfordi were sent by Mr. S. J. Holmes to the National Museum from the California Academy of Sciences, which prove to be identical with Cirolana californica Hansen.

5. CIROLANA LINGUIFRONS, new species.

Color, yellow, marked with scattered black dots. Body elongateovate, about five times longer than broad, greatly convex.

Head with the frontal margin produced in a long, straight process, rounded anteriorly and somewhat dilated. Eyes large, distiuct. First pair of antennæ with joints of the peduncle large; flagellum of fifteen short joints extends to the posterior margin of the third thoracic segment. Second pair of antenne, with a flagellum of thirteen long joints, extend to the posterior margin of the fifth thoracic segment.
The first three segments of the thorax are short; the other four segments are long. The epimera of the second, third, and fourth segments are not produced at the apex; those of the fifth, sixth, and seventh but slightly produced.

All the abdominal segments conspicuous, the first five being of equal length. The terminal segment is rounded posteriorly, faintly crenulate and fringed with long hairs. The base of this segment is raised above the other portion and has a welldefined edge with two points extending backward, one on either side of the median line. The uropoda

Fig. 2.-Cirolana linGUIFRONS. $\times 13 \frac{1}{2}$. a, head ; b, terminal segMENT. extend beyond the tip of the abdomen; the inner branch is obliquely.truncate; the outer branch is more rounded; both branches are fringed with long hairs.

The prehensile legs are short; the gressorial legs are long and slender. The legs increase gradually in length from the first to the seventh pair.

Two specimens, from Monterey Bay, California, collected by Mr. Heath from sandy shore at mean tide.

Type.-No. 22564, U.S.N.M.

[^4]
4. EURYDICE Leach.

6. EURYDICE CAUDATA, new species.

Body elongate and narrow. In male, abdomen is equal in length to thorax; in female, it is shorter. Surface of body smooth.

Head widely rounded in front; its anterior margin narrowly thickened. Eyes large and round and situated at a distance of one-third the width of the head apart. First pair of antenne extend to the posterior margin of the head; flagellum contains five articles, the first of which is very long and those following quite short. The second pair of anteune extend as far as the posterior margin of the fourth segment of the abdomen; the flagellum consists of twenty-five long, slender joints. In the female, the second pair of antenne are much shorter, reaching only to the posterior margin of the last thoracic segment; the flagellum contains about twenty joints.
The thoracic segments are subequal. The epimera are narrow, and those of the last three or four segments acutely

Fig. 3.-Eurydice caudata; LAST TWO ABDOMINAL SEGments. Greatly enlarged. pointed.
All the abdominal segments are visible in a dorsal view. The terminal segment is rounded at the sides and truncate at its extremity, the lateral angles being produced in a short triangular process, between which the posterior margin is distinctly denticulate, and bears four spines, which are about twice as long as the lateral teeth. The uropoda are short, not reaching the extremity of the terminal segment, are truncate and crenulate on their posterior margins. The uropoda, as well as the terminal, segment are fringed with short hairs.

The legs are long and slender and armed with many spines.
Color, light brown marked with black spots.
Individuals of this species were collected at Isthmus Cove, Catalina Island, California, by the U. S. Fish Commission steamer Albatross. Type.-No. 22565, U.S.N.M.
This species resembles E. grimaldii Dollfus ${ }^{1}$ more closely than it does any other species of the genus. It differs in the following characters:

1. The greater number of joints in the flagellum of the first pair of antennæ. In our species there are five joints, while in E. grimaldii the flagellum is uniarticulate.
2. In the fewer number of joints in the flagellum of the second pair of antenne. In our species there are ouly twenty-five, while in E. grimaldii the flagellum contains thirty-two articles.
3. In the presence of four spines on the posterior margin of the

[^5]terminal segment. In E. grimaldii the posterior margin is denticulate. In our species it is denticulate, and also bears four spines.

Family IV. CORALLANID.E.
5. CORALLANA Dana.
7. CORALLANA TRUNCATA, new species.

Body elongate, about three and a half times longer than wide; color, yellow.

Head with a small median point. Eyes large, situated but a little distance apart. First pair of antennæ, with a flagellum of about nine articles, extend to the antero-lateral angle of the first thoracic segment. Second pair of antenure broken in specimen.

First segment of the thorax is as long as the lhead, and about one and a half times longer than any of the other segments. Epimera of the second and third segments narrow; those of the remaining segments very broad.

The first abdominal segment is almost entirely covered by the last thoracic segment. The second, third, and fourth segments are tuberculated on their posterior margins. The fifth segment is also tuberculated, the tubercles on either side of the median line of tubercles being larger and more conspicuous. At the base of the terminal segment are four tubercles, the two center ones being the larger. The terminal segment is subtriangular with truncate apex. The posterior margin is armed with spines. The inner branch of the uropoda is truncate posteriorly, and armed with spines; it is about twice as broad as the outer branch, which is

Fig. 4.-CoralLANA TRUN. CATA. $\times 13 \frac{1}{2}$. a, HEAD ; b, ABDOMEN AND LAST THORACIC SEGMENT. lanceolate in shape.

There is but one specimen, from Catalina Island, California; collected by Dr. J. G. Cooper.

Type.-No. 29566, U.S.N.M.

Family V. AgGIDE.
ANALYTICAL KEY TO (iENERA OF RGID.E.

a. Borly rather compact. Superior antenue short, with first two peduncular joints more or less expanded. Epistome large, linguiform, projecting between the bases of inferior antennee. Maxillipeds with palp composed of five joints. Anterior pairs of legs with propodus simple, cylindrical, not expanded, dactylus abruptly curved in middle. Front separating the whole or a great part of the first article of the first pair of antennie. Flagellum of first pair of antenne composed of many articles. Abdomen compact. 6. Aga.
a^{\prime}. Body more depressed than in $E E g a$. Superior antennæ short, with basal joints not expanded. Epistome very small and narrow. Maxillipeds with palp composed of only two joints. Auterior pair of legs with propodus more or less expanded, dactylus forming a very large and evenly curved hook. Front covering more or less the peduncle of the first pair of antennæ. Flagellum of first pair of antennæ composed of four to sixarticles. Abdomen relaxed..7. Rocinela.

6. $A G A$ Leach.

ANALYTICAL KEY TO SPECIES OF EGA.

a. Eyes very small; second joint of first pair of anteunæ without process at its apex; terminal abdominal segment triangular, with rounded apex; inner branch of uropoda with apex faintly arcuate obliquely.
8. Aga microphthalma Dana.
a^{\prime}. Eyes almost contiguous; second joint of first pair of antennæ with a process at its apex nearly as long as following joint; terminal abdominal segment with its apex arcuate-truncate; inner branch of uropoda subtruncate.
9. AEga lecontii (Dana).

8. ÆGA MICROPHTHALMA Dana.

Ega microphthalma Dana, Proc. Acad. Nat. Sci. Phila., VII, 1854, p. 176.—Stimpson, Journ. Bos. Soc. Nat. Hist., VI, 1857, p. 68.
Habitat.-Monterey, California.

9. ÆGA LECONTII (Dana).

Agacylla lecontii Dana, Proc. Acad. Nat. Sci. Phila., VII, 1854, p. 177.-Stimpson, Journ. Bos. Soc. Nat. Hist., VI, 1857, p. 69.
Habitat.-California.
Body elongate, oval; surface smooth; color yellow, with a few brown dots; eyes reddish brown.

Head with anterior margin bisinuated, the median point separating the basal joints of the first pair of antennæ and extending oue-third the length of these joints. Eyes large, oval, very close to-

Hig. .- Ega le. CONTII (DANA). $\times 2$. gether at upper inner angle. First pair of antennæ with basal joints very large, dilated; second joint of peduncle dilated, and with a process at its apex extending nearly the length of the third joint; third joint very narrow, about one-third the width of two preceding joints; flagellum, composed of seven joints, extends the length of the peduncle of second pair of antenne. Second pair of antennor, with a flagellum of twelve joints, extend almost to the posterior margin of the first thoracic segment.

The last four thoracic segments are each a little longer than any of the first three. The epimera are narrow, with rounded post lateral angles.

The five abdominal segments are of equal length. The terminal segment is subtriangular with truncate extremity; its posterior margin is crenulate and fringed with hairs. The uropoda exceed slightly the length of the abdomen. The inner branch
is about twice as wide as the outer branch; is obliquely truncate, and crenulate. Theouter branch is narrow, rounded posteriorly, and smooth. Both branches are fringed with hairs.
The legs are long and slender. Five spines are present on the merus of the prehensile legs. The gressorial legs are but slightly spinulose.
Two specimens examined were collected at Monterey Bay, California, by Mr. Heath.
The description of this species of Ega by Dana as Agacylla lecontii was from a young specimen. ${ }^{1}$ The individual sent us is thought to be the adult form, and differs from Dana's description ${ }^{2}$ of the young individual in the crenulated posterior margin of the terminal segments, in . the truncated inner branch of the uropoda, and in the addition of two joints to the length of the flagellum of the second pair of antennæ.

7. ROCINELA Leach.

ANALYTICAL KEY TO SPECIES OF ROCINELA.

a. Flagellum of second pair of antenna with fourteen to sixteen joints.
b. Propodus of prehensile legs with two to forr spines:
c. First thoracic segment with antero-lateral angles produced hornlike at sides of head. Frontal margin of head produced. Spots wanting on fourth and fifth abdominal segments and base of terminal segment.
10. Rocinela cornuta Richardson.
c^{\prime}. First thoracic segment normal. Frontal margin of head not produced. Spots present on fourth and fifth abdominal segments and base of terminal segment
11. Roeinela belliceps (Stimpson).
b^{\prime}. Propodus of prehensile legs with five or six spines.
12. Rocinela laticauda Hansen.
a^{\prime}. Flagellum of second pair of antenne with ten to eleven joints.
b. Tubercles developed on all the segments of the body.
13. Rocincla tuberculosa Richardson.
b^{\prime}. No tubercles developed on body. Terminal segment of body ornamented with a very wide crescentiform band, from whose posterior border three large hastiform stripes project backwards.
14. Rocinela aries Schiœdte and Meinert.

10. ROCINELA CORNUTA Richardson.

Rocinela cornuta Ricilardson, Proc. Am. Phil. Soc., XXXVII, 1898, p. 12, figs. 1, 2. Habitat.-Off Shumagin Bank, Alaska.

ri. ROCINELA BELLICEPS (Stimpson).

Aga belliceps Stimpson, Proc. Acad. Nat. Sci. Phila., XVI, 1864, p. 155.
Sya alaskensis Lockington, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 46.
Rocinela alascensis Richardson, Proc. Am. Phil. Soc., XXXVII, 1898, p. 11.

[^6]Habitat.-Cortes Bank, California, to Alaska and Bering Sea.
12. ROCINELA LATICAUDA Hansen.

Rocinela laticauda Hansen, Bull. Mus. Comp. Zool., XXXI, 1897, No. 5, pp. 108, 109.-Richaridson, Proc. Am. Phil. Soc., XXXVII, 1898, pp. 14, 15, figs. 5, 6.

Habitat.—Off Acapulco; near Tres Marias Islands; off Mazatlan; off San Luis Obispo Bay, California; off Esteros Bay, California; Puget Sound, Washington; Unimak Island, Alaska.
13. ROCINELA TUBERCULOSA Richardson.

Rocinela tuberculosa Richardson, Proc. Am. Phil. Soc., XXXVII, 1898, p. 16, fig. 10.

Habitat.-Southern part of Gulf of California.

Fig. 6.-Rocinela belliceps (Stimpson). $\times 2$. .
14. ROCINELA ARIES Schiœdte and Meinert.

Rocinela aries Schicedte and Meinert, Naturhistorisk Tidsskrift, XII, 1879-80, pp. 401-403, pl. xilı, figs. 7, 8.
Habitat.-Mazatlan; Lower California; Panama Bay.
Family VI. CYMOTHOIDA.
andiytical key to the genera of cymothoider.
a. Head deeply immersed or set in the first thoracic segment, whose antero-lateral angles project forward.
b. Abdomen deeply immersed.
First pair of antenne more often dilated, rarely compressed. First four or five segments of body long, subequal in length, except the first, which is a little longer; last two or three segments abruptly shorter, very often decreasing gradually in length. Terminal segment of abdomen subtriangular or semicircular, often bilobed. Body oblong
8. Meinertia.
b^{\prime}. Abdomen scarcely immersed.
First pair of antennæ very much compressed. Segments of thorax either equal in length or the first segment abruptly longer than the others and the last segment abruptly shorter than the others. Terminal segment of the abdomen varying in size and form. Body sub-oval, more or less contorted. 9. Livoneca.
a^{\prime}. Head not at all immersed.
b. Body relaxed. Posterior angles of first segment of body prominent or produced, very often acute; posterior angles of the following segments increasing gradually in length, the first of these very often scarcely prominent, the posterior ones very often produced, abruptly longer than the first. Epimera of the first segments very often involuted, and extending beyoud the posterior angle of the segment; posterior ones produced, acute. Sides of the first five segments of abdomen more or less profoundly incised..... 11. Nerocila.
b^{\prime}. Body compact. Posterior angles of first segment of body scarcely prominent, occasionally produced, those of following five segments scarcely or not at all prominent; those of seventh segment produced. Epimera of first segments very often almost reaching, or not reaching by a short distance, the posterior angle of the segment. Sides of the first segments of the abdomen, whole or obscurely emarginated, of the posterior ones gradually more profoundly emarginated or incised
11. Anilocra.

8. MEINERTIA Stebbing. ${ }^{1}$

15. MEINERTIA GAUDICHAUDII (Milne-Edwards).

Cymothoa gaudichaudii Milne-Edwards, Hist. Nat. Crust., III, 1840, p. 271.
Ceratothoa rapax Heller, Reise Norara Crust., XII, p. 146, fig. 17.
Ceratothoa gaudichaudii Schicede and Meinert, Naturhistorisk Tidsskrift, XIII, 1881-83, pp. 335-340, pl. XIII, figs. 11-15.

Habitat.-Mazatlan.

9. LIVONECA Leach.

analytical key to spferes of livoneca.

a. Terminal segment obscurely carinated, and sides enfolded. Caudal appendages destitute of accessory lamella. . .16. Lironeca californica Schiœdte and Meinert.
a^{\prime}. Terminal segment not carinated, sides not enfolded. Caudal appendages furnished with accessory lamelle.
b. Inner branch of uropoda a little longer and wider than outer branch. Terminal segment sublinguate. Abdomen deeply set in thorax.
17. Lironeca rulgaris Stimpson.
b^{\prime}. Inner branch of uropoda a little longer and much narrower than outer branch. Terminal segment semicircular. Abdomen less deeply inserted in thorax.
18. Liconeca panamensis Schiwdte and Meinert.

16. LIVONECA CALIFORNICA Schiœdte and Meinert.

Lironeca californica Schigedte and Meinert, Naturhistorisk Tidsskrift, XIV, 1883-84, pp. 372-374, pl. xvi, figs. 1, 2.

Habitat.-Shores of California, near San Francisco.

[^7]17. LIVONECA VULGARIS Stimpson.

Livoneca vulgaris Stimpson, Journ. Bos. Soc. Nat. Hist., XXII, 1857, p. 68, pl. XXII, fig. 9.-Schigedte and Meinert, Naturhistorisk 'Tidsskrift, XIV, 1883-84, pp. 344-349, pl. XIV, figs. 1, 2.
Habitat.-Shores of California, near San Francisco, to Santa Margarita Island, Lower California.

18. LIVONECA PANAMENSIS Schiœdte and Meinert.

Livoneca panemensis Schicedte and Meinert, Naturhistorisk Tidsskrift, XIV, 1883-84, pp. 349-353, pl. xiri, figs. 11, 12.
Habitat.-Mazatlan; west shores of Central America; Panama.
10. NEROCILA Leach.
19. NEROCILA CALIFORNICA Schiœdte and Meinert.

Nerocila californica Schigedte and Meinert, Naturhistorisk Tidsskrift, XIII, 1881-83, pp. 72-76, pl. v, figs. 12, 13; pl. vi, figs. 1, 2.
Habitat.-San Diego, California; Panama Bay.

11. ANILOCRA Leach.

20. ANILOCRA OCCIDENTALIS, new species.

Body two and one-half times longer than broad.
Head large, broader than long, one-half as broad as the first thoracic segment, produced in front in a short, blunt process, whose auterior edge is roundly truncate. Eyes large, situated at a

Fig. 7.-Anilocra occidentalis. $\times 4$. distance equal to almost half the width of the head apart. The first pair of antennæ are composed of eight joints and extend to the middle of the first thoracic segment. The second pair of antenne are composed of nine joints and extend to the posterior angle of the first thoracic segment; they are more slender than the first pair of autennæ.

The first thoracic segment is trisinuated on its anterior margin, and is oue and a half times longer than the second thoracic segment. The other segments are subequal. The sixth and seventh segments are somewhat narrower than the fifth, and the seventh is a little narrower than the sixth. All the epimera are long and narrow and more or less rounded posteriorly; they extend fully to the posterior angle of their corresponding seg. ments, a character not found in any other species of the genus.
The first abdominal segment is partly covered at the sides by the last thoracic segment. The first five segments are about equal in ${ }^{a}$ length and width. The terminal segment is slightly wider than long, equal in length to the other abdominal segments taken together, is impressed at the base, and posteriorly rounded. The uropoda are

No. 1175.

longer than the last abdominal segment. Both branches are similar in shape and size; they are oarlike, with truncately rounded extremities.

The legs increase slightly in length. The basis of all the legs is carinated on the inferior margin.

Color a light brown, marked with numerous black dots over the whole surface of the body, with the exception of the posterior half of the last abdominal segment and the inner branch of the uropoda, which are a light clear yellow without spots. The outer branch of the uropoda, which is almost black, contrasts in a marked degree with the light inner branch. In the caudal segment the change from the darker to the lighter half is graduated, making the contrast less marked.

Two individuals of this species were taken; one by the U. S. Fish Commission steamer Albatross, station 3138, at a depth of 19 fathoms, and one by Dr. D. S. Jordan, both at Monterey Bay, California. One was imperfect.

Type.-No. 22567, U.S.N.M. Monterey Bay. Depth, 19 fathoms.
When compared with A. leevis Miers ${ }^{1}$ from Peru this species differs in the shape of the anterior portion of the head, which in A. levvis is narrowed and rounded, while in A. occidentalis it is truncate; in the greater length of the first thoracic segment and the equality in length of the succeeding segments in A. occidentalis, while in A. lavis the sixth segment is the longest, the others being of nearly equal length; in the length of the epimera, which in A. occidentalis attain the posterior margin of the corresponding segments, while with A. lavis they are all very small and somewhat spiniform in the fifth to the seventh segments; in the greater breadth posteriorly of the terminal segment of the body in A. lavis, and in the shape and length of the uropoda in the two species, the two branches being of unequal length, lamellate in shape (the inner one the longer), and both shorter than the last segment of the body in A. lavis, while in A. californica they are equal in length, similar in shape, oarlike, and longer than the terminal segment.

Family VII. SPH ÆROMID风.

ANALYTICAL KEY TO THE GENERA OF SPIIAROMIDA.

a. Both exterior and interior branches of uropoda projecting.
b. Terminal segment of the abdomen excavated at its extremity...12. Dynamene.
b^{\prime}. Terminal segment of abdomen entire.
c. Margins of head not produced; antenna conspicuous; legs normal; mandibles with five-jointed palp 13. Spharoma.
c^{\prime}. Anterior and lateral margins of head produced, concealing antenne; propodus of first and second pairs of legs dilated, with retlexed dactylus; mandibles with three-jointed palp
14. Tecticeps.
a^{\prime}. Only exterior branch of uropoda projecting; penultimate abdominal segment in male generally produced in spine; terminal segment excavated with median tooth
15. Cilicaa.

[^8]12. DYNAMENE Leach.

ANALYTICAL KEY TO THE SPECIES OF DYNAMENE.

a. Frontal margin of head produced in a quadrangular process; first two joints of first pair of antennæ dilated
21. Dynamene dilatata, new species,
a^{\prime}. Frontal margin of head not produced; joints of first pair of antennæ not dilated
b. Abdomen tuberculated. Neither branch of uropoda reaching extremity of abd ${ }_{0}$ men ...22. Dynamene tuberculosa, new species,
b^{\prime}. Abdomen not tuberculated. Inner branch of uropoda reaching extremity of abdomen.
c. Ultimate segment of abdomen ridged. Branches of uropoda of equal length. Sinus at extremity of abdomen funnel shaped.
23. Dynamene benedicti, new species.
c^{\prime}. Ultimate segment of abdomen smooth. Outer branch of uropoda but littl ${ }_{\theta}$ more than half as long as inner branch. Sinus at extremity of abdomen small .-.. 24. Dynamene glabra, new species,
It has been suggested by several authors ' that Dynamene may prove to be the female of Noesa, but until facts can be produced to substan. tiate this assumption, it is necessary to retain the genus Dynamene.
21. DYNAMENE DILATATA, new species.

Body oval; surface very granular; color yellow.
Head rugose, with its anterior margin produced in a quadrangular process, having a swall median projection, rounded antero-lateral angles and a thickened edge. First pair of antennæ extend to the posterior margin of the head, first two joints flattened and enlarged; first joint oblong, sec. ond joint triangular, and half as long as preceding joint; third joint small, as long as sec-

Fig. 8.-Dynamene dilatata. a, HEAD AND FIRST THORACIC SEGMENT. $\times 13 \frac{1}{3} . \quad b$, DORSAL VIEW. $\times 10 \frac{2}{3}$.
are short, not reaching the extremity of the abdomen, and regularly i rounded.
The legs are slender; the first two pairs are covered with long hairs, ${ }^{\text {, }}$

[^9]and extend in an anterior direction, the other five pairs extend in a posterior direction.
The type and only specimen was collected by Mr. Heath at Monterey Bay, California, at the surface. No. 22568, U.S.N.M.

22. DYNAMENE TUBERCULOSA, new species.

Body oblong-ovate; color, light yellow, almost white; surface of abdomen tuberculated.
Head large, much broader than long, with a wide anterior margin, broadly curving on either side of a small median point. Eyes small, and situated at the extreme post-lateral angle of the head. The first pair of antennæ, composed of eight articles, reach beyond the middle of the first thoracic segment. The second pair of antennæ, composed of twelve articles, extend to the posterior angle of the first thoracic segment.

The first segment of the thorax is one and a half times longer than any of the other segments, which are about equal in length. The epimera, which are distinctly marked, and roundly produced at their posterior angles, are much broader than long.

The first abdominal segment is transversely crossed by three suture lines, indicated at the sides of the segment. Three small tubercles are situated in a transverse line on the posterior margin of this segment. The terminal segment is subtriangular in shape with a broad funnel-like excavation at its extremity, formed by the infolding of the lateral edges. The anterior part of the terminal segment is very convex, upon which elevation are situated three large tubercles in a transverse row, the center one being in the median line. At the base of the terminal excavation is also a small tubercle. Both branches of the uropoda are similarly shaped, being of the same width throughout their entire

Fig. 9.-Dynamene tuberculosa. $\times 8 . a$, dorsal view; b, lat. eral view. length and rounded posteriorly. The outer brauch is somewhat shorter than the inner branch; neither reach the extremity of the abdomen.
Individuals were found at Gualala, California, on Haliotis rufescens, by Dr. R. E. C. Stearns; also, one specimen at Catalina Harbor, California, and one at Popoff Island, Aleutian Islands, at low water, by Mr. W. H. Dall.

Type.—No. 22569, U.S.N.M. Popoff Island, Aleutian Islands.
Proc. N. M. vol. xxi-i3

23. DYNAMENE BENEDICTI, new species.

Body oblong, oval; surface minutely granular; color, dark gray.
Head with small median point. Eyes situated post-laterally. First pair of antennæ extend to the middle of the first thoracic segment; first joint of peduncle longest; second and third joints about equal in length; flagellum contains six joints. Second pair of antennæ extend to the posterior margin of the second thoracic segment; flagellum contains about eleven joints.

Fig. 10.- Dynamene BENEDICTI. $\times 13 \frac{1}{3}$. Last thoracic segMENT AND ABDOMEN.

The thoracic segments are of equal length. The epimera are square with rounded posterior angles.

The penultimate abdominal segment is crossed by suture lines, indicative of coalesced segments. The terminal segment is triangular, terminating posteriorly in two teeth separated by a narrow, rounded, funnel-shaped sinus. This segment is very convex, and bears two longitudinal ridges on either side of the median line. The uropoda do not exceed in length the extremity of the terminal segment. Both branches are rounded posteriorly and are similar in shape and size.

The type was collected by Mr. Heath at Monterey Bay, California, at the surface. No. 22570 , U.S.N.M.
24. DYNAMENE GLABRA, new species.

Body oval; surface smooth.
Head small; eyes situated post-laterally. First pair of antennæ extend to the eye; first joint oblong; second joint short, half as long as first; flagellum contains six articles. Second pair of antennæ extend to the posterior margin of the first thoracic segment; flagellum contains about ten articles.

Thoracic segments are subequal; the first is a little longer than any of the others.

The penultimate abdominal segment consists of several coalesced segments, as indicated by the suture lines. The terminal segment is triangular, with a small median excavation at its extremity. The lower part of this segment is quite flat, the slope being gradual from the convex upper part or base of segment to the extremity. The inner branch of the uropoda is large and

Fig. 11.-Dynamene glabra. $\times 13 \frac{1}{3}$ ABDOMEN AND LAST TWO THORACIC SEG MENTS. rounded posteriorly; the outer branch is small, though similar in shape and is much shorter than the inner branch.
A number of specimens were collected by Mr. Heath at Montered Bay, California at the surface.

Type.-No. 225̃71, U.S.N.M.

13. SPH $\notin R O M A$ Latreille.
 analytical key to the species of spheroma.

25. SPH ÆROMA AMPLICAUDA Stimpson.

Spharoma amplicauda Stimpson, Proc. Bos. Soc. Nat. Hist., VI, 1857, p. 89.
Habitat.-Tomales Bay, California.
Stebbing ${ }^{1}$ suggests that a new genus near Cycloidura may be required for this species.
26. SPH R ROMA RHOMBURUM, new species.

Surface of body punctate; color, whitish yellow.
Head small. First pair of antennæ reach almost to the posterior margin of the first thoracic segment. Second pair of antennæ extend quite to the posterior margin of the first thoracic segment. Eyes situated postlaterally.

Thoracic segments equal in length. Epimera broad and short, extending downwards, forming an angle with the segments.

First abdominal segment as long as any of the thoracic segments, crossed by suture lines and

Fig. 12. - Spheroma rhomburum. $\times 13 \frac{1}{3}$. Abdomen. surmounted by two tubercles, close together, one on either side of the median line. Terminal segment with its extremity produced in a process rhomboid in shape, and with sides infolded, forming a kind of funnel-like opening when seen from beneath. At the base of this segment are two tubercles, which are continuous with two longitudinal ridges in the center of the segment. These ridges unite near the extremity, and continue as one median ridge. The uropoda are shorter than the terminal segment; the outer branch is more lanceolate in shape; both are of equal length.

Two specimens were taken at Monterey Bay, California, by Mr. Heath.

Type.-No. 22573, U.S.N.M.
This species is near S. egregium Chilton ${ }^{2}$ from Akaroa, but differs in

[^10]the presence of two tubercles on the first abdominal segment, in the presence of two tubercles and two longitudinal ridges uniting in a single ridge on the terminal segment, and in the equality in length of the two branches of the uropoda.

27. SPH \mathbb{E} ROMA OCTONCUM, new species.

Body with all the thoracic segments, except the first, marked with four couspicuous brown spots, two on either side of the median line, and with two spots on the first abdominal segment, one on either side of the median line.

Head small. First pair of antennæ reach almost to the posterior margin of the first thoracic segments. Second pair extend fully to the posterior margin of the first segment.

Thoracic segments subequal. Epimera broad and extending downward, forming an angle with the segments.
First abdominal segment with two low tubercles close together, situated one on either side of the median line; terminal segment triangular, with apex narrowly rounded and sides

Fig. 13.-Sphieroma octonCUM. $\times 13 \frac{1}{3}$. ABDOMEN. slightly infolded, forming a small opening when seen from below. Six low tubercles are situated on this segment, two in longitudinal series on either side of the median line-the lower ones being a little farther apart than the upper ones-and one on either side of the series. The uropoda do not reach the extremity of the abdomen by some little distance. The outer branch is the shorter and is broadly rounded posteriorly. The inner branch is more pointed at the extremity.
Five individuals of this species were sent by Mr. Heath from Monterey Bay, California.

Type.-No. 22574, U.S.N.M.
28. SPH $\nrightarrow R O M A$ OREGONENSIS Dana.

Spharoma oregonensis Dana, Proc. Acad. Nat. Sci. Phila., VII, p. 177; U. S. Expl. Exp. Crust., II, p. 778, pl. lir, fig. 4.-Stimpson, Journ. Bos. Soc. Nat. Hist., VI, 1857, p. 69.
Spheroma olivacea Lockington, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 45.
Habitat.-Pacific Grove to Alaska.

14. TECTICEPS Richardson.

ANALYTICAL KEY TO THE SPECIES OF TECTICEPS.
a. Terminal segment of abdomen pointed. Outer branch of uropoda much longer than inner branch. First pair of antenna reach the posterior angle of the first thoracic segment. Second pair reach the middle of the second thoracic segment. Sixth and seventh pair of legs show a marked disproportion in the length of the propodus.
29. Tecticeps alascensis Richardson.
a^{\prime}. Terminal segment of abdomen widely rounded. Outer branch of the uropoda not longer than inner branch. First pair of antennæ reach the posterior angle of the third thoracic segment. Second pair of antennæ reach the middle of the fourth thoracic seginent. Sixth and seventh pairs of legs show only a gradual increase in length.
30. Tecticeps convexus, new species.
29. TECTICEPS ALASCENSIS Richardson.

Tecticeps alascensis Riciarson, Proc. Biol. Soc. Washington, XI, 1897, pp. 181-183.
Habitat.—Alaska; Kamchatka.
30. TECTICEPS CONVEXUS, new species.

Body oval, somewhat flattened. Surface smooth; color light yellow with markings of brown.

Head with the anterior margin much broader than the posterior margin, produced in front but not wholly concealing the basal joints of the first pair of antennæ, and somewhat raised, forming two small convex elevations. The antero-lateral margin is likewise produced forming an acute angular projection, which extends in a lateral direction beyond the post-lateral margin of the head. The eyes are dorsally situated in a median tranverse line. The first pair of antennæ, with a flagellum of sixteen articles, extend to the posterior angle of the third thoracic segment.

Fig. 15.-Tecticeps convextes. a, HEAD. $\times 5 \frac{1}{3} . \quad b$, ABDOMEN AND LASTjTHORACIC SEGMENT. The second pair of antennæ, with a flagellum of thirteen articles, extend to the middle of the fourth thoracic segment, and exceed by

Fig. 14.-Tecticeps alasCENSIS RICHARDSON. $\times 2 \frac{1}{4}$. one joint the length of the first pair of antennæ. l'oth pairs of antennæ are disposed to lie concealed under the broad epimeral plates of the thoracic segments.

The thoracic segments are subequal in length. The first segment has its anterolateral angles produced around the anterior portion of the head, forming a broad plate at the side of the segment. The epimera are almost twice as broad as long; those of the fifth segment extend downward, with the anterior margin straight, making the length and breadth about equal, and forming almost square epimera; in the epimera of the sixth and seventh segments, the anterior margins are in the same direction as the posterior margins, which extend downward.

The first segment of the abdomen has three suture lines, and its posterior margin is produced in two small points, one on either side of the median line, about equidistant from it and the lateral margin of the
segment. The terminal segment is widely rounded posteriorly. The inner branch of the uropoda is of nearly equal width throughout its length and is rounded at its extremity; the outer branch is slender and sharply pointed. Both branches are of nearly equal length and neither extend beyond the tip of the abdomen.
The first pair of legs have the propodus dilated and the dactylus reflexible. The propodus is large and oval in shape. In the legs of the second pair the propodus is irregular in shape, sometimes dilated with reflexible dactylus, and sometimes simple. The legs of the other five pairs are similar in structure, ambulatory, and show a gradual increase in length.
A number of individuals were found at Monterey Bay, California, and sent to the U.S. National Museum by Mr. Heath, who gives the following notes of their habits:
They were taken by the Chinese fishermen from a sandy sea bottom about 30 feet below the surface (according to the Chinese statement). These are rapid swimmers and the moment they are disturbed they roll into a ball and project the exopodite of the last free segment. This is undoubtedly for protection. I have not had time to accurately examine the position nor character of this appendage, but its sharp swordlike nature is readily recognized.
Type.-No. 22572, U.S.N.M.
This species differs from T. alascensis in having longer antennæ and antennulæ; in having a rounded terminal segment, which in that species is very pointed; in having the outer branch of the uropods as short as the inner, which in that species is much longer; in having only a gradual increase in the length of the legs, which in that species show such marked disproportions in the propodus of the sixth and seventh pairs; and in the position of the eyes, which in this species are situated in the median transverse line of the head, while in T. alascensis they are placed in the posterior half of the head.
15. CILICAEA

ANALYTICAL KEY TO THE SPECIES OF CIIICEA.

a. Surface of body smooth.
b. Terminal segment with three sinuses, one above another, the two upper openings heart-shaped. Terminal segment as broad as long. Outer branch of the uropoda armed with four spines, broad and flat at upper end, and tapering to the extremity, which does not reach beyond the tip of the abdomen.
31. Cilicaa cordata, new species.
b^{\prime}. Terminal segment with a large sinus, in which are placed six sharp teeth. Terminal segment nearly twice as broad as long. Outer branch of the uropoda smooth, slender, cylindrical, and reaching much beyond the tip of the abdomen 32. Cilicoa caudata gilliana, new subspecies. a^{\prime}. Surface of body densely granulated. Terminal segment with a quadrangular excavation, in the center of which is a long tooth.
33. Ciliccea granulosa, new species.

The position of the three following species is somewhat doubtful, since they lack the spine on the peuultimate abdominal segment, which
is characteristic of the genus Ciliccea. It has been noted by Stebbing, ${ }^{1}$ by Miers, ${ }^{2}$ and by Haswell ${ }^{3}$ that with many species of Ciliccea, as well as with some of the other genera of the Sphreromidae, the spine is present and developed in the males but wanting in the females. As our three new species agree with the generic characters of Cilicca except in the presence of the spine, we consider them for the present new and undescribed species of Cilicara.

31. CILICÆA CORDATA, new species.

Body attenuated in front; color a faint yellow, profusely marked with a delicate pink tint.

Head with the anterior margin thickened, and slightly produced in front. Prominent median point triangularly shaped. Frontal margin broadly lobed on either side of median point. Eye situated at post-lateral angle of head. First pair of antennæ reach beyond the posterior margin of head; first joint of peduncle oblong; second joint very short; flagellum contains about nine articles. The second pair of antennæ extend to the posterior angie of the third thoracic segment; the flagellum contains about fifteen articles.

The thoracic segments are about equal in length, with the exception of the first, which is a little longer than any of the others. The epimera are very broad and drawn out to an apex, which is rounded. They are scarcely visible in a dorsal view, as they project downward laterally, forming an angle with the segments. The last thoracic segment is furnished with low tubercles on its posterior margin.

On the first abdominal segment are five double tubercles. The terminal segment of the body has three sinuses, one above another, the two upper openings being heart-shaped. Six teeth are grouped in a series of two each, and are placed in such

Fig. 16.-Cilicala cordata. $\times 8$. a, HEAD AND FIRST THORACIC SEGMENT; b, DORSAL VIEW.
 regularity as to give the appearance of a triple sinus. At the base of the upper siuus is a large rounded tubercle, peaked at the top. Three double tubercles are also situated at the base of the abdomen. The inner branch of the uropoda is fixed and immovable; it is broad and pointed

[^11]at its extremity and extends two thirds the length of the terminal seg. ment. The outer branch is long and slender, broad and flattened above, more rounded and tapering at the extremity, somewhat incurved, and extends a little beyond the end of the abdomen. Its outer edge is crenulate and its under surface armed with four spines.
The legs are long and slender, all ambulatory, and with dactylus biunguiculate.
Two specimens were collected at Popoff Island (Aleutian Islands) by Mr. W. H. Dall at low water.

Type.-No. 22575, U.S.N.M., Popoft Island.
Another individual was found at Catalina Island, California, by Dr. J. G. Cooper. In this specimen the sixth thoracic segment is also tuberculated. One specimen was found by Mr. Heath at Monterey Bay on the pink coralline at low tide, and is shaded with a delicate pink. In this specimen, on the seventh thoracic segment and the penultimate abdominal segment, the tubercles on either side of the median line of tubercles are single instead of double.

32. CILICCAA CAUDATA GILLIANA, new subspecies.

Body slightly attenuated in front. Color, light brown with markings of black.
Head with anterior margin thickened and slightly produced. Large median point triangularly shaped, on either side of which the frontal margin of the head is broadly lobed. Eye situated

Fig. 17. - Cilicema cacdata gilliANA. $\times 8$. at the posterior angle of the head. First pair of antennæ reach beyond the posterior margin of the head; first joint of peduncle is oblong; second joint, very small; flagellum contains eight joints. The second pair of antennæ are broken in the specimens examined.
The thoracic segments are about equal in length, with short but very broad epimera, which extend downward laterally, forming an angle with the segments. The last segment is ridged with very low tubercles on its posterior margin.
The first abdominal segment has two suture lines, indicative of coalesced segments, and bears five double tubercles. The terminal segment has a large sinus in which are situated six sharp teeth. At the base of the sinus is a large tubercle. Three double tubercles are also found at the base of the terminal segment. The inner branch of the uropoda is affixed to the sides of the abdomen and extends twothirds of its length; it is triangularly pointed at its extremity. The outer branch is long and slender, almost cylindrical in shape, smooth, somewhat incurved, and extends much beyond the tip of the terminal segment.

The legs, all ambulatory, are slender with dactylus uniunguiculate.

Specimens were dredged off Catalina Island, California.
Type.-No. 22576, U.S.N.M.
These specimens differ from Ciliccea caudata (Say), ${ }^{1}$ in the presence of six distinct teeth within the sinus of the terminal segment, while in that species there are but four; in the greater development of the spine at the base of the sinus, and in the median double tubercle at the base of the terminal segment.

33. CILICEA GRANULOSA, new species.

Surface of body densely granulated; granules large and close together.

Head with anterior margin thickened, and produced in a small median point, on either side of which the margin is lobed. Eyes situated postlaterally. First pair of antemnæ extend to the posterior margin of the first thoracic segment; first joint of peduncle, oblong; second joint, short. Second pair of antennæ extend to the posterior margin of the third thoracic segment.
The first thoracic segment is longer thau any of the following segments. The epimera are twice as broad as long.
The first abdominal segment is short and bears indications of three coalesced segments. There are three transverse

Fig. 18.-Cilicea granulosa. $\times 8$. Last thoracic segment and abdo. MEN. elevations on this segment which are densely covered with granules. The terminal segment bears three transverse elevations at the base, the median one terminating in a spine. On its posterior margin is a quadrangular excavation, with a long median tooth, bearing a spine at its extremity. At the base of the tooth is a small elevation. On either side of the terminal excavation, a short distance up the lateral margin, is a small spine. The fixed inner branch of the uropoda is small and short; the outer branch is long, blunt at the extremity, somewhat incurved, and reaches, when open, much beyond the terminal segment. The margins of the terminal segment, and the edges of the outer branch of the uropoda, are pubescent.
The legs are all simple, ambulatory.
One specimen from Cerros Island, Lower California, was collected by Mr. A. W. Anthony at a depth of 20 fathoms.

Type.-No. 22649, U.S.N.M.
${ }^{1}$ CILICAEA CAUDATA (Say).
Nasa caudata Say, Journ. Phil. Acad., I, p. 48\%-Milne-Edwards, Hist. Nat. des Crustacés, III, p. ?19.
Cymodocea caudata Ives, Proc. Acall. Nat. Sci. Phila., 1891, p. 188, pl. vi, figs. 11-14.

Family VIII. SEROLID.E.

16. SEROLIS Leach.

34. SEROLIS CARINATA Lockington.

Serolis carinata Lockington, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 36
Habitat.-San Diego, California.

Fig. 19.-SERolis carinata Lockington. $\times 8$.

III. VALVIFERA.

ANALYTICAL KEY TO THE FAMILIES OF VALVIFERA.

a. Body more or less broad, depressed. Legs usually nearly alike, but first three pairs sometimes with propodus dilated and dactylus reflexed.

Family IX. Idoteidex (p. 842).
a^{\prime}. Body narrow, scarcely depressed. Four anterior pairs of legs unlike three pos-
terior pairs, and not ambulatory, nor strictly prehensile, directed forward, slender, ciliated, with terminal joint minute; last three pairs are stouter, ambulatory, with terminal joint bifid....... Family X. Arcturide (p. 853).

Family IX. IDOTEID Æ.

ANALYTICAL KEY TO THE GENERA OF IDOTEID $\not \mathrm{E}^{1}$

a. Sides of head emarginate or cleft and laterally produced beyond eyes, which are situated upon its dorsal surface. Three anterior pairs of legs, with pe-f nultimate joint or propodus dilated and forming, with reflexible dactylus, a prehensile hand
17. Glyptonotus. a^{\prime}. Sides of head in a dorsal view entire and not laterally produced. Eyes lateral. Legs all ambulatory; three anterior pairs with penultimate joint not or not much dilated.
b. Flagellum of second pair of antenna well developed and multiarticulate.
c. Palpus of maxillipeds four-jointed. Epimera of all the segments well. developed and evident in a dorsal view. Abdomen ${ }^{2}$ consisting of three ${ }^{3}$ segments with lateral sutures, indicative of another partially coalescent segment
18. Idotea

[^12]c^{\prime}. Palpus of maxillipeds not four-jointed. Abdomen consisting of one segment, uniarticulate.
d. Maxillipeds with a three-jointed palp. All the epimera coalesced and perfectly united with the segments
19. Synidotea.
d^{\prime}. Maxillipeds with a two-jointed palp. Epimera of second, third, and fourth segments coalesced and perfectly united with the segments; those of the fifth, sixth, and seventh segments distinct and well developed.
20. Colidotea, new genus.
b^{\prime}. Flagellum of second pair of antennæ with joints all consolidated and forming a single piece, or with flagellum composed of only two or three joints.
c. Body smooth, linear. Epimera of all the thoracic segments distinct and visible; those of the second, third, and fourth segments short and narrow; those of the fifth, sixth, and seventh segments large and broad. Palp of maxillipeds two-jointed
21. Cleantis.
c^{\prime}. Body smooth, ovate. Epimera of second, third, fourth, and fifth thoracic segments coalesced with segments; those of sixth and seventh segments distinct and visible. Palp of maxillipeds three-jointed. Joints of flagellum all consolidated and forming a single piece. 22. Eusymmerus, new genus.

17. GLYPTONOTUS Eights.

ANALYTICAL KEY TO THE SPECIES OF GLYPTONOTUS. ${ }^{1}$

a. Joints of the peduncle of antenne not dilated; flagellum eight to fourteen jointed. Antero-lateral cervical lobes prominent....35. Glyptonotus entomon (Linneus). a^{\prime}. Joints and peduncle of antennæ greatly dilated ; flagellum seven to eight jointed. Antero-lateral cervical lobes not prominent...36. Glyptonotus sabini (Kr申yer).

35. GLYPTONOTUS ENTOMON (Linnæus).

Oniscus entomon Linneus, Syst. Nat., 12th ed., II, 1766, p. 1060.—Pallas, Spicil. Zool., IX, 1772, p. 64, pl. v, figs. 1-6.
(?) Entomon pyramidale Klein, Rém. sur les Crustacés, figs. 1-3.
Squilla entomon De Geer, Mém. pour servir à l'Hist. des Insectes, VII, 1778, p. 514, pl. xxxir, figs. 1-10.
Asellus entomon Olivier, Encycl. Méth., 1789, p. 253.
(?) Cymothoa entomon Fabricius, Ent. Syst., II, 1793, p. 505.
Idotea entomon Bosc, Hist. Nat. des Crust., II, 1802, p. 178.-Latreille, Hist. Nat. Crust. et Ins., VI, 1803-4, p. 361; VII, pl. Lviri, figs. 2, 3.-(?) Lamarck, Hist. des Anim. sans Vert., 1st ed., V, 1818, p. 159.-(\%) Desmarest, Consid. Crust., 1825, p. 289.-Rathke, Neuste Schriften der naturf. Gesellsch. in Danzig, I, 1820, p. 109, pl. IV.-KrøYER, Vid. Selsk. Skrift., VII, 1838, p. 323.-Milne-Edwards, Hist. Nat. Crust., III, 1840, p. 128.-Krøyer, Nat. Tidsskr., II, 1847, p. 402.-White, List. Cr. Brit. Mus., 1847, p. 93.Brandt, Cr. in Middendorf's Sibirische Reise, II, 1851, p. 145.-Meinert, Nat. Tidsskr., 3d ser., XI, 1877, p. 84.—Brandt, Comptes Rendus, 1880, p. 713; Ann. Mag. Nat. Hist., VI, 1880, p. 98.
(?) Saduria entomon Adams, in White, Sutherland's Voy. Baffin's Bay, etc., Appendix, 1852, p. cevii.
Idotaga longicauda Lockington, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 45.
Glyptonotus entomon Miers, Trans. Linn. Soc. London, XVI, 1883, pp. 12, 13, pl. r, figs. 1, 2. (See Miers for further synonymy.)
Habitat.-Circumpolar; West coast of North America to Pacific Grove, California.
${ }^{1}$ This key is taken from Miers, Journ. Linn. Soc. London, XVI (1883), p. 11.

36. GLYPTONOTUS SABINI (Krøyer).

Idotea sabini Krøyer, Nat. Tidsskrift., 2 d ser., II, 1847, p. 401; Atlas of Crust. in Gaimard's Voy. en Scand., pl. xxvir, fig. 1.-Reinhardt, Fortegnelse over Grönland's Krebsdyr, 1857, p. 34.-Lëtken, List of Crust. of Greenland in Arctic Manual, 1875, p. 149.—Sars, Arch. f. Math. og Naturvidensk, II, 1877, p. 350.
Chiridothea megalura G. O. Sars, Archiv. f. Math. og Naturvidenskab., IV, 1880, p. 432.

Glyptonotus sabini Miers, Journ. Linn. Soc., London, XVI, 1883, pp. 15, 16, pl. I, figs. 3-5. (See Miers for further synonymy.)

Habitat.-Circumpolar; west coast North America (Miers).

18. IDOTEA Fabricius.

ANALYTICAL KEY TO THE SPECIES OF IDOTEA. ${ }^{1}$
a. Terminal segment emarginate at its extremity
37. Idotea resecata Stimpson. a^{\prime}. Terminal segment not emarginate at its extremity.
b. Body slender, linear, fliform.
c. Terminal segment truncate at apex
38. Idotea gracillima Dana.
c^{\prime}. Terminal segment acute at its extremity.
d. Postero-lateral angles of terminal segment prominent and separated by a tooth from subtriangular middle portion, which bears a small tooth at the middle. \qquad 39. Idotea urotoma Stimpson.
d^{\prime}. Postero-lateral angles not separated by a tooth from middle portion. 40. Idotea rectilineata Lockington.
b^{\prime}. Body oblong-ovate.
c. Terminal segment regularly rounded, with small median point.
41. Idotea wosnesenskii Brandt.
c^{\prime}. Terminal segment triangulate posteriorly with subparallel sides.
d. Epimera of second, third, and fourth segments short, not reaching the post-lateral angles of their respective segments.
42. Idotea ochotensis Brandt.
d^{\prime}. Epimera of all the segments reaching the post-lateral angles of their respective segments.
e^{\prime}. Sides of thorax arcuate
43. Idotea stenops Benedict.
e^{\prime}. Sides of thorax more nearly parallel.
44. Idotea whitei Stimpson.
37. IDOTEA RESECATA Stimpson.

Idotea resecata Stimpson, Bos. Journ. Nat. Hist., VI, 1857, p. 64, pl. Xxir, fig. 7;

38. IDOTEA GRACILLIMA Dana.

Idotea gracillima DANA, Proc. Acad. Nat. Sci. Phila., VII, 1854, p. 175.-STIMPSON ${ }^{\text {fif }}$ Bos. Journ. Nat. Hist., VI, 1857, p. 505.-Miers, Journ. Linn. Soc. London, ${ }^{2} \mathrm{Co}$ XVI, 1883, p. 35.
Habitat.-California.
${ }^{1}$ See Miers, Journ. Linn. Soc. London, X VI, 1883, p. 13.
39. IDOTEA UROTOMA Stimpson.

Idotea urotoma Stimpson, Proc. Acad. Nat. Sci. Phila., 1864, 1. 155.-Miens, Journ. Linn. Soc. London, XVI, 1883, p. 34.

Habitat.-Puget Sound.

40. IDOTEA RECTILINEATA Lockington.

Idotea rectilineata Lockingron, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 36.Miers, Journ. Linn. Soc. London, XVI, 1883, p. 34.

Habitat.-Along the Pacific coast from Humboldt County, Caliorornia, to Ensenada, Lower Caifornia.
From an examination of specimeus, this species, which Miers ${ }^{1}$ says is scarcely to be distinguished from I. ochotensis Brandt, is seen to be specifically distinct. It differs from I. ochotensis in the proportions of the body, I. rectilineata being more slender-about five times as long as broad-while in I. ochotensis the length is only three and a half times greater than the width; in the relative length of the antennæ to the body, and the proportions of the joints in the peduncle of the antenna, the autennae in I. ochotensis reaching only to the posterior margin of the third thoracic segment (in all the specimens examined) the joints of the peduncle being short and stout, while in I. rectilineata the antennæ extend to the posterior margin of the fifth thoracic segment, the joints of the peduncle being long and slender; in the form of the anterior margin of the head, the excava-

Fig. 20.-Idotea rectilineata LOCKINGTON. $\times 2$. tiou being deeper and wider in I. rectilineata than in I. ochotensis; in the shape of the first thoracic segment, which in I. ochotensis is produced laterally and has the anterolateral angles truncate, while in I.rectilineata this segment is not produced and has rounded anterolateral angles; in the size of the epimera, which are much more slender in I. rectilineata than in I. ochotensis; and in the shape of the terminal segment of the body, the posterior angle of which in I. ochotensis is more acute, the line from the lateral angle to the median angle being excavate, while in I. rectilineata this line is straight and the median angle obtuse.
41. IDOTEA WOSNESENSKII Brandt.

Idotea wosnesenskii Brandt, Middendorf's Sibirische Reise, II, 1851, Crust., p. 146.-Stimpson, Bos. Journ. Nat. Hist., VI, 1857, p. 504.-Spence Bate, Lord's Naturalist in British Columbia, II, 1866, p. 281.-Miers, Journ. Lind, Soc. London, XVI, 1883, p. 40.
Idotea hirtipes Dana, Cr. U. S. Expl. Exp., Pt. II, 1853, p. 704, pl. Xlvi, fig. 6. Idotea oregonensis Dana, Proc. Acad. Nat. Sci. Phila., VII, 1854, p. 175.
Idotea nedia (Danaq) Spence Bate, Lord's Naturalist in British Columbia, II, 1866, p. 282.

Havitat.-Sea of Ochotsk and Kamchatka Sea; west coast of North America to Monterey Bay, California.
42. IDOTEA OCHOTENSIS ${ }^{1}$ Brandt.

Idotea ochotensis Brandt, Middendorf's Sibirische Reise, II, 1851, Crust., p. 145, pl. vi, fig. 33.-Miers, Journ. Linn. Soc. London, 1883, XVI, p. 32, pl. i, figs. 8-10.

Habitat.—Awaatsch Bay, Sea of Ochotsk; northwest coast of North America to Vancouver Island (Miers).

Fig. 21.-Idotea ochotensis Brandt. $\times 2$.
43. IDOTEA STENOPS Benedict.

Idotea stenops Benedict, Proc. Biol. Soc. Washington, XII, 1898, pp. 54, 55.
Habitat.-Monterey, California.
44. IDOTEA WHITEI Stimpson.

Idotea whitei Stimpson, Proc. Acad. Nat. Sci. Phila., 1864, p. 155.-Mrers, Jourd Linn. Soc. London, XVI, 1883, pp. 42, 43.

[^13]Habitat.-Puget Sound; Monterey Bay, California, collected by Mr. Heath.
A specimen from Monterey Bay, California, agrees with Miers's description of two males received from California, which he refers to this species. It is unlike Idotea wosnesenskii in the following points, and from an examination of a large number of individuals of I. wosnesenskii, in which these points remain constant, it seems to demonstrate the impossibility of uniting the two species.

1. "Form of epimera of second to fourth thoracic segments, which reach quite to the postero-lateral angles of these segments.
2. "Epimera of the second segment are broader anteriorly, and the terminal segment more resembles that of I. ochotensis, being more angulated and less rounded at the postero-lateral angles." ${ }^{1}$
3. The absence of hairs on the legs.

The legs of I. wosnesenskii (the males) are thickly covered with hairs and very bushy in appearance.
4. The smooth margins of the epimera, which in I. wosnesenskii have thickened edges.

19. SYNIDOTEA Harger.

ANALYTICAL KEY TO THE SPECIES OF SYNIDOTEA. ${ }^{2}$

52. Synidotea harfordi Benedict.
a^{\prime}. Abdomen pointed.
b. Undulations of body not tubercular or sping.
c. Tubercle in front of eyes not margined.
53. Synidotea nodulosa (Kr申yer).
c^{\prime}. Tubercle on the frontal margin and forming a part of it.
54. Synidotea lavis Benedict.
b^{\prime}. Undulations of the body tubercular and spiny.
c. Four spines on the front of the head; body spinous.
55. Synidotea muricata (Harford).
c^{\prime}. A wedge-shaped tubercle behind the frontal notch; body tubercular.
56. Synidotea picta Benedict.

[^14]Mr. Adrian Doilfus in his paper on "Les Idoteidæ des Côtes de France," ${ }^{1}$ has wrongly confounded Synidotea Harger with Stenosoma Leach. Synidotea can by no meaus be considered a synonym of Steno. soma, as anyone who is familiar with the two genera will undoubtedly admit. It differs from Stenosoma in the consolidation of the epimera with the segments. The epimera are firmly and perfectly united with the segments, and the only trace or indication of a separation is represented in the anterior segments by a slight and almost imperceptible notch in the posterior margins, halfway between the lateral margin and the median line of the body, and in the three posterior segments by a very faint line. In Stenosoma all the epimera are very distinct from the segments.
45. SYNIDOTEA PALLIDA Benedict.

Synidotea pallida Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 396, 397.
Habitat.-Chirikof Island, Alaska.
46. SYNIDOTEA EROSA Benedict.

Synidotea erosa Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 397-399.
Habitat.-Sannakh Island, Alaska.
47. SYNIDOTEA NEBULOSA Benedict.

Synidotea nebulosa Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 394, 395.
Habitat.—Unalaska; Kyska Harbor; Semidi Islands; Unimak Island; Bering Sea; Kamchatka.
48. SYNIDOTEA ANGULATA Benedict.

Synidotea angulata Bfnedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 395, 396.
Habitat.—Off Cape Johnson, Washington; off Destruction Island, Washington; off Cape Flattery, Washington.
49. SYNIDOTEA CONSOLIDATA (Stimpson).

Idotea consolidata Stimpson, Proc. Cal. Acad. Sci., I, 1856, p. 89; Bos. Journ. Nat. Hist., VI, 1857, p. 503.
Edotia bicuspida Miers, Journ. Linn. Soc. London, XVI, 1883, p. 66. Synidotea consolidata Benedict, Proc. Acad. Nat. Sci. Phila., 1897, p. 393.

Habitat.-Pacific Grove, California.

50. SYNIDOTEA BICUSPIDA (Owen).

Idotea bicuspida Owen, Crustacea of the Blossom, 1839, p. 92, pl. Xxvir, fig. 6. Idotea pulchra Lockington, Proc. Cal. Acad. Sci., VII, 1877, p. 44.
Idotea bicuspida Miers, Journ. Linn. Soc. London, XVI, 1883, p. 66.
Synidotea bicuspida Sarss, Crust. Norwegian North Atlantic Expedition, 1885, p. 116, pl. x, figs. 24-26.-Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 391, 392.

Habitat.-West coast of Alaska and Bering Sea.
${ }^{1}$ Feuille des Jeunes Naturalistes, 1895.
51. SYNIDOTEA LATICAUDA Benedict.

Synidotea laticauda Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 393, 394. Habitat.-San Francisco Bay.
52. SYNIDOTEA HARFORDI Benedict.

Idotea marmorata Harford, Proc. Cal. Acad. Sci., VII, 1877, p. 117. Synidotea harfordi Benedict, Proc. Acad. Sci. Phila., 1897, p. 402.
Habitat.-Magdalena Bay, Lower California.
53. SYNIDOTEA NODULOSA (Krфyer).

Idotea nodulosa Krøyer, Naturhist. Tidssk., II, 1846, p. 100.
Synidotea nodulosa Harger, Report of U. S. Commissioner of Fish and Fisheries, 1878, Pt. 6, pp. 351, 352.-Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 398, 399.
Habitat.-Dixon Entrance, north of Queen Cbarlotte Islands, British Columbia.

54. SYNIDOTEA LexVIS Benedict.

Synidotea leevis Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 399, 400.
Habitat.-Between Bristol Bay and Pribilof Islands, Alaska; Bering Sea.

Fig. 22.-Maxilliped of Colidotea rostrata (Benedict).
55. SYNIDOTEA MURICATA (Harford).

Idotea muricata Harford, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 117.
Symidotea muricata Benedict, Proc. Acad. Nat. Sci. Phila., 1897, p. 400.
Habitat.-Icy Cape.
56. SYNIDOTEA PICTA Benedict.

Sy, nidotea picta Benedict, Proc. Acad. Nat. Sci. Phila., 1897, pp. 401, 402.
Habitat.-Alaska and Bering Straits.
20. COLIDOTEA, ${ }^{1}$ new genus.
57. COLIDOTEA ROSTRATA (Benedict).

Idotea rostrata Benedict, Proc. Biol. Soc. Washington, XII, 1898, pp. 53, 54.
Habitat.-San Pedro, California.
${ }^{1}$ See key on p. 843 for characters of genus.
Proc. N. M. vol. xxi- 54

21. CLEANTIS Dana.

ANALYTICAL KEY TO THE SPECIES OF CLEANTIS.

a. Flagellum consolidated and forming a single piece. Sides of abdomen not separated by an acute tooth from rounded posterior portion.
58. Cleantis occidentalis, new species.
a^{\prime}. Flagellum composed of three joints. Sides of abdomen separated by an acute tooth from rounded posterior portion. \qquad 59. Cleantis heathii, new species.

58. CLEANTIS OCCIDENTALIS, new species.

Body narrow, elougate; surface smooth.
Head of same width as thoracic segments, and with a small, median auterior depression. Eyes lateral. First pair of anteunæ consisting of four joints, reaching the middle of the third

Fig.23.-Cleantis occidentalis. $\times 10$. joint of the second pair of antennæ. Second pair of antenuæ contain six joints (five seen from a dorsal view), the last joint being the flagellum.

The thoracic segments show a gradual, though marked, decrease in length, the first one being the longest and somewhat excavate on its anterior margin. The epimera of the second, third, and fourth segments are short and narrow, reaching but half the length of the segments, while those of the last three seg. ments are broad, with their posterior angles pro duced beyond the segments.

The abdomen is composed of four segments, three short ones and the terminal segment, which bears suture lines indicative of another coalesced segment. The terminal segment is rounded posteriorly. The anterior three-fourths of the segment is raised considerably above the posterior fourth, which is flat, and there is a groove in the median line on the posterior third of the anterior part of the segment.

The legs are similar to those of the type species of the genus. The three anterior pairs increase in length, the

Fig. 24. - Maxil liped of Cleantis occidentalis. Greatly enlarged third pair being the longest, and all are directed anteriorly. The fourth pair are very short and fold across the body. Thelast three pairsincrease in length, the seventh pair being the longest, and all these are directed posteriorly. The legs are compact and lie folded on the veutral side and cau not be seen from a dorsal view.

There is but one specimen collected by the Albatross in 1888 at Magdalena Bay, Lower California; depth, 12 fathoms.

Type.-No. 22578, U.S.N.M.
This species, when compared with Cleantis planicauda ${ }^{1}$ Benedict, from Pensacola, Florida, presents points of difference which are interesting and which can easily be recognized in the manuscript quoted below.

59. CLEANTIS HEATHII, new species.

Body slender, elongate; surface smooth.
Head with lateral margins straight; anterior margin slightly excavate. Eyes small, lateral. First pair of antennæ consist of four joints and are a little longer than half the width of the head. The second pair of antennæ are half as long as the body and are composed of nine

${ }^{1}$ CLEANTIS PLANICAUDA Benedict, new species.

Body linear, densely granulated, five times longer than broad. Feet folded beneath out of view from above. Body lined longitudinally, by six more or less broken black lines. The lines on the sides are more distinct than those above.

Head subquadrate, partially immersed in the first thoracic segment and rounded on the posterior margin; sides parallel, auterior margin emarginate; a deep depression or groove runs from the median notch to the center of the head. The eyes are situated near the antero-lateral angle; post-occipital lobe distinct; antenno with six segments; first very short and nearly immobile; second very short and stout; the third segment is equal in length to the second, but not so stout; the fourth and fifth are of equal length and about one-third longer than the second and third segments. The terminal segment or flagellum is lighter in color, and is armed with short bristles. The length of the antenner is equal to the length of the head and first two thoracic segments. The antennula extend to the middle of the third segment of the antennæ. The first segment is quadrate; the second subquadrate; the third is pear-shaped; the fourth segment is very small.

The segments of the thorax are nearly equal in length and breadth, the third and fourth being but little longer than the others. The epimera of the second, third, and fourth segments are very small and can not be sean from above. On the fifth, sixth, and seventh segments the epimera are large and project well behind the margin of the segment in the form of an acute angle.
The pleon is composed of four segments; the first three are very narrow; the terminal segment is elongated with subparallel sides. A marked character of the pleon is its obliquely truncated extremity. The oblique terminus is perfectly flat with a raised margin.

The feet of this species, as in the typical species described by Dana, are in two series. The first is composed of the first three pairs of feet, which are comparatively stout and increase in length to the third segment. The second series begins on the fourth segment with a pair of short feet, which fold transversely, the other pairs are successively longer and fold backwards. The feet of the second series are much more slender than those of the first. The dactyli of all are biungulate. The carpal and propodal joints are spinulose beneath.
The operculum is not traversed by an oblique line. The sides of the basal segment are subparallel. The terminal segment is about as broad as long.
Length, 15 mm. ; width, 3 mm .
Type.-No. 22579, U.S.N.M.
joints, the three terminal ones forming the flagellum, which can not be distinguished from the peduncle.

Thoracic segments subequal, with narrow epimera, those of the second, third, and fourth segments reaching but balf

Fig. 25.-Cleantis HEATHII. $\times 6 \frac{2}{3}$. the length of the segments, the last three epimera extending to the extremity of the segments.

The abdomen is composed of three segments with suture lines indicative of another. The terminal segment is broadly rounded posteriorly, with small but acute lateral angles. The sides are almost parallel.

The first four pairs of legs are directed anteriorly; the last three extend in a posterior direction. There is no perceptible inequality in length. The dactyli are bifid.

Two specimens were sent by Mr. Heath from Monterey Bay, California.

Type.-No. 22577, U.S.N.M.

22. EUSYMMERUS, new genus.

Body elliptical. Palp of maxillipeds three-jointed. Second pair of antennæ with joints of flagellum all consolidated and forming a single piece. Eyes dorsally situated.

Lateral margins of thoracic segments expanded, edges straight and full. Epimera of second, third, fourth, and fifth segments coalesced and firmly united with segments, those of the sixth and seventh segments distinct and visible.

Abdomen composed of one segment with suture lines indicative of another partly coalesced segment.

60. EUSYMMERUS ANTENNATUS, new species.

Body elliptical, tapering toward the extremity; surface smooth.
Head three times broader than long, with the antero lateral angles prominent. Anterior margin excavate. Lateral margins expanded. Eyes situated dorsally on the extreme lateral margin in the median transverse line. First pair of antenne four-jointed, short, extending only a little beyond the second joint of the second pair of antennæ. Second pair of antennæ are six-jointed, geniculate, the last or flagellar joint being somewhat clavate.

Thoracic segments with lateral margins expanded. Lateral edges straight, full. Epimera of second, third, fourth, and fifth segments coalesced and firmly united with the segments; epimera of sixth and seventh segments distinct and articulating with segments.

Abdomen of only one segment with suture lines indicative of another partly coalesced segment. Abdomen posteriorly rounded, tapering from the base to the extremity.

Legs slender, with dactyli biunguiculate.
Color of specimen brown. Lateral edges of thoracic segments colorless.

Fig. 26.-Eusymmerdes antennatus. $\times 8$.

Frg. 27.-MaxILLIPED OF Eusymmerus ANTENNATUS.

One individual from off Abreojos Point, Lower California, station 2835, was collected by the U. S. Fish Commission steamer Albatross; depth, 48 fathoms.

Type.-No. 22580, U.S.N.M.
Family X. ARCTURIDÆ.
23. ARCTURUS Latreille.

Flagellum of second pair of antennæ more than four-jointed. Fourth segment of thorax not greatly longer than others. Marsupium of female composed of four pairs of plates. Posterior thoracic legs biunguiculate.

ANALYTICAL KEY TO THE SPECIES OF ARCTURUS. ${ }^{1}$
a. End of abdomen notched, as seen from above.
b. Body smooth and free from spines 61. Arcturus beringanus Benedict.
b. Body spiny.
c. Head and six segments of thorax each with a pair of spines on the dorsum. Second and third articles of antennæ without spines.
62. Arcturus longispinis Benedict.
c^{\prime}. Head and segments of thorax with not less than two pairs of spines to the segment.
d. Head with one large median spine on anterior part of head in front of eyes.
63. Arcturus internedius, new species.
d^{\prime}. Head with three spines on anterior part of head in front of eyes.
64. Arcturus murdochi Benedict.
a^{\prime}. End of abdomen without notch
. 65. Arcturus glaber Benedict.

[^15]
6i. ARCTURUS BERINGANUS Benedict.

Arcturus beringanus Benedict, Proc. Biol. Soc. Washington, XII, 1898, pp. 46, 47.
Habitat.-Alaska; Bering Sea.
62. ARCTURUS LONGISPINIS Benedict.

Arcturus longispinis Benedict, Proc. Biol. Soc. Washington, XII, 1898, pp. 44, 45.
Habitat.-Aleutian Islands.
63. ARCTURUS INTERMEDIUS, new species.

Head, with a deep excavation on its anterior margin, the antero-lateral angles being produced in a double process, the inner one rounded, the outer one acutely pointed. Near the anterior margin in the median line is one large spine. Just back

Fig. 28.-Arcturus intermedius. $\times 10$. of the eyes and between them are two long spines. The lateral margins of the head are produced in two small angulations with a rounded sinus between, posterior to the double antero-lateral process. On the post-lateral margin on either side of the head is a small spine.

The first pair of antennæ are small and short, not reaching to the end of the second joint of the second pair of antennæ. The first joint of the second pair of antennæ is visible and unarmed; the second joint is armed with three spines; the third joint is unarmed, and is about twice as long as the second joint; the fourth and fifth joints are about equal in length and are each about twice as long as the third; the flagellum contains three joints.

The first, second, and third thoracic segments have a transverse row of six large spines, three on either side of the median longitudinal line, the two center ones being the longest, although all are very long. The fourth segment is twice as long as any of the other segments, and has a transverse constriction on the posterior half of the segment. On the anterior portion are six spines, three on either side of the median line, the four outer ones being in a straight line, the inner two below this line. On the posterior portion are six spines also, three on either side
of the median line. The fifth thoracic segment has twelve spines, six on either side of the median line. The sixth segment has ten spines, five on either side. The seventh and last segment has eight spines, four on either side.
The abdomen is composed of two segments. The first is short, with twelve spines, six on either side of the median line, the four inner ones being arranged in two longitudinal series, the two upper ones being small, the two lower ones rery long. The terminal segment has the upper surface smooth. This segment terminates in two long divergent spines. There is a single spine on the lateral margin on either side halfway down the segment. The three anterior pairs of legs have each two spines on the coxal joint and one spine on the basis. The body increases in width from the first to the fourth segment, and then decreases in width from the fourth to the terminal segment.
One specimen from Kyska Harbor, Aleutian Islands, 10 fathoms, collected by Mr. W. H. Dall.
Type.-No. 22581, U.S.N.M.
Our species differs from A. murdochi in the absence of spines on the third joint of the second pair of antennæ; in the greater length of this joint in relation to the preceding joint; in the greater length of the two following joints; in the presence of a single spine on the anterior part of the head, while in A. murdochi there are three, and of two spines on the posterior part, while in A. murdochi there are four; in the absence of two small spines just below the constriction in the fourth segment; in the absence of the row of spines on the terminal segment of the body; and in the presence of two spines on the coxal joint and one on the basal joint of the legs, while in A. murdochi there is but one spine on the basal joint.
This species is also distinguished from A. hystrix in the presence of a single median spine on the anterior part of the head, while in A. hystrix there are two, one on either side of the median line and widely separated; in the presence of two spines on the posterior part of the head, while in A. hystrix there are four; in the absence of the double row of spines on the terminal segment of the body; and in the absence of the spine at the articulation of the third joint of the second pair of antennæ.
64. ARCTURUS MURDOCHI Benedict.

Arcturus murdochi Benedict, Proc. Biol. Soc. Washington, XII, 1898, pp. 49, 50.
Habitat.-Point Franklin, Alaska.
65. ARCTURUS GLABER ${ }^{1}$ Benedict.

Arcturus !labrus Benedict, Proc. Biol. Soc. Washington, XII, 1898, p. 46.
Habitat.-Bering Sea.

IV. ASELLOTA.

ANALYTICAL KEY TO THE FAMILIES OF ASELLOTA. ${ }^{1}$

a. Lateral parts of cephalon scarcely expanded. Eyes, when present, small, lateeral. Peduncle of inferior antennæ without small accessory appendage outside of third joint. Legs ambulatory, except first pair, which are distinctly subcheliform; legs with dactylus generally uniunguiculate. First pair of pleopoda in female very small, not operculiform. Outer lamella of second pair very large and incrusted, so as to form, together with corresponding lamellæ of other side, a sort of operculum, covering the two succeeding pairs.

Family XI. Asellide (p. 856). a^{\prime}. Lateral parts of cephalon usually lamellarly expanded. Eyes, when present, usually subdorsal. Peduncle of inferior antennæ generally with small accessory appendage outside of third joint. Legs subequal in length with dactylus generally bi- or triunguiculate; first pair sometimes prehensile. First pair of pleopoda in female transformed into a single, large opercular plate. Outer lamellæ of two succeeding pairs narrow and contluent with basal part.

Family XII. Janiride (p. 856).

Family XI. ASELLID A.

24. ASELLUS Geoffroy.

Dactyli of last six pairs of periopoda uniunguiculate. Lateral margins of segments produced. Eyes distinct, lateral. Mandibles strong, with a three-jointed palp. Head without rostrum.

66. ASELLUS TOMALENSIS Harford.

Asellus tomalensis Harford, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, pp. 54, 55.
Habitat.-Tomales Bay, California.

Family XII. JaNIRID \mathbb{E}.

ANALYTICAL KEY TO THE GENERA OF JANIRIDAE.
$a^{\prime} .{ }^{2}$ Eyes dorsal. Antennæ of first pair well developed, with multiarticulate flagellum. Antennae of second pair long, with multiarticulate flagellum, peduncular joints not dilated. Mandibles with a three-jointed palp, and with cutting part separated from molar part by a deep incision.
b. Head without any true rostrum. First pair of antennæ extremely small with flagellum rudimentary. Second pair of antennæ of moderate length, without any distinctly squamiform appendage. First pair of legs not prehensile. Uropoda extremely small, branches very short, nodiform.. 25. Jora.
b^{\prime}. Head with prominent rostral projection, or with a comparatively small rostrum, or without rostrum. First pair of antennie well developed; flagellum multiarticulate. Second pair of antennæ very much elongated with a wellmarked scalelike appendage outside of third joint. First pair of legs prehensile, carpus large, subfusiform, and edged inside with spines; propodus narrow, linear, and very movably articulated to carpus, so as to admit of being bent in against it. Uropoda largely developed, with branches slightly unequal.

[^16]c. Head with lateral parts produced to very prominent acute lappets. Segments of thorax with lateral parts laciniate and produced. Caudal segment forming on each side, at the end, a triangular expansion
26. Ianthe.
c^{\prime}. Head with lateral parts not produced into lappets. Segments of thorax with lateral parts not produced, not laciniate. Caudal segment rounded, not expanded laterally
27. Janira.
a^{\prime}. Eyes lateral. Antennæ of the first pair small with flagellum obsolete. Antennæ of the second pair short, with peduncular joints dilated, rudimentary flagellum, containing five articles, and equal in length to the width of the head. Mandibles with a threc-jointed palp, and with cutting part composed of five teeth
28. Jaropsis.

25. J ÆRA Leach.

67. JæRA WAKISHIANA Spence Bate.

Jera walishiana Spence Bate, Lord's Naturalist in British Columbia, II, 1866, p. 282.-C. Bovallius, Bihang till K. Sv. Vet. Akad. Handl., II, 1886, No. 15, p. 49.
Habitat.-Esquimault Harbor, British Columbia.

26. IANTHE Bovallius.

ANALYTICAL KEY TO THE SPECIES OF IANTHE.

a. Head with prominent rostrum; lateral margins incised and produced into two angulations. Second and third thoracic segments with epimeral lobes double. Terminal segment of body with lateral angulations and central portion acute. 68. Ianthe triangulata, new species. a^{\prime}. Head without rostrum; lateral margins entire and produced into one anterior angulation. Second and third thoracic segments with epimeral lobes single. Terminal segment of body with lateral angulations and central portion blunt and rounded
69. Ianthe erostrata, new species.

68. IANTHE TRIANGULATA, new species.

Surface of body smooth; color yellow, marked with black dots.
Head with rostrum in front equal to oue-half the length of head. Anterior margin lobate, between the rostrum and the lateral angulations. The side of the head is produced in two angulations, the upper one extending in an oblique direction and not reaching beyond the anterior margin of the head. The first pair of antennæ are not as long as the width of the head. The second pair of antennæ are longer than the body.
The lateral margins of the first segment are produced into two angulations; those of the second and third into two, with the epimera produced into two-lobed angulations; those of the fourth into two lobes, the small epimeral lobe or angulation between; and those of the fifth, sixth, and seventh into one large upper lobe, and one small lower lobe.

The terminal segment is produced backward at the sides into two sharply pointed angulations, with a broad triangulate central lobe between, to which the uropoda are attached. The uropoda are longer
than the terminal segment, the outer branch somewhat shorter than the inner one, and both fringed with hairs.

First pair of legs prehensile; remaining pairs simple.

Fig. 29.-Tanthe triangulata. $\times 13 \frac{1}{3}$.
Two specimens were collected by Mr. Heath at Monterey Bay, California.

Type.-No. 22582, U.S.N.M.
69. IANTHE EROSTRATA, new species.

Head two and a half times broader than long, with prominent anterolateral angulations. Lateral margins produced, entire. In place of the rostrum, which marks all the other known species of this genus, there is a small median point. The eyes are dorsally situated a short distance from the lateral edges. The first pair of antennæ are short, not equal to the width of the head. The second pair are broken in the specimen examined.

The first thoracic segment is produced laterally in two angulations. The second, third, and fourth segments are each produced in two angu-
lations, with a small epimeral lobe in between. The fifth, sixth, and seventh segments have each a large anterior lobe and a small posterior epimeral lobe.

The terminal segment has two bluntly triangular angulations, one on either side of a bluntly triangular central portion. The uropoda are about as long as the caudal segment, are styliform, with branches nearly equal. The first pair of legs are prehensile. The others are simple, biunguiculate. One specimen was collected at Chichagof Harbor, Attu (Aleutian Islands), by Mr. W. H. Dall.

Type.-No. 22610, U.S.N.M.
27. JANIRA Leach.
70. JANIRA OCCIDENTALIS Walker.

Janira occidentalis Walker, Trans. Liverpool Biol. Soc., XII, 1898, pp. 280, 281, pl. Xv, figs. 7-10.

Habitat.-Puget Sound, Washington.

28. J A EROPSIS Koehler.

71. JЖROPSIS LOBATA, new species.

Surface of body smooth.
Color very peculiar and striking. The head is brown. The first thoracic segment is perfectly white, without any markings. The second, third, and fourth

Fig. 30.-Tanthe eros. TRATA. $\times 13 \frac{1}{3}$. segments are brown. The fifth and sixth are white. The seventh thoracic segment and the caudal segment are brown. This peculiar marking gives the body a striped appearance.

Head large; front produced into a prominent triangular process, with rounded apex, very broad at the base, occupying half the anterior margin of the head. The antero-lateral angles of the head are produced in acute angles on either side to a distance equal to half the length of the frontal process. The eyes, which are small, are situated on the extreme lateral margins of the liead. The first pair of antennæ are extremely small, equal in length to less than half the width of the head; flagellum obsolete. The second pair of antennæ are also extremely short, equal in length to the width of the head, with rudimentary flagellum, composed of about five joints, and with peduncular joints dilated. Mandibles have the cutting part composed of five teeth; palp, three-jointed.

The thoracic segments are subequal in length, with lateral edges produced, but not laciniate, and separated from each other by lateral incisions.

Caudal segment regularly rounded, with two small incisions at the place where the uropoda are attached, between which is a rounded lobe. Uropoda are extremely small, short, nodiform.

Legs simple, similar in structure, with biunguiculate dactyli.
Two specimens from Monterey Bay, California, were sent by Mr. Heath.

Type.-No. 22583, U.S.N.M.
This species is very close to Jaropsis brevicornis, but differs in the following points: the coloring of the body, which in J. brevicornis is perfectly transpar-

Fig. 31.-Maxilitpped and Mandible of J eropsis lobata.

Fig. 32. J Jeropsis lobata. $\times 20$. ent and colorless, with the exception of the head, which is marked with a large brown spot, while in our species the head is dark, as are also the entire second, third, fourth, and seventh thoracic seg-

Fig. 33.-Antennei of Jeropsis lobata.
ments and the terminal abdominal segment, the other segments being colorless; in the shape of the terminal segment, which is perfectly rounded in J. brevicornis and fringed with hairs, while in our species there are two posterior incisions for the reception of the uropoda, and an absence of hairs; in the larger median lobe on the anterior margin of the head; in the acuteness of the antero-lateral angles of the head, which are rounded in J. brevicornis; in the more angular post-lateral angles of the head, and in the more angular antero- and post-lateral angles of the thoracic segments. Other differences are noticed from a comparison of both pairs of anteune.

> V. ONISCOIDEA.
analytical key to the families of oniscoidea.
a. Flagellum of outer antennse not multiarticulate. Buccal mass not very prominent below. First maxillæ have two plumose setie on the inner plate. Mandibles with molar expansion obsolete, without any triturating surface, it being replaced by brushlike recurved sete. Maxillipeds with terminal part three-
articulate; epignath large, flanking the basal part. Sexual appendage of male simple, and generally connected with inner rami of first pair of pleopoda. Uropoda, with inner branch smaller than outer, and attached far in front of it.
b. External antennex generally long, close together, with antennal openings large. Body scarcely able to be contracted into a ball. Head less manifestly immersed in first thoracic segment. Lateral parts of the head separated by a vertical marginal and inframarginal line. Clypeus arched. Legs generally long. Uropoda produced, reaching beyond the terminal segment of the abdomen and the post-terminal segment. Terminal segment narrower than preceding ones and conically produced at end...... Family XIII. Oniscidet (p.861).
b^{\prime}. External antenna generally short, with antennal openings small. Body able to be contracted into a ball. Head immersed in first thoracic segment. Lateral parts of the head undifferentiated. Clypeus perpendicular. Legs generally short. Uropoda short, not reaching beyond the epimera of the terminal segment of the abdomen or the post-terminal segment. Terminal segment short and broad

Family XIV. Armadillidide (p. 865). a^{\prime}. Flagellum of outer antenne multiarticulate. Buccal mass prominent. First maxillæ have three plumose setæ on the inner plate. Mandibles with molar expansion large and broad, exhibiting a finely fluted triturating surface. Maxillipeds with terminal part distinctly five-articulate; epignath short. External sexual appendages in male double. Inner ramus of first pair of pleopoda of a similar structure in both sexes. Uropoda with both branches styliform

Family XV. Ligides (p. 865).

Family XIII. ONISCIDÆ.

ANALYTICAL KEY TO THE GENERA OF ONISCIDE.

a. Flagellum of external antenne biarticulate. External opercular ramus of the first, second, and rarely of the third or all the pairs of the abdominal appendages furnished with trachea.
b. Lateral lobes of the head large; frontal lobe more or less projecting. Eyes subdorsal. First two abdominal segments generally very short; three following ones large, with large epimera. Terminal segment not reaching beyond the epimera of preceding segment. Uropoda somewhat even; longer in male than in female
29. Porcellio.
b^{\prime}. Lateral lobes of head small, hardly projecting; frontal lobe obsolete. Eyes lateral. First two abdominal segments scarcely shorter than those following. Epimera of all the segments small. Terminal segment extending berond the epimera of preceding segment. Uropoda subequal in both sexes.
30. Metoponorthus.
a. Flagellum of external antenna triarticulate. External opercular ramus of abdominal appendages containing no special respiratory organ.
b. Front of head produced at the middle and at the sides in tubercles; lateral tubercles hornlike. Epimera of abdominal segments moderate or small.
31. Alloniscus.
b^{\prime}. Front of head not produced; with lateral lobes. Epimera of abdominal segments large
32. Lyprobius.

29. PORCELLIO Latreille.

ANALYTICAL KEY TO THE SPECIES OF PORCELLIO.

a. Surface of body smooth.
b. Frontal median lobe of head rounded, a little produced. Articles of the flagellum of external antenne equal in length. Last segment of the abdomen with its extremity widely rounded. 72. Porcellio formosus Stuxberg.
b^{\prime}. Frontal median lobe of head more acute, minute. First article of the flagellum of external antennæ equal in length to the other or a little longer. Last seg. ment of the abdomen with its extremity acute... 73. Porcellio lavis Latreille. a^{\prime}. Surface of body closely and roughly granulated.... 74. Porcellio scaber Latreille.

72. PORCELLIO FORMOSUS Stuxberg.

Porcellio formosus Stuxberg, \emptyset fversigt af Vetensk. Akad. Forhandl., 1875, No. 2, p. 57.-Budde-Lund, Crust. Jsop. Terrestria, 1883, p. 141.

Habitat.-San Francisco and San Pedro, California.

73. PORCELLIO LÆVIS Latreille.

Porcellio lavis Latreille, Hist. Crust. Ins., VII, p. 46; Gen. Crust., I, p. 71.Leach, Edinb. Encycl., VII, p. 406; Transact., XI, p. 375.
Oniscus lavis Lamarck, Hist. nat. an. s. vert., V, p. 154; 2d ed., V, p. 261.
(?) Porcellio lavis Risso, Crust. Nice, p. 155; Hist. Nat., pp. 119, 163.-Desmarest, Consid., p. 321.
(?) Porcellio degeerii Audourn and Savigny, Descript. de l’Egypte, p. 289, pl. xill, fig. 5.
Porcellio eucercus Brandt, Bull. Soc. Imp. d. Moscou, VI, 1833, p. 177.-MilneEdwards, Hist. Nat. des Crust., III, p. 168.
Porcellio syriacus Brandt, Bull. Soc. Imp. d. Moscou, VI, 1833, p. 178.-MilneEdwards, Hist. Nat. des Crust., III, p. 170.
Porcellio musculus Brandt, Bull. Soc. Imp. d. Moscon, VI, 1833.
Porcellio cinerascens Brandt, Bull. Soc. Imp. d. Moscou, VI, 1833, p. 178.
Porcellio dubius Brandt, Bull. Soc. Imp. d. Moscou, VI, 1833, p. 178.—MilneEdwards, Hist. Nat. des Crust., III, p. 170.
Porcellio poeyi Guérin, Comptes Rendus, 1837, p. 132.
Porcellio lorvis Milne-Edwards, Hist. Nat. des Crust., III, p. 169; Règne an. Planch, p. 71, bis, fig. 2.
Porcellio urbicus Koch, Deutsch. Crust., p. 36.
Porcellio degeerii Brandt, Wagner Reise Alg., III, 1836, p. 278.
Porcellio ovatus Zaddach., Synops., p. 13.
Porcellio flavipes Koch, Berichtig, etc., p. 206, pl. 8, fig. 97.
Porcellio degeerii Lucas, Expl. d'Alg., I, pp. 69, 139.
Porcellio lavis Lereboullet, Mém. de la Soc. de Strasbourg, IV, p. 45, pl. i, fig. 7; pl. III, figs. 55-60.
Porcellio poeyi Guérin, .Ramon de la Sagra, Crust., p. 67.-Saussure, Mém., p. 61, pl. v, fig. 34.
Porcellio cubensis Saussure, Mém, p. 61, pl. v, fig. 35.
Porcellio sumichrasti Saussure, Mém., p. 62, pl. v, fig. 36.
Porcellio cotilla Saussure, Mém., p. 62, pl. v, fig. 37.
Porcellio mexicanus Saussure, Mém., p. 63, pl. v, figs. 39, 40.
Porcellio aztecus Saussure, Mém., p. 63, pl. v, fig. 38.
Porcellio interruptus Heller, Verh. Zool. Bot. Ges. Wien, XI, p. 495; Novara Exp., p. 136, pl. 12, fig. 6 (vix adult).
Porcellio lcevis Plateau, Crust. Isop., p. 10.—Budde-Lund, Nat. Tidsskrift., 3d ser., VII, p. 236.
Porcellio aztecus Miers, Proc. Zool. Soc. London, 1877, p. 669.
Porcellio lavis UlJanin, Crust. Turkest., p. 17, pl. 4, figs. 1-10.-Budde-Lund, ${ }^{1}$ Crust. Isop. 'Terrestria, 1885, pp. 138-141.-Hansen, Bull. Mus. Comp. Zool. Harvard College, XXXI, 1897, p. 124.

[^17]Habitat.-Distribution world-wide; Colfax, California (Cook and Jaquay); Monterey, California; Unalaska.

74. PORCELLIO SCABER Latreille.

Oniscus asellus Linneus, Fn. Su., p. 2058; Syst. Nat., I, p. 1061 ; in part.
Porcellio scaber Latreille, Hist. Crust. Ins., VII, p. 45; Gen. Crust, I, p. 70.Leach, Edinb. Encycl., VII, p. 406.
Oniscus granulatus Lamarck, Hist. Nat. des animaux sans vertèbres, V, p. 154; 2d ed., V., p. 261.
Porcellio scaber Risso, Crust. de Nice, p. 155; Hist. Crust., p. 119.
Porcellio nigra Say, Journ. Phil. Acad., I, p. 432.
Porcellio granulatus Brébisson, Mém. Soc. Calv., 1825, p. 261. -
Porcellio scaber Desmarest, Consid. Crust., p, 321.-Mrandt and Ratzeburg, Med. Zool., II., p. 77, pl. 12, figs. 1-4 and A-B.-Brandt, Consp., p. 14 (Bull. Soc. Imp. d. Naturalistes de Moscou, VI, 1833).
Porcellio brandtii Milne-Edwards, Hist. Nat. des Crust., III, p. 168.
Porcellio granulatus Milne-Edwards, Hist. Nat. des Crust., III, p. 169, pl. 32, fig. 21.
Porcellio scaber Milne-Edwards, Cuvier Rg. An., 1849, pl. 71-71 bis.
Porcellio nigra Gould, Rep. Crust., p. 337.
Porcellio scaber Koch, Deutschlands Crust., p. 34.
Porcellio dubius Kосн, Deutschlands Crust., p. 34.
Porcellio asper Kосн, Berichtig, p. 207, pl. 8, fig. 98.
Porcellio scaber Lereboullet, Mém. Strasb., IV, p. 34, pl. 1, figs. 4, 5; pl. 2, figs. 43-47.
Porcellio gemmulatus Dana, Crust. U. S. Expl. Exp., 1853, p. 725, pl., 47, fig. 7.Stimpson, Journ. Bos. Soc. Nat. Hist., VI, p. 66.
Philoscia tuberculalata Stimpson, Proc. Cal. Acad. Sci., I, p. 89'.
Porcellio scaber Sill, Crust. Sieb., 1861, p. 3.-Bate and Westwood, Brit. Crust., II, p. 475.
Porcellio paulenses Heller, Nocara Exp., p. 136, pl. 12, fig. 5.
Porcellio scaber Plateau, Bull. Acad. r. Belgique, 2d ser., XXIX, i870, No. 2, p. 8.-E. Brandt, Hore Soc. Ent. Rossi, VIII, p. 167.-Budde-Lund, Nat. Tidsskrift., 3d ser., VII, p. 238; Prospectus, p. 3; Bos, Crust. Hedrioph. Nederl., pp. 38, 91.-Budde-Lund, Crust. Isop. Terrestria, 1885, pp. 129-131. ${ }^{1}$
Habitat.-Distribution world-wide; San Francisco, California; San Pedro, California; Puget Sound.

Budde-Lund suggests that Porcellio gemmulatus Dana differs in no wise from Porcellio scaber. ${ }^{2}$

30. METOPONORTHUS Budde-Lund.

75. METOPONORTHUS PRUINOSUS Budde-Lund.:

Metoponorthus pruinosus Budde-Lund, Crust. Isop. Terrestria, 1885, pp. 169, 170.
Porcellio maculicornis Koch, Deutschlands Crustaceen, 1840, p. 34.-Stuxberg,

Habitat.-California.

[^18]
31. ALLONISCUS Dana.

analytical key to the species of alloniscus.
a. Surface of body very densely granulated. Margins of epimera serrated.
76. Alloniscus mirabilis Stuxberg.
a^{\prime}. Surface of body punctate.
b. Lateral processes of the head large, prominent.
77. Alloniscus cornutus Budde-Lund.
b^{\prime}. Lateral processes of the head small, scarcely prominent.
78. Alloniscus perconvexus Dana.
76. ALLONISCUS MIRABILIS (Stuxberg).

Rhinoryctes mirabilis Stuxberg, \emptyset fversigt af Vetensk. Akad. Forhandl., 1875, No. 2, p. 51.
Alloniscus mirabilis Budde-Lund, Crust. Isop. Terrestria, 1885, p. 229.
Habitat.-California.
77. ALLONISCUS CORNUTUS Budde-Lund.

Alloniscus cornutus Buddé-Lund, Crust. Isop. Terrestria, 1885, pp. 228, 229.
Habitat.-California.

78. ALLONISCUS PERCONVEXUS Dana.

Alloniscus perconvexus Dana, Proc. Acad. Nat Sci. Phila., VII, p. 176.-Stimpson, Journ. Bos. Soc. Nat. Hist., VI, p. 66.-Budde-Lund, Crust. Isop. Terrestria, 1885, p. 225.
(?) Alloniscus maculosus Harford, Proc. Cal. Acad. Sci., Pt. 1, VII, 1877, p. 54-

Fig. 34.-Alloniscus perconvexus Dana. $\times 8$.
Habitat.-California; Pacific Grove: Santa Barbara; Monterey Bay, collected by Mr. Heath; Tillamook Head, Oregon.

32. LYPROBIUS Budde-Lund.

79. LYPROBIUS PUSILLUS Budde-Lund.

Lyprobius pusillus Budde-Lund, Crust. Isop. Terrestria, 1885, p. 230.
Habitat.-California.

Family XIV. ARMADILLIDIDA.

33. CUBARIS Brandt.

Outer branch of the uropoda small or minute, rather smooth. Ter minal segment not shorter than uropoda. Terminal segment posteriorly truncate. Clypeus very short, with the superior margin entire, lobated at the sides. Terminal abdominal segment subtetragonal. External branch of the uropoda inserted in the middle of the internal lateral margiu of the basal joint.

ANALYTICAL KEY TO THE SPECIES OF CUBARIS. ${ }^{1}$

a. Last abdominal segment longer than broad. 80. Cubaris californica (Budde-Lund). a^{\prime}. Last abdominal segment a little transverse, with median constriction. Antenn: minutely roughened
81. Cubaris affinis (Dana).

80. CUBARIS CALIFORNICA (Budde-Lund).

Armadillo speciosus Stuxberg, \emptyset fversigt af Vetensk. Akad. Forhandl., 1875, No. 2, p. 62.
Armadillo californica Budde-Lund, Crust. Isop. Terrestria., 1885, p. 40.
Habitat.—California: San Francisco and San Pedro.
Budde-Lund ${ }^{2}$ remarks that perhaps this species does not differ from Cubaris affinis (Dana).

8r. CUBARIS AFFINIS (Dana).

Spherillo affinis Dana, Proc. Acad. Nat. Sci. Phila., VII, 1854, p. 176.—Stimpson, Journ. Bos. Soc. Nat. Hist., VI, 1857, p. 65.
Armadillo affinis Budde-Lund, Crust. Isop. Terrestria, 1885, p. 39.
Habitat.-California.
Family XV. LIGIID \nrightarrow.
analytical key to the genera of ligidde.
a. I ropoda equal in length, styliform, often filiform. Interior mala of the mandibles with numerous pencils of hairs. Last segment of body broad, with distinct epimeral plates. Maxillipeds with palp four to five jointed; epignath rounded
34. Ligia.
a^{\prime}. Uropoda unequal in length.
b. Extremity of uropods furnished with two long apical bristles. Interior mala of right mandible with three pencils of hairs, of left mandible with five pencils of hairs. Last segment of body small and without any epimeral plates. Maxillipeds with a five-jointed palp; epignath narrow, linguiform.. 35. Ligidium.
b^{\prime}. Extremity of uropods not furnished with two long apical bristles.
36. Styloniscus.

[^19]34. LIGIA Fabricius.
analytical key to the species of ligia.
a. External antennie shorter than the body.
b. Caudal stylets about equal to half the length of body.
82. Ligia occidentalis Dana.
b^{\prime}. Caudal stylets about equal to one-fifth the length of body.
83. Liyia pallasii Brandt.
a^{\prime}. External antenna longer than body, or equal to length of body. Caudal stylets about equal to two-thirds length of body. \qquad 84. Ligia exotica Roux.

82. LIGIA OCCIDENTALIS Dana.

Ligia occidentalis Dana, U. S. Expl. Exp. Crust., II, p. 7!2, pl. xlix, fig. 7; Proc. Acad. Nat. Sci. Phila., VII, p. 176.-Stimpson, Bos. Journ. Nat. Hist., VI, 1857, p. 66.-Harford, Proc. Cal. Acad. Sci., VII, 1877, p. 116.-BuddeLund, Crust. Isop. Terrestria, 1885, p. 264.
Habitat.-California: San Francisco Bay; San Diego; Sacramento River; Monterey Bay; Lower California.

83. LİGIA PALLASII Brandt.

Ligia pallasii Brandt, Bull. Soc. Impér. des Natur. de Moscou, VI, 1833, p. 172. Ligia dilatata Stimpson, Bos. Journ. Nat. Hist., 1857, p. 67, pl. Xxir, fig. 8.S. I. Smith, Report of Progreas of Geological Survey of Canada, 1878-79. Ligia septentrionalis Lockington, Proc. Cal. Acad. Sci., VII, 1877, Pt. 1, p. 46. Ligia stimpsoni Miers, Proc. Zool. Soc.; 1877, p. 671 (see footnote).
Ligia pallasii Budde-Lund, Crust. Isop. Terrestria, 1885, pp. 261, 262.
Habitat.—Unalaska; Sitka; Tanager, Aleutian Islands; Victoria, Vancouver Island; Puget Sound; California.

84. LIGIA EXOTICA Roux.

Ligia exotica Roux, Crust. Médit., p. 3, pl. Xilı, fig. 9.
Ligia grandis Perty, Spix. H. Martius, p. 212, pl. xl, fig. 13.
Ligia gaudichaudii Milne-Edwards, Hist. Nat. des Crust., III, p. 157.
Ligia baudiniana Milne-Edwards, Hist. Nat. des Crust.. III, p. 105.
Ligia (Italica) coriacea Koch, Deutschl. Crust., p. 36; Berichtig., p. 211.
Ligia gaudichaudii Dana, Expl. Exp., p. 741, pl. xlix, figs. 6a-h.-Nicolet, Gay, Hist. Chile, III, p. 265.
Ligia baudiniana Miers, Proc. Zool. Soc., 1877, p. 670.
Ligia exotica Budde-Lund, Crust. Isop. Terrestria, 1885, pp. 266-268.
Habitat.-Widely distributed; California; Topolobampo, Mexico(Mr. Edward Palmer).

35. LIGIDIUM Brandt.

analytical key to the species of higidium.

a. Inner process of the basal article of the uropoda three times shorter than the terminal external branch; internal terminal branch reaching the apex of the external branch; the two terminal hairs equal in length to the external branch.
85. Ligidium hypnorum (Cuvier).
a^{\prime}. Inner process of the basal article of the uropoda four times shorter than the terminal external branch; internal terminal branch long, extending much beyond the apex of the external branch, being a sixth part longer; the two terminal hairs short, equal in length to half the external branch.
86. Ligidium tenue Budde-Lund.
85. LIGIDIUM HYPNORUM (Cuvier).

Oniscus hypnorum Cuvier, Journ. d'hist. nat. II, p. 19, pl. 26.
Ligidium hypnorum Budde-Lund, Naturhistorisk Tidsskrift, 3 d ser., VII, 1870, 1 י.
225.-Stuxberg, \emptyset fversigt af Vetensk. Akad. Forhandl., 1875, No. 2, p. 48. Habitat.-California (Stuxberg).

86. LIGIDIUM TENUE Budde-Lund.

Ligidium tenue Budde-Lund, Crust. Isop. Terrestria, 1885, p. 258.
Habitat.—Sitka Island.

36. STYLONISCUS Dana.

87. STYLONISCUS GRACILIS Dana.

Styloniscus gracilis Dana, Proc. Acad. Nat. Sci. Phila., VII, 1854-55, p. 176.Stimpson, Journ. Bos. Soc. Nat. Hist., VI, 1857, p. 66.—Budde-Lund, Crust. Isop. Terrestria, 1885, p. 271.

Habitat.-California.

VI. EPICARIDEA.

Family XVI. BOPYRIDew. ${ }^{1}$

Body of female primarily disciform, variously modified subsequently by retrogressive metamorphosis; distinctly segmented; more or less asymmetrical, twisted now to right, now to left; dorsal face flattened; head deeply sunk in thorax and carrying in front two pairs of rudimentary antennæ; eyes, wheu present, dorsal. Maxillipeds lamellar, biarticulate, obtecting the oral area below, and more frequently exhibiting a small terminal joint, and, at base, two curved lanceolate appendages. Legs, seven pairs, sometimes obsolete on one side, and all of same structure, short, prehensile; coxal plates obsolete or distinctly defined. Incubatory plates, five pairs, more or less arching over the ventral face of the thorax; first pair, as a rule, concealed by second and divided by a transversal fold into two segments. Abdomen more or less distinctly segmented; pleopoda, forming simple or double lamella, all of the same structure, rarely obsolete. Uropoda, when present, simple lanceolate. Male elongate, very small, symmetrical; segments of thorax distinct, those of abdomen sumetimes distinct, sometimes confluent Mouth parts simple, conic; posterior antennae with flagellum four-articulate; legs of uniform structure; uropoda with inuer branch shorter than outer. Parasitic on decapodous crustacea. ${ }^{2}$

[^20]This family has not been sufficiently worked up to offer as yet any systematic arrangement of the genera. ${ }^{1}$
37. ARGEIA Dana.

ANALYTICAL KEY TO THE SPECIES OF ARGEIA.
a. Head transverse. All the thoracic branchial appendages present. All the abdominal appendages present
88. Argeia pugettensis Dana.
a^{\prime}. Head bilobate. Thoracic branchial appendages apparently absent in some of anterior segments. Last three pairs of abdominal appendages wanting.
89. Argeia depauperata Stimpson.
88. ARGEIA PUGETTENSIS Dana.

Argeia pugettensis Dana, U. S. Expl. Exp. Crust., II, p. 804, pl. LIII, fig. 7.Stimpson, Bos. Journ. Nat. Hist., VI, 1857, p. 71.
Habitat.-Puget Sound on Crangon munita.
89. ARGEIA DEPAUPERATA Stimpson.

Argeia depauperata Stimpson, Bos. Journ. Nat. Hist., VI, 1857, p. 71.
Habitat.-San Francisco Bay on Orangon franciscorum.

38. PHYLLODURUS Stimpson

90. PHYLLODURUS ABDOMINALIS Stimpson.

Phyllodurus abdominalis Stimpson, Bos. Journ. Nat. Hist., VI, 1857, p. 71.-Lockington, Proc. Cal. Acad. Sci., VII, 1876, Pt. 1, p. 57.

Habitat.-Puget Sound; Tomales Bay, California; "on the common Upogebia."

39. BOPYROIDES Stimpson.

gi. BOPYROIDES ACUTIMARGINATUS Stimpson.

Bopyroides acutimarginatus Stimpson, Proc. Acad. Nat. Sci. Phila., XVI, 1864, p. 156.

Habitat.-Puget Sound, on Spirontocaris brevirostris.

40. PSEUDIONE Kossmann.

ANALYTICAL KEY TO THE SPECIES OF PSEUDIONE.
a. Antennae five-jointed. First pair of maxille absent. In male, eyes present; maxillæ wanting; last segment of abdomen cordate in form, being narrow anteriorly and having its hinder margin notched
92. Pseudione giardi Calman. a^{\prime}. Antenna four-jointed. Maxillie normal, present. In male, eyes wanting; maxillee normal, present; last segment of abdomen triangular and entire.
93. Pseudione galacantha Hansen.

[^21]92. PSEUDIONE GIARDI Calman.

Pseudione giardi Calman, Ann. N. Y. Acad. Sci., XI, 1898, No. 13, pp. 274-281, pl. XXXIV, fig. 5.

Habitat.-Puget Sound, on Pagurus ochotensia (Brandt).
93. PSEUDIONE GALACANTH \nrightarrow Hansen.

Pseudione galacanthe Hansen, Bull. Mus. Comp. Zool. Harvard College, XXXI, 1897, pp. 118-120, pl. v, fig. 22i.
Habitat.-Galf of California, in branchial cavity of Galacantha diomedece var. parvispina Faxon.

41. BATHYGYGE Hansen.

94. BATHYGYGE GRANDIS Hansen.

Bathygyge grandis Hansen, Bull. Mus. Comp. Zool. Harvard College, XXXI, 1897, pp. 122, 124, pl. vi, figs. 2, $2 e$.

Habitat.-Off Acapulco, in branchial cavity of Glyphocrangon spinulosa Faxon.

42. CRYPTIONE Hansen.

95. CRYPTIONE ELONGATA Hansen.

Cryptione elongata Hansen, Bull. Mus. Comp. Zool. Harvard College, XXXI, 1897, pp. 112-115, pl. III, figs. $5,5 a ;$ pl. iv, tigs. $1,1 g$.

Habitat.-Near Galapagos Islands, in branchial cavity of Nematocarcinus agussizii Faxon, which occurs as far north as Acapulco, Mexico.

43. PARARGEIA Hansen.

96. PARARGEIA ORNATA Hansen.

Parargeia ormata Hansen, Bull. Mus. Comp. Zool. Harvard College, XXXI, 1897, pp. 120-122, pi. vi, figs. 1, $1 i$.

Habitat.-Off Acapulco Mexico, in branchial cavity of Sclerocrangon procax Faxon.

44. IONE Latreille.

97. IONE CORNUTA Spence Bate.

Ione cornuta Spence Bate, Lord's Naturalist in British Columbia, II, 1866, p. 282.
Ione thoracica Heller, Carcinolog. Beitrag z. Fanna der Adriat. Meeres, Verhand. Zool. Bot. Gessellsch. Wien, XV, pp. 979-984, pl. 17.
Ione cornuta Bate and Westwoon, Brit. Sessile-Eyed Crust., II, p. 253.-Giard and Bonnier, Contributions à l'étude des Bopyriens, 1887.
Habitat.-Esquimault Harbor, British Columbia, in brauchia of Callianassa longimana; Vancouver Island.

[^0]: ${ }^{1}$ Sars's analytic key has been used with slight moditications. Sars's "An Account of the Crustacea of Norway," II, Isopoda (1896), Pts. I, II, p. 3.

[^1]: ${ }^{1}$ The four points following b^{\prime} are taken from Hansen's analytic key of the Cirolanidæ (Vidensk. Selsk. Skr., 6th ser., natur. og math. Afd. V, 1890, p. 317), as translated by Stebbing, Hist. of Crust., 1893, pp. 340, 341.

[^2]: ${ }^{1}$ Inserted by author.

[^3]: ${ }^{1}$ The characters in this key on the Cirolanide are taken from Stebbing, "History of Crustacea," (1893), p. 342.
 ${ }^{2}$ Miers, Journ. Linn. Soc. London, XVI, 1883, p. 19.

[^4]: ${ }^{\prime}$ Hansen, Virlensk. Selsk. Skr., 6th ser., natur. og math. Afd. V, 1890, pp. 338, 339; for synonymy see p. 357.

[^5]: ${ }^{1}$ Bull. Soc. Zool. France, XIII, 1888, pp. 35, 36; Sur Quelques Crustacés Isopodes du Littoral des Açores, A. Dollfus.

[^6]: ${ }^{1}$ Schiœdte and Meinert regard Egacylla Dana as synonymous with Fga, and remark that Dana's specimen, by which the genus Egacylla was instituted was a young Ega. See Naturhistorisk Tidsskrift, XII, 1879-80, p. 334. See also Liitken, Vid. Medd. Naturh. For., 1×60, p. 180.
 ${ }^{2}$ There are no specimens of the young in the National Museum.

[^7]: ${ }^{1}$ Hist. of Crust., 1893, p. 345.

[^8]: ${ }^{1}$ Proc. Zool. Soc. London, 1877, p. 672, pl. LXViII, tig. 6.

[^9]: ${ }^{1}$ Hesse, Ann. Sci. Nat., 5th ser., XVII, pp. 5, 6; Stebbing, Hist. of Crust., 1893 I p. 361; Bate and Westwood, British Sessile-Eyed Crust., II, p. 432.

[^10]: ${ }^{1}$ Hist. Crust., 1893, p. 364.
 ${ }^{2}$ Trans. New Zealand Inst., XXIV, 1891, p. 269.

[^11]: ${ }^{1}$ Hist. Crust., 1893, p. 364.
 ${ }^{2}$ Zool. Coll. Alert, 1884, p. 308.
 ${ }^{3}$ Proc. Linn. Soc. New South Wales, VI, p. 183.

[^12]: ${ }^{1}$ See Miers on the Idoteidæ, Journ. Linn. Soc. London, XVI, 1883, pp. 9, 19, 20.
 ${ }^{2}$ Including terminal segment.
 ${ }^{3}$ Dollfus, Feuille des Jeunes Naturalistes, 3 d ser., 1895, p. 4; Sars, Crust. of Nor way, 1897, Pts. 3, 4, p. 79.

[^13]: ${ }^{1}$ The following is quoted from Miers, Journ. Linn. Soc. London, XVI, 1883, p. 6 "Mr. Spence Bate (Lord's Naturalist in British Columbia, II, 1866, p. 282) refe without any description, specimens from Esquimault Harbor, British Columbia, Idotea stricta Dana; it is far more probảble that they belong to Idotea ochotensis."

[^14]: ${ }^{1}$ Miers, Journ. Linn. Soc. London, XVI, 1883, pp. 42, 43.
 ${ }^{2}$ Benedict, Proc. Acad, Nat, Sci. Phila. (1897), p. 391.

[^15]: ${ }^{1}$ Dr. Benedict's key is used in part for the genus Arcturus. Proc. Biol. Soc. Washington, XII (1898), pp. 42, 43.

[^16]: ${ }^{1}$ Sars, Crust. of Norway, II, 1897, Pts. 5, 6, pp. 95, 98.
 ${ }^{2}$ Idem, Pts. 5, 6, pp. 98-100, 103, 104.

[^17]: ${ }^{1}$ See Budde-Lund for further synonymy.

[^18]: ${ }^{1}$ See Budde-Lund for further synonymy.
 ${ }^{2}$ Crust. Isop. Terrestria, 1885, p. 131.
 ${ }^{3}$ See Budde-Lund for further synonymy.

[^19]: ${ }^{1}$ C'ubaris is oldest synonym of preoccupied Armadillo (Stebbing, Hist. of Crust., 1893, p. 433).
 ${ }^{2}$ Crust. Isop. Terrestria, 1885, p. 40.
 Proc. N. M. vol. xxi- 55

[^20]: ${ }^{1}$ Sars, Crustacea of Norway, II, 1898, pp. 195, 196, pls xi, Xir.
 ${ }^{2}$ Bopyridae parasitic on Crangon crangon (Linueus), Nectocrangon lar (Owen), Nectocrangon alaskensis Kingsley, and other shrimps, have been reserved for more detailed study.

[^21]: ${ }^{1}$ See Hansen, Bull. Mus. Comp. Zool., Harvard College, XXXI (1897), p. 112.

