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Abstract. The purpose of the current study was to analyse the reproductive ecology and sexual system in Ambidexter

symmetricus (Processidae), a nocturnal seagrass shrimp. This work was conducted in St Joseph Bay, Florida, in
May–August 2010 and April–October 2011. The sex ratio in A. symmetricus and the presence of juvenile females
supported the hypothesis of a gonochoric sexual system. Breeding in the population occurred seasonally from April until

September. Successive spawning of individual females was shown by the presence of late-stage (prespawning) ovaries in
females that were brooding late-stage (near hatching) embryos. Female A. symmetricus were generally larger and more
abundant than males. Male A. symmetricus with parasites exhibited gigantism. Because of seasonal differences in
recruitment and growth, body size varied with time of year, with larger (overwintered) individuals collected in April and

May, and smaller more recently recruited individualsmore abundant in September andOctober. The population biology of
this species is similar to many other warm-temperate, shallow-water carideans, thus supporting hypotheses about
latitudinal variation in breeding and recruitment in marine benthic invertebrates.
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Introduction

Reproductive patterns in marine invertebrates, including
crustaceans, may differ according to environmental conditions

and latitude (Thorson 1950; Bauer 1992; Marshall et al. 2012).
Crustaceans in shallow-water tropical habitats generally
reproduce year-round, with shorter breeding seasons in popu-

lations and species farther away from the tropics (Thorson
1950; Sastry 1983). Breeding seasons in marine invertebrates,
including crustaceans, have long been known to be correlated

with latitude because of latitudinal variation in factors such as
water temperature, nutrient cycling, and plankton production
(larval food) (Thorson 1950; Bauer 1992, 2004; Marshall et al.
2012). Population dynamics and life-history traits may be

understood in many species by examining relationships among
breeding patterns, recruitment, and growth in organisms sam-
pled during the course of annual cycles (Ridley and Thompson

1985; Ramirez Llodra 2002).
Caridean shrimps are important faunal components of tem-

perate and tropical seagrass meadow ecosystems (e.g. Kikuchi

1962, 1966; Bauer 1985, 1989, 2004; De Grave et al. 2006).
Considerable temporal variation in breeding patterns occurs in
caridean species. Species may reproduce year-round or season-

ally, and may reproduce just once (semelparous) or repeatedly
(iteroparous) during the breeding season. On an individual
basis, shrimpsmay reproduce continuously (successive spawns)

during the breeding season (Bauer 1989, 1991, 2004; Bauer
and VanHoy 1996).

Although many carideans are gonochoristic, numerous

species are sequential hermaphrodites (Bauer 2000; Chiba
2007). Gonochoristic shrimps spend their entire lives either as
functional males or females. Sequential hermaphrodites start

out their reproductive life in one sex, and then change to the
the opposite sex over time (Ghiselin 1969). In carideans,
hermaphroditic sexual systems are mainly protandric, in

which individuals develop first as males, and then change to
females (Warner 1975; Bauer 2000, 2004; Chiba 2007; Baeza
2010; Baeza and Piantoni 2010). Less common is protandric
simultaneous hermaphroditism, in which individuals first go

through a male phase before changing to a simultaneous
hermaphrodite with a mainly female phenotype (Bauer
2000; Baeza 2009)

Analysis of sex ratiosmay allow tests of hypotheses about the
sexual system (gonochory or hermaphroditism) in caridean
shrimps, which can then be examined more carefully with

population structure, sexual morphology, and experimental
evidence (Bauer 2004; Espinoza-Fuenzalida et al. 2008; Baeza
and Piantoni 2010; Bauer and Conner 2012). Sex ratios of

populations may vary considerably among and between species.
In shallow-water benthic organisms, sex ratios are influenced by
life-history traits such as size at sexual maturity, adult life-span,
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frequency of reproduction, differential mortality between
sexes, migration and sex-change (Wenner 1972; Emlen and

Oring 1977).
Caridean shrimps are often a dominant faunal group in

seagrass beds and include carnivorous and herbivorous species

(Heck 1977; Saloman 1979; Gore et al. 1981; Garcı́a Raso et al.
2006; Unsworth et al. 2007). Shrimps are an important link
between primary production and higher trophic levels (Kikuchi

1966; DeGrave et al. 2006; Unsworth et al. 2007). Studies using
nocturnal sampling have shown that carideans of the family
Processidae may be abundant in seagrass meadows (Kikuchi
1962, 1966; Leber 1983; Bauer 1985; De Grave et al. 2006).

However, fairly little is known about their life history and
population dynamics.

Caridean shrimps are often infected by isopod parasites

in the family Bopyridae. Bopyrids are ectoparasites, attach-
ing within the branchial chamber or under the abdomen of
their hosts (O’Brien and Van Wyk 1985; Markham 1986).

These parasites do not kill their hosts as a requirement
for development (Anderson and May 1978) but often
castrate them (Baudoin 1975; Beck 1979; O’Brien and
Van Wyk 1985). Bopyrid parasites may cause gigantism in

their hosts (Ebert et al. 2004; Hall et al. 2007). Urobopyrus
processae is a bopyrid with a cosmopolitan distribution
known to infect members of the family Processidae (Markham

1985, 1986).
Ambidexter symmetricus is a processid shrimp that inhabits

seagrass meadows in tropical and subtropical waters (Manning

and Chace 1971; Saloman 1979). This species has an amphi-
American distribution, from Florida to Santa Catarina, Brazil,
including the Gulf of Mexico, in the Atlantic; and along the

western coasts of California and Mexico in the eastern Pacific
(Manning and Chace 1971; Abele 1972; Rı́os and Carvacho
1982; Christoffersen 1998). This species has been shown to be
an important component of seagrass habitats in the north-eastern

Gulf of Mexico (Greening and Livingston 1982; Leber 1983).
It is more abundant in warmer months, with the highest abun-
dances during the spring and summer, and appears to decline

in fall and winter collections (Leber 1983), similar to Hayashi-

donus japonicus (Kikuchi 1962, 1966). Food habits are carni-
vorous, feeding on polychaetes, amphipods, and other shrimps,

similar to Processa edulis edulis (Guerao 1993) and Processa

bermudensis (Leber 1983). A. symmetricus buries in soft
substrates during the day, and emerges at night to feed (Barba
et al. 2005; pers obs.). This feeding and burying behaviour is

consistent with other members of Processidae (Kikuchi 1962;
Noël 1973, 1976; Leber 1983; Bauer 1985; Guerao 1993).
Molting and mating occurs at night as in P. edulis edulis (Noël

1976; J.A. Rasch, pers. obs.).
Our overall objective in the present study was to analyse

the population structure, infer the sexual system, and investi-

gate the reproductive ecology of A. symmetricus. We tested
the hypotheses that reproduction in female A. symmetricus

was continuous on both the population and individual levels.

We also tested the hypothesis of a gonochoric sexual system in
A. symmetricus based on seasonal variation in sex ratios. Our
final objective was to analyse factors that may influence
A. symmetricus size, including sex, sample date, and the

presence of a parasite.

Materials and methods

Study area

A sampling site was established in the north-eastern Gulf of

Mexico in Eagle Harbor of St Joseph Bay, Florida, within St
Joseph Peninsular State Park (2984603.9400N, 85824012.2200W)
(Fig. 1). This area is composed of shallow seagrass beds that are a
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Fig. 1. Map of the study site, Eagle Harbor in St Joseph Peninsular State

Park, which is part of St Joseph Bay in Florida.
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mixture of Halodule wrightii, Thalassia testudinum and Syr-

ingodium filiforme over sand (Iverson and Bittaker 1986). Sam-
pling focussed on areas primarily composed of T. testudinum as

preliminary work determined higher abundances of Ambidexter
symmetricus in these areas. The depth sampled at this site was
from 0.5 to 1.3 m during night low tides.

Sampling gear and design

We collected samples at night during low tides in St Joseph Bay
using a pushnet with a mouth of 45� 23 cm, with a 1-mmmesh
size. We sampled haphazard distances, which varied with

sampler endurance, or filling of the net with plant or other
material. We then sorted net samples by hand using headlamps,
and all processid shrimps removed were kept in a bucket of

ambient seawater before preservation. Sampling was repeated
over the course of up to three hours, and was discontinued when
conditions became adverse to the safety of the samplers, e.g.

rising tide. We also measured salinity and water temperature for
each sampling period. A. symmetricus were preserved in a
solution of 10% formalin (10% formaldyhyde, 90% ambient
seawater) for transport back to the laboratory.

Data collection and analysis

Processid shrimps were collected between May and August of
2010 and between April and October of 2011, weather and low
tide permitting. Formalin-preserved A. symmetricuswere rinsed

Table 1. Samples sizes of Ambidexter symmetricusmales, total females

(Total Fem), femaleswith ovaries (FemOv), femaleswith embryos (Fem

Em), and total number of shrimpswith a carapace length.2.00mmper

sample collected in 2010 and 2011

Year Sample Male Total Fem Fem Ov Fem Em Total n .2.00

2010 May 140 147 6 8 287

May–June 83 141 52 47 224

June 93 145 33 30 238

July 25 76 10 11 101

August 14 15 3 3 29

2011 April 64 80 42 47 144

May 50 81 11 10 131

June 36 57 23 18 93

July 0 0 0 0 0

August 14 15 6 7 29

September 66 102 21 9 168

October 115 146 0 1 261
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Fig. 2. Sexual maturity of Ambidexter symmetricus, based on the CL50%

(carapace length) of females and males sampled in 2010 (a) and 2011 (b).

Table 2. Sex ratios of Ambidexter symmetricus in 0.5-mm size classes

of frequency distributions for 2010 and 2011

Year Size class (CL, mm) Sex-ratio n x1
2 P Conclusion

2010 0.50–0.99 0.00 25 – – F.M

2010 1.00–1.49 0.02 147 135.2 ,0.001 F.M

2010 1.50–1.99 0.45 258 2.6 0.106 F¼M

2010 2.00–2.49 0.56 428 6.3 0.012 F,M

2010 2.50–2.99 0.37 231 15.1 ,0.001 F.M

2010 3.00–3.49 0.16 94 43.6 ,0.001 F.M

2010 3.50–3.99 0.12 74 42.4 ,0.001 F.M

2010 4.00–4.49 0.03 32 28.1 ,0.001 F.M

2010 4.50–4.99 0.00 1 – – F.M

2010 5.00–5.49 0.00 3 – – F.M

2010 5.50–5.99 0.30 10 1.6 0.206 F¼M

2010 6.00–6.49 0.25 4 1.0 0.317 F¼M

2010 6.50–6.99 0.00 2 – – F.M

2010 All size classes 0.17 1309 99.6 ,0.001 F.M

2011 0.50–0.99 0.00 5 – – F.M

2011 1.00–1.49 0.11 83 50.9 ,0.001 F.M

2011 1.50–1.99 0.35 263 22.5 ,0.001 F.M

2011 2.00–2.49 0.55 266 2.9 0.086 F¼M

2011 2.50–2.99 0.55 187 1.9 0.165 F¼M

2011 3.00–3.49 0.36 184 13.6 0.002 F.M

2011 3.50–3.99 0.20 85 30.6 ,0.001 F.M

2011 4.00–4.49 0.15 54 26.7 ,0.001 F.M

2011 4.50–4.99 0.06 34 26.5 ,0.001 F.M

2011 5.00–5.49 0.00 11 – – F.M

2011 5.50–5.99 0.20 5 1.8 0.180 F¼M

2011 All size classes 0.23 1177 68.0 ,0.001 F.M

Breeding and sexual system of a processid shrimp Marine and Freshwater Research C



with water before being dehydrated in an ascending ethanol

series to 70% ethanol for storage. Species were identified using
keys from Manning and Chace (1971), Manning (1991) and
Abele and Kim (1986). Carapace length (CL � 0.01 mm) was

defined as the distance from the posterior edge of the orbit to the
posterolateral edge of the carapace and measured using a cali-
brated ocularmicrometer. Sexwas determined by examining the

second pleopod for the presence or absence of an appendix
masculina. Ovigerous condition was ranked on a scale of 1 to 4:
1, individuals with no apparent ovary; 2, oocytes visible filling
less than half of the cephalothoracic space above the cardiac

stomach; 3, oocytes filling greater than half but not all the
cephalothoracic space; and 4, oocytes completely filling
the cephalothoracic space (Bauer 1986, 1989). Embryonic

condition was defined on the scale of 0–4: 0, embryos absent;
1, embryos present and apparently composed entirely of yolk,
2, embryos present and blastodisc visible but no eyespot present;

3, embryos present with eyespot visible, cephalothorax and

abdomen fused; and 4, embryos present and near hatching, with
cephalothorax and abdomen separated (Bauer 1986, 1989;
1991). Parasites were recorded as present if an isopod bopyrid

parasite was visible within the branchial chamber, or if one side
of the carapace was deformed (bulged outward), indicating the
shrimp had been infected but parasite lost (Jay 1989). The

parasites were all identified as Urobopyrus processae, the only
documented branchial parasite of processids (Manning and
Chace 1971; Noël 1976; Markham 1985).

We composed length–frequency distributions of individuals

from monthly collections using 0.5-mm CL size intervals
and tested for deviation of a 0.50 sex ratio with a goodness
of fit Chi-Square (Wenner 1972). To estimate the parameter of

size at sexual maturity, we plotted the relative proportion
of females and males in each size class using the logistic
function y¼ 1/(1þ e�r(CL–CL50)). The CL50% corresponds to
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the size at which 50% of individuals are considered sexually
mature, and r stands for the slope of the curve (King 1995).
We used the least-squares method in Excel 2007 (Microsoft,

Redmond, WA, USA) for fitting the data, with individuals in
0.5-mm size-classes (Castilho et al. 2007a, 2007b). We used a
4� 4 contingency table analysis to test the null hypothesis that

there is no association between the ovarian and the embryonic
condition of female A. symmetricus in sampling years 2010 and
2011. A Monte Carlo sampling (10 000 replications) was used
to determine distribution-free P values (Proc FREQ, SAS

Institute Inc., Cary, NC). A multifactorial analysis of variance
(ANOVA) was used to test for differences in mean CL among
individuals by sample date, sex, and parasite presence in a full

factorial design for both years. We ran a Tukey–Kramer
post hoc test to determine interactions between Least Square
Means (SAS Institute Inc. 2013).

Results

We collected a total of 2486 Ambidexter symmetricus for the
present study, 1309 in 2010 and 1177 in 2011. A. symmetricus

collected in 2010 and 2011 ranged in CL from 0.79 to 6.50 mm.
The smallest female A. symmetricus carrying embryos had a CL
of 1.86mm, and the next smallest a CL of 3.18mm. The smallest
female A. symmetricus with a developing ovary had a CL of

2.20 mm. Complete development of an appendix masculina was
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Fig. 4. Length–frequency distributions of Ambidexter symmetricus by sample for 2010 (a) and 2011 (b).
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attained in males between 1.80 and 2.00 mm CL (Table 1,

Fig. 2). Thus, some of the individuals in the smaller two size-
classes may have been juvenile males indistinguishable from
juvenile females (Table 2, Fig. 3). The CL50% for females was
1.8 mm (2010) and 2.1 mm (2011), whereas for males CL50%

was 1.7 (2010) and 2.0 (2011). Goodness of fit Chi-Square
comparisons of sex ratios by 0.5-mm size classes (Table 2)
showed a trend of significantly more females in most size-

classes than males. There were both females and males in
most size classes, both large and small (Fig. 3). Size-frequency
distributions by month showed population changes over

the course of the year. Smaller individuals appeared in the
length–frequency distribution in greater abundances in later
months in 2010 and 2011, with a loss of larger individuals
present in April and May compared with the frequency dis-

tributions in August, September, and October (Fig. 4).
Femaleswere reproductive seasonally fromApril to September

(Fig. 5). Females with developing ovaries were not found in

October, when only one female was carrying embryos, indicat-
ing the end of the breeding season. During the breeding season,
most females carrying embryos showed prespawning ovaries

(Fig. 6), indicating a posthatching molt, mating, and spawing,

the usual pattern in caridean species with continuous reproduc-
tion on an individual basis (successive spawning) (Bauer 2004).
We tested and rejected the null hypothesis of no relationship
between degree of ovarian and degree of embryonic develop-

ment in A. symmetricus females. Females brooding late-stage
embryos had late-stage developing ovaries, whereas females
brooding early-stage embryos had undeveloped ovaries,

or early-stage developing ovaries in both 2010 (x9
2¼ 122.45,

n¼ 101, Pexact, 0.001) and 2011 (x9
2¼ 100.85, n¼ 92,

Pexact, 0.001).

We performed a multifactorial ANOVA to examine the inter-
actions of month, sex, and parasite presence in individuals larger
than2.00mmCL in2010 and2011.A carapace length of 2.00mm
was the lower size limit, as secondary sexual characters may not

have been visible before this size. Significant relationships were
found between full-cross factors in both 2010 (F15,863¼ 20.81,
P, 0.001) and 2011 (F18,807¼ 63.68, P, 0.001). In 2010 there

was a significant relationship between sex� presence of a parasite
(Tukey–Kramer P¼ 0.028, Table 3), the sample date� presence
of a parasite (Tukey–Kramer P, 0.001, Table 4), and sample
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date� sex (Tukey–Kramer P¼ 0.003, Table 5). There was also
a significant relationship in 2011 between sex� presence of a
parasite (Tukey–Kramer P¼,0.001, Table 6), sample date

and� presence of a parasite (Tukey–KramerP, 0.001, Table 7),
and sample date� sex (Tukey–Kramer P, 0.001, Table 8).

Discussion

Females of Ambidexter symmetricus produced successive
broods, developing new sets of oocytes in their ovaries while

brooding embryos from a previous spawn, indicating a new
spawn will occur after hatching of the incubated embryos, as in
many caridean species (Bauer 2004). On the population level,

reproduction of A. symmetricus that we examined from a sub-
tropical (warm temperate) habitat in the Gulf of Mexico, was
seasonal (from April to September). The processids Processa

bermudensis and Processa riveroi reproduce year round both on
an individual and population level in tropical populations (Bauer
1989). The seasonality of population-level reproduction is

consistent with that of two other processid species, Processa
edulis edulis (Labat and Noël 1987; temperate) and Haya-

shidonus japonicus (Kikuchi 1962; subtropical), suggesting a

latitudinal effect on reproductive periodicity for processid
shrimps, with a shorter breeding season with increasing latitude.
Temperature, as well as other factors such as plankton produc-
tivity (larval food), varies with latitude and influences the length

of the breeding season of these shrimps as in many other
invertebrates (Thorson 1950; Sastry 1983; Bauer 1992; Lardies
and Castilla 2001; Marshall et al. 2012). Individual females can

reproduce continuously, but as populations move away from the
tropics this continuous reproduction becomes limited by season
on the population level (Kikuchi 1962; Labat and Noël 1987;

Bauer 1991). A similar reproductive pattern occurs in other
carideans (Bauer 2004) as well as dendrobranchiate shrimps
(Castilho et al. 2007a, 2007b, 2008). This pattern appears in
marine invertebrates in general (Collin and Salazar 2010;

Marshall et al. 2012).
The CL50% calculated from our data indicates that,50% of

both male and female A. symmetricus reach sexual maturity at

1.7 and 2.1 mm respectively. This result was supported by
observational data showing that females in general developed
ovaries at a CL slightly above 2.0 mm and that secondary sexual

characters were fully developed in both sexes at approximately
this size. A statistic such as CL50% is important to show trends in
the size that individuals in the population become reproductive

(Pardo et al. 2009), and allows for comparisons in reproductive
traits among related species or species from similar latitudes
(King 1995). For example, populations of Artemesia longinaris
from Brazil and Argentina showed the predicted latitudinal

differences in female size at maturity (Castilho et al. 2007b).
Our samples showed small variations from year to year, suggest-
ing fluctuation in abiotic or biotic factors influence reproduction

(Pardo et al. 2009). Similar deviations were seen in A. long-
inaris, and influencing factors were suggested to be caused by
yearly variation in water temperature and primary production
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Fig. 6. Ovarian developmental condition of Ambidexter symmetricus

females incubating embryos of different developmental stages for 2010

(a) and 2011 (b).

Table 3. Tukey–Kramer post hoc interactions of Least Square Means

for effect of sex3parasite presence on Ambidexter symmetricus

carapace length (mm) in 2010

F, female; M, male; N, no parasite; Y, parasite present; –, P. 0.05;

*, P, 0.05; **, P, 0.01; ***, P, 0.001

F�N F�Y M�N M�Y

F�N ,0.001 ,0.001 0.262

F�Y *** ,0.001 0.506

M�N *** *** ,0.001

M�Y – – ***

Table 4. Tukey–Kramer post hoc interactions of Least Square Means

for effect of sex3parasite presence on Ambidexter symmetricus

carapace length (mm) in 2011

F, female; M, male; N, no parasite; Y, parasite present; –, P. 0.05;

*, P, 0.05; **, P, 0.01; ***, P, 0.001

F�N F�Y M�N M�Y

F�N 0.979 ,0.001 0.579

F�Y – ,0.001 0.772

M�N *** *** ,0.001

M�Y – – ***
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(Castilho et al. 2007b). Information from our study may be
important for future modelling of life history parameters
(including reproductive traits) in processids and comparisons
with other tropical and subtropical caridean species (Ramirez

Llodra 2002).

The length–frequency distributions of A. symmetricus indi-
cate that females are more abundant than males in the popula-
tion. The abundance of females and their larger size compared
with males suggests that these A. symmetricus use a pure search

(promiscuous) mating system (Berglund 1981; Wickler and

Table 7. Tukey–Kramer post hoc interactions of Least SquareMeans for effect of sample3parasite presence on Ambidexter symmetricus carapace

length (mm) in 2010

N, no parasite; Y, parasite present; AG, August; JL, July; JN, June; MY, May; MJ, end of May–beginning of June; –, P. 0.05; *, P, 0.05; **, P, 0.01;

***, P, 0.001

AG�N AG�Y JL�N JL�Y JN�N JN�Y MY�N MY�Y MJ�N MJ�Y

AG�N 1.000 1.000 0.656 0.938 0.810 1.000 ,0.001 0.242 0.644

AG�Y – 1.000 0.996 1.000 1.000 1.000 ,0.001 0.997 0.990

JL�N – – 0.344 0.506 0.406 1.000 ,0.001 0.004 0.449

JL�Y – – – 0.970 1.000 0.162 ,0.001 1.000 1.000

JN�N – – – – 0.999 0.007 ,0.001 0.315 0.953

JN�Y – – – – – 0.055 ,0.001 0.998 0.998

MY�N – – – – ** – ,0.001 ,0.001 0.249

MY�Y *** *** *** *** *** *** *** ,0.001 ,0.001

MJ�N – – ** – – – *** *** 1.000

MJ�Y – – – – – – – *** –

Table 5. Tukey–Kramer post hoc interactions of Least Square Means for effect of sample3 sex on Ambidexter symmetricus carapace length (mm)

in 2010

F, female; M, male; AG, August; JL, July; JN, June; MY, May; MJ, end of May–beginning of June; –, P. 0.05; *, P, 0.05; **, P, 0.01; ***, P, 0.001

AG� F AG�M JL�F JL�M JN� F JN�M MY�F MY�M MJ� F MJ�M

AG� F 0.531 1.000 0.981 1.000 0.988 ,0.001 0.006 0.771 0.999

AG�M – 0.374 0.995 0.252 0.966 ,0.001 ,0.001 0.017 0.931

JL�F – – 0.459 1.000 0.313 ,0.001 ,0.001 0.358 0.885

JL�M – – – 0.337 1.000 ,0.001 ,0.001 0.007 1.000

JN� F – – – – 0.022 ,0.001 ,0.001 0.335 0.681

JN�M – – – – * ,0.001 ,0.001 0.001 1.000

MY� F *** *** *** *** *** *** 0.996 0.004 ,0.001

MY�M ** *** *** *** *** *** – 0.069 ,0.001

MJ�F – * – ** – *** ** – ,0.001

MJ�M – – – – – – *** *** ***

Table 6. Tukey–Kramer post hoc interactions of Least Square Means for effect of sample3 sex on Ambidexter symmetricus carapace length (mm)

in 2011

F, female; M, male; AP, April; AG, August; JN, June; MY, May; OC, October; SP, September; –, P. 0.05; *, P, 0.05; **, P, 0.01; ***, P, 0.001

AP�F AP�M AG� F AG�M JN� F JN�M MY�F MY�M OC�F OC�M SP� F SP�M

AP�F ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001

AP�M *** 0.162 ,0.001 ,0.001 ,0.001 0.721 0.005 ,0.001 0.007 ,0.001 ,0.001

AG� F *** – 0.289 1.000 0.980 0.987 1.000 0.999 1.000 0.105 0.047

AG�M *** *** – 0.231 0.962 0.035 0.511 0.932 0.735 1.000 1.000

JN� F *** *** – – 0.473 0.894 1.000 0.939 1.000 ,0.001 ,0.001

JN�M *** *** – – – 0.048 0.970 1.000 0.999 0.379 0.129

MY� F *** – – * – * 0.385 0.284 0.873 ,0.001 ,0.001

MY�M *** ** – – – – – 0.999 1.000 0.049 0.006

OC�F *** *** – – – – – – 0.997 0.371 0.160

OC�M *** ** – – – – – – – 0.273 0.037

SP� F *** *** – – *** – *** * – – 0.999

SP�M *** *** * – *** – *** ** – * –
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Seibt 1981) as in most caridean species, in which reproductive
males are smaller than reproductive females (Correa and Thiel
2003; Bauer 2004).

The hypothesis of a gonochoristic sexual system for
A. symmetricus is supported by the sex ratios observed in
our samples. There is overlap of juvenile male and female

length frequencies in the smaller size classes, indicating that
A. symmetricus develop into primarymales and primary females
(Bauer 2004). There was no evidence of previously described
sexual systems in carideans inwhich an individual first develops

as a male and then when larger changes to a female (protandry)
or female-phase simultaneous hermaphrodite (protandric
sequential hermaphroditism) (Bauer 2000; Chiba 2007). In

population-samples of purely protandric species, smaller size
classes are composed of males whereas larger size classes are
primarily female (Bauer 2004). Although protandry has been

reported in Processa edulis edulis (Noël 1973, 1976), this
conclusion is controversial (Bauer and Conner 2012).
Thus, sequential hermaphroditism has not been definitively
demonstrated in a processid species.The trend of significantly

more females than males present in the A. symmetricus popula-
tion sampled suggests differential mortality between the sexes.
Increased activity by mature males searching for reproductive

females throughout the summer is one conceivable cause for this
skewed sex ratio (Willson and Pianka 1963; Berglund 1981;
Ridley and Thompson 1985).

Sex, time of year, and parasite presence all had an influence
on the size of individuals of A. symmetricus. In general, females
grew larger than males, and males with parasites suffered from

gigantism. However, females with parasites were similar in size
to healthy females and infected males. This may be because
females are the larger sex, and already grow to the maximum
size this species can attain. Large females may not exhibit

gigantism when infected because of physiological growth and
life-span restraints. However, as males expend fewer energetic
resources in producing sperm than females do on eggs, more

resources might be directed into somatic growth whenmales are
infected, allowing gigantism to occur (Baudoin 1975).
A. symmetricus of both sexes were also larger in the spring,

indicating that they were recruits of the previous year which had
overwintered. Later in the year, the mean body size of the
population decreased as recruitment occurred and smaller indi-

viduals entered the population.
Although processids are abundant in some habitats, there is a

lack of information about their reproductive biology, population

ecology, and evolutionary relationships. The data presented here
allow for comparisons of this subtropical population with other
subtropical species as well as those from other latitudes
and habitats. Our data support the conclusion that females

produce successive broods within a limited part of the year
(April–September). With possible impacts of oil spills, climate
change and overfishing of shrimp predators on abundant sea-

grass shrimps such as A. symmetricus, further insights about
such ecologically important species are essential to help man-
agement agencies conserve both habitat and species diversity.
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