

Natural History Museum Of Los Angeles County Invertebrate Paleontology CHAPTER NINE

I hope that you enjoy this chapter. Good Hoding, Señor.

January 24, 1998

Geologic Profile of Simi Valley

Richard L. Squires, Ph.D California State University, Northridge

Simi Valley is in the western part of a region called the Transverse Ranges province. This province extends for a distance of about 300 miles (483 km), from the most westerly part of the southern California coast at Point Arguello in Santa Barbara County (near the town of Lompoc), to just beyond the eastern end of the Little San Bernardino Mountains in central Riverside County. In the vicinity of Simi Valley, the province is about 40 miles (65 km) wide.

The Transverse Ranges province is geologically very complex and comprises chains of mountain ranges that extend east-west and are separated by valleys. Simi Valley is one of these valleys. The Transverse Ranges province is divisible into over a dozen smaller regions, and one of these is the Ventura basin. The western half of the basin is presently covered by the Pacific Ocean. The eastern boundary of the basin is the San Gabriel fault, which extends along the San Gabriel Mountains and across the Santa Clarita Valley. To the north, the Ventura basin is bounded by the Santa Ynez Mountains and Topatopa Mountains, and to the south by the Santa Monica Mountains. Simi Valley is situated within the Ventura basin.

Like most of the valleys in the Transverse Ranges, Simi Valley contains a thick section of clastic sedimentary rocks. These kinds of rocks are layered and resulted from the compaction and cementation of sediments. Simi Valley is unusual because this section of rocks, which measures about 24,400 feet (7,438 m) in thickness, is in a relatively small area that is only about 10 miles (16 km) long and 9 miles (14.5 km) wide. To the north, Simi Valley is flanked by the Big Mountain area and the southwestern part of the Santa Susana Mountains (Figure 1). To the south and east, the valley is rimmed by the Simi Hills. To the west are unnamed hills that separate the valley from the Tierra Rejada Valley and Little Simi Valley.

The sediments that originally comprise clastic sedimentary rocks consist of particles of pre-existing rock. The sizes of the particles, listed in order of increasing size, are mud, silt, sand, pebbles, cobbles, and boulders. Following compaction and cementation, mud becomes mudstone; silt becomes siltstone; sand becomes sandstone; and the pebbles, cobbles, and boulders become conglomerate. Clastic sedimentary rocks are layered with the oldest layer (bed) at the bottom of the stack and the youngest layer at the top.

There are ten clastic sedimentary rock units exposed in the Simi Valley area (Figure 1). There is also a volcanic rock unit that resulted from lava flows. Collectively, these various rock units range in geologic age from Late Cretaceous (about 75 million years) through early Pleistocene (about 1 million years). Overlying the voungest rock unit are unconsolidated sediments

deposited in the last 100,000 years or so. The sedimentary rock units and overlying unconsolidated sediments are listed below in proper order, along with their respective geologic time intervals. Nonmarine refers to river deposits, and marine refers to ocean deposits.

Alluvium (nonmarine, Holocene, last 10,000 years)

Terrace deposits (nonmarine, upper Pleistocene, about 500,000 to 10,000 years)

Saugus Formation (marine to nonmarine, upper Pliocene to lower Pleistocene, 3 to 1 million years)

Modelo Formation (marine, middle to upper Miocene, 12 to 6 million years)

Calabasas Formation (marine, middle Miocene, 13 million vears)

Conejo Volcanics (marine to nonmarine, middle Miocene, 14 million years)

Vaqueros Formation (marine, upper Oligocene to lower Miocene, 23 to 20 million years)

Sespe Formation (nonmarine, middle Eocene to upper Oligocene, 45 to 24 million years)

Llajas Formation (nonmarine to marine, lower to middle Eocene, 54 to 50 million vears)

Santa Susana Formation (marine, upper Paleocene to lower Eocene, 64 to 56 million years)

Las Virgenes Sandstone (nonmarine to marine, lower Paleocene, 64 million vears)

Simi Conglomerate (nonmarine to marine, lower Paleocene, 65 million years)

Chatsworth Formation (marine, Upper Cretaceous, 75 to 70 million vears)

Notice that the sedimentary rock units have names that generally reflect their geographic occurrence and their major rock type. If the rock unit consists of several major rock types (e.g., siltstone, sandstone, and conglomerate), then the term "formation" is used. The names "Simi Conglomerate," "Santa Susana Formation," and "Llajas Formation" are derived from Simi Valley place names. The names of the other rock units are derived from other locales in southern California.

All of the Simi Valley rock units, except the Chatsworth Formation, were formed during an interval of geologic time called the Cenozoic Era (from 66 million years ago to Recent). Sub-intervals of Cenozoic time (listed from oldest to youngest) are the Paleocene. Eocene. Oligocene, Miocene, Pliocene, Pleistocene, and Holocene. The Chatsworth Formation formed during the last part of the Mesozoic Era during Cretaceous time, which immediately preceded Paleocene time.

To understand the complex geologic history of Simi Valley, it is necessary to discuss the theory of plate tectonics. According to the theory, the earth's crust (lithosphere) today is constructed of seven huge slabs called plates. These plates are in constant motion, driven by hot magma moving just under the crust. The boundaries of the plates are either sea-floor spreading centers, subduction zones, or transform faults.

A *sea-floor spreading center*, also called a ridge or rise, is a long fracture on the ocean floor where heat and molten matter (magma) escape. The magma soon hardens and forms oceanic crust that is made up of basalt rock. If a plate consists mostly of oceanic crust, it is called an oceanic plate. Oceanic plates grow outward from spreading centers as new rock is added there. Eventually, the basalt rock is pushed aside as new magma rises to fill the space, solidify, and become a new part of the growing plate. Oceanic crust is about 3 miles (4.8 km) thick and is young material, geologically speaking. The oldest oceanic basalt that can be found on the ocean floor today is about 160 million years old.

A *subduction zone* is a long fracture (called a trench) on the ocean floor where plates collide. One plate underrides the other plate, plunges into the earth's interior, and its leading edge is melted. The entire process is called subduction. Collisions can take place between two oceanic plates, one oceanic and one continental plate, or two continental plates. Continental plates are those that are capped with a significant amount of continental crust that is derived from remelted oceanic crust as it descends into the earth

in the subduction zone. Continental crust, which consists largely of granite, is lighter than oceanic crust and is not subducted. The process of formation of continental crust has been going on since the early history of the earth. The oldest known continental crust is about 4 billion years old. Today, about one-third of the earth's surface is continental crust; the other two-thirds consists of oceanic crust. Continental crust ranges in thickness from about 18 to 30 miles (29 to 48 km).

A *transform fault* occurs where the portion of a plate or spreading center on one side of a fault moves horizontally relative to the portion on the other side of the fault, and crust is neither created nor destroyed. Transform faults usually trend perpendicularly across sea-floor spreading centers, but, interestingly, no volcanic action takes places along the transform fault itself. Most transform faults are located on the ocean floor, but a few, including the San Andreas fault in California, are situated on the continents.

From Chatsworth Formation time about 75 million years ago to upper Sespe Formation time about 30 million years ago, the western margin of North America was a subduction zone. An offshore spreading center (East Pacific Rise) was slowly moving the oceanic plate underneath the North American plate. From Chatsworth Formation time through Llajas Formation time, the interaction of the oceanic plate with the continental plate caused repeated downwarping or subsidence of the crust, thereby allowing deepocean waters to repeatedly cover the Simi Vallev region.

CHATSWORTH FORMATION

Accumulation of the Chatsworth Formation began during the latter part of Cretaceous time. The formation is 6,000 feet thick (1828 m) and is the thick-

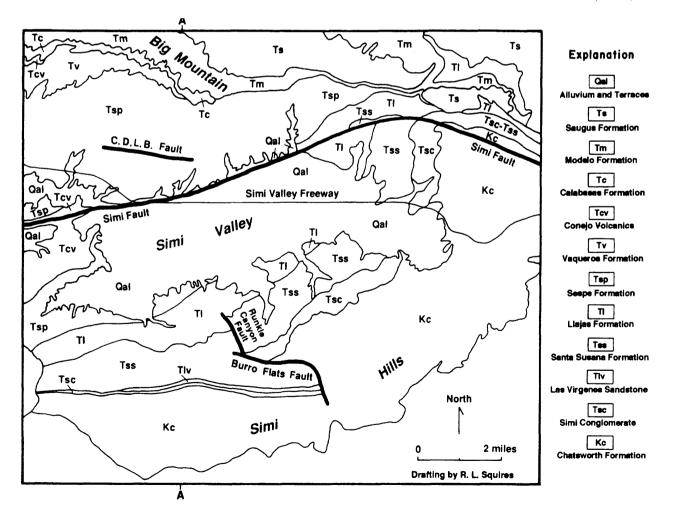


Figure 1. Generalized geologic outcrop map of Simi Valley showing exposures of the rock units, unconsolidated deposits, and major faults. Modified from Squires' (1983) geologic map in Squires and Filewicz (1983). A-A' refers to traverse of geologic cross section shown in Figure 5.

est formation in the Simi Valley area. Sandstone is the main component of the formation, and the sandy material was derived from mountain highlands to the south and transported to the edge of the continent by rivers. Very dense ocean currents, called turbidity currents, then eventually transported the sandy material from the shoreline down into a submarine canyon. At the mouth of the submarine canyon, in water depths of several thousand feet, the sands formed a delta-like accumulation called a submarine fan. After each turbidity current deposited its load of sand onto the submarine fan (thereby forming what is known as a turbidite deposit), fine mud settled out of suspension. This deep-sea submarine-fan complex comprised, not only the Chatsworth Formation, but also similar deposits of equivalent age in the Santa Monica Mountains and in the Santa Ana Mountains (Orange County).

Fresh exposures of the Chatsworth Formation can be readily observed in the extensive roadcuts along the Simi Valley Freeway in the Simi Hills, where the formation consists of thick-bedded gray sandstones interbedded with thinner mudstones. The rocks in these roadcuts are darker in color than those in the immediately surrounding hills because the roadcuts show unweathered rocks. Weathered exposures of the Chatsworth Formation are brown to reddish brown.

Additional roadcuts in the Chatsworth Formation occur along Santa Susana Pass Road. Corriganville, in Black Canyon Road, Box Canyon Road, and at the top of the Simi Hills near the Rocketdyne Santa Susana Field Laboratory. In addition, the Chatsworth Formation can be seen along the trail at Rocky Peak Park. The best area to see the Chatsworth Formation is at the east end of Simi Valley just east of Kuehner Drive. There, one can see large tilted slabs of sandstone. These sandstone beds were tilted about 400° from the horizontal by earth movements that took place when the Simi Valley syncline (discussed later) was formed.

During the time when the sediments comprising the Chatsworth Formation were accumulating, much of southwestern California (including the Simi Hills region) was several degrees of latitude farther south than it is today. Most of southwestern California may have been situated on a part of the crust that had been moving northward along the western edge of the North American continent for many millions of years before Chatsworth Formation time. Collision between this part of southern California and North America may have taken place just after Chatsworth Formation time. When the Chatsworth Formation was accumulating, however, the Simi Hills and the Santa Monica Mountains were together, possibly in an area that is now the Santa Ana Mountains in Orange County. During Miocene time about 60 million years later, they were separated from each other to their present locations by lateral movement along active faults.

The Chatsworth Formation accumulated when dinosaurs were present in the western United States. Dinosaurs, however, were not present in the Simi Valley area because of the existence of deep-sea conditions. The types of fossils found in the Chatsworth Formation are mainly deep-water microfossils of one-celled organisms called benthic foraminifera. Near the base of the formation, macrofossils (fossils large enough to be studied without the aid of a microscope) are found in beds that were deposited in somewhat shallower water than most of the rest of formation. These macrofossils, mostly snails (gastropods), clams (bivalves), ammonites (extinct creatures related to modern nautiloids), and shark teeth, were deposited in temperate (cool) waters. A total of approximately 54 species of snails, clams, and ammonites have been reported from the Chatsworth Formation. Some of the ammonite shells are quite large. They can be nearly two feet (60 cm) in diameter and weigh over a hundred pounds.

Some oil has been found in the Chatsworth Formation, but only in the Horse Meadows oil field north of Northridge. It is one of the few fields in southern California in which oil has been obtained from Cretaceous rocks.

Overlying the Chatsworth Formation is the Simi Conglomerate, which was deposited during the earliest part of the Cenozoic Era. The two formations are separated by an erosional surface called an unconformity. Following deposition of the Chatsworth Formation, the deposits were uplifted and subsequently eroded to produce the unconformity. The uplift may have been

caused by the above-mentioned collision between southwestern California and North America. The gravels and sands that make up the conglomerate and sandstone deposits of the Simi Conglomerate were derived from nearby mountainous highlands to the east. Some of the rivers that cut through these mountains probably flowed from regions now in the Mojave Desert of southeastern California.

Along the south end of Burro Flats, in the Rocketdyne Santa Susana Field Laboratory area at the top of Simi Hills. the Burro Flats fault (Figure 1) bends to the north where it passes into another fault, called the Runkle Canyon fault, about 0.5 miles (0.8 km) west of Runkle Canyon. Just west of where these faults are, the Simi Conglomerate is 490 feet (150 m) thick and is overlain by the Las Virgenes Sandstone and the Santa Susana Formation. Toward the western edge of Simi Valley, the Simi Conglomerate thins to just a few feet thick.

The Simi Conglomerate

The Simi Conglomerate, Las Virgenes Sandstone, and Santa Susana Formation west of the Burro Flats and Runkle Canvon faults represent a transitional sequence from river deposits to shallow-marine deposits to deepmarine deposits, respectively. Initially river, and then, shoreline to shallowmarine sands accumulated and make up the conglomerates of the Simi Conglomerate, the sandstones of the Las Virgenes Sandstone (300 to 640 feet thick = 100 to 195 m), and the lower part of the Santa Susana Formation, respectively. Eventually, as subsidence continued and waters deepened, silts and muds accumulated and make up the siltstones and mudstones of the remainder of the Santa Susana Formation. The total thickness of the Santa Susana Formation in this area is 3,370 feet thick (1,030 m). Macrofossils are locally abundant in the shoreline and shallow-marine deposits and consist mainly of many species of snails, clams, and nautiloids. The ocean waters were quite warm and subtropical species flourished. The gastropod Turritella was especially common at this time. Some fairly large specimens of nautiloids up to about 1 foot (30 cm) in diameter have been found, and a few specimens preserve their mother-of-pearl irridescence.

The sequence of Las Virgenes Sandstone and Santa Susana Formation formed mostly during Paleocene time, about 64 to 56 million years ago, and make up one of the best exposures of marine rocks of this age anywhere in western North America.

East of the Burro Flats and Runkle Canvon faults, the Simi Conglomerate and the Santa Susana Formation both consist of deep-marine deposits that accumulated in a similar fashion as the submarine-fan deposits of the Chatsworth Formation. The Simi Conglomerate in this area is quite variable in thickness and ranges from 100 to 1,440 feet (30 to 440 m), and the thickness of the Santa Susana Formation in this area is about 3,400 feet (1,050 m). Nonmarine deposits are not recognized on this side of the fault; nor is the Las Virgenes Sandstone. Shallow-marine macrofossils are locally abundant in the lower part of the Santa Susana Formation east of the Runkle Canvon area, but the shells were transported by ocean currents from nearby shallowmarine waters into the deeper marine waters. The shells consist mostly of warm-water, subtropical snails and clams. Also some nautiloids, scaphopods (tube-dwelling animals closely related to snails and clams), and shark teeth have been found. A total of about 145 species of macrofossils have been collected from the Santa Susana Formation east of the Runkle Canvon area.

The uppermost part of the Santa Susana Formation east of the Burro Flats and Runkle Canyon faults formed during earliest Eocene time, about 56 million years ago. The sandstones in this part of the formation reflect a shallowing event. Locally, warm-water snails, clams, and solitary corals can be found.

The Burro Flats and Runkle Canyon faults are very significant because they put, side-by-side, deposits of the same age but of vastly different types of environments. The deposits on either side of the fault complex, nevertheless, look quite similar.

Exposures of the deep-marine Simi Conglomerate can be observed on the south side of the Simi Valley Freeway in a roadcut between Kuehner Drive

and the Yosemite Avenue overpass. The overlying Santa Susana Formation is exposed a short distance to the west along the north side of the Simi Valley Freeway in the vicinity of the Yosemite Avenue overpass, where steel-gray deep-marine mudstones form low hills.

THE LLAJAS FORMATION

Overlying the Santa Susana Formation, on both sides of the Burro Flats and Runkle Canvon faults, is the Llajas Formation, which was deposited during most of Eocene time, about 54 to 50 million years ago. An unconformity separates the two formations. Following accumulation of the Santa Susana Formation, uplift resulted in erosion of some of this formation. The gravels that make up the conglomerate at the base of the Llajas Formation were deposited at the shoreline by rivers that flowed through a nearby mountainous highland to the east. Eventually, subsidence allowed the return of ocean waters, which, through time, deepened enough to allow formation of a thick section of shallow-marine storm-influenced sands, followed by a thin section of moderately deep-marine silts. These sediments make up the sandstones and siltstones of the formation. The thickness of the Llajas Formation is about 1,790 feet (545 m). Locally, macrofossils are very abundant in the shallow-marine deposits and consist mainly of warm-water, subtropical benthic foraminifera, snails, clams, and nautiloids. Also, some scaphopods, crabs, heart-urchins, and shark teeth have been found. A total of 107 species of macrofossils have been collected from the Llajas Formation, and some representative species are shown in Figure 2. These species are from a threefeet-thick (90 cm) sandstone layer known as the "Stewart bed."

Although most of the fossils in the Llajas Formation were concentrated in channels by means of the action of storms, the fossils in the "Stewart bed" lived together in a community that was positioned at the edge of a slope where the ocean floor began to deepen significantly. This slope edge was at least 6 miles (10 km) long, and it was where ocean currents upwelled and brought plentiful food to the animals.

Deposition of the Llajas Formation coincided with the warmest time of the Cenozoic Era about 54 million years ago. The early Eocene was the time of the last true greenhouse climate in the world. Warm climate was widespread because there was no land situated over the poles, and as a result, there was little mixing of the cooler polar waters with the warmer ocean waters elsewhere in the world. Even in the high Arctic, conifer-hardwood and deciduous-hardwood forests blanketed the land. Conditions were warm enough to support palms, cycads, tortoises, and alligators at a latitude of 77 degrees north in Ellesmere Island, Canada. Tropical to subtropical conditions extended as far north as southern England and probably as far north as the Gulf of Alaska. The Atlantic Ocean was narrower than today, and Central America was under water. There was a strong equatorial current that extended from the area now known as Pakistan, north Africa, and France into the Central American region. A branch of this current also extended along the west coast of North America. Many of the snail and clam species found in the Llajas Formation are closely related to species found in Pakistan, north Africa, and France. A few are the same.

As will be mentioned later, oil has been found in the Llajas Formation. Some of the wells that produce oil from the Llajas Formation were drilled just after the turn of the century, and a few of these wells still have the original oil-drilling equipment in daily operation (Figure 3). In lower Chivo Canyon on Marr Ranch, in the northeastern part of Simi Valley, there is also an active oil seep associated with oil-saturated sandstone of the Llajas Formation.

The Llajas Formation is not accessible to the public anywhere in Simi Valley, except in one very small exposure along Tapo Canyon Road at the mouth of Tapo Canyon, north side of Simi Valley. The conglomerate at the base of the Llajas Formation makes up a ridge just east of the golf course along the mouth of Las Llajas Canyon, near the northern end of Stearns Street. Grass-covered foothills on both sides of Runkle Canyon, on the south side of Simi Valley, consist of the Llajas Formation.

THE SESPE FORMATION

Overlying the Llajas Formation is the Sespe Formation which was deposited during middle Eocene to late Oligocene time, about 45 to 24 million vears ago. An unconformity separates the two formations and indicates uplift and erosion of the Llajas Formation prior to deposition of the Sespe Formation. The Sespe Formation, which is 5,430 feet thick (1,655 m), consists almost entirely of flood deposits laid down in river channels and on the adjacent floodplains. Initially, there were braided rivers (similar to those in southern California today) characterized by sand and gravel bars. Then, after much deposition, the land became fairly level, and muddy meandering rivers (similar to the Mississippi River) crossed the broad floodplains. During the time when the rivers changed from braided to meandering, and throughout the time of the meandering rivers, abundant land animals lived in the rivers and along the shores of the rivers. Among these animals were freshwater snails and clams, fish, frogs, turtles, snakes, crocodiles, birds, rodents, primitive land mammals (for example, rhinoceroses and camels), and primates. For a more elaborated treatment of these types of fossils and the environments in which they lived, see Lander (this volume). Toward the end of Sespe time, renewed uplift caused the return to braided rivers and the accumulation of sands and gravels.

Exposures of the Sespe Formation (lower to middle parts) are extensive along the north side of Simi Valley Freeway, especially near Madera Road. There are also excellent exposures along Tapo Canyon Road on the north side of Simi Valley. The Sespe Formation (lower part, braided-river deposits) is exposed in some of the foothills between Erringer Road and First Street on the south side of Simi Valley.

As will be mentioned later, oil and gas have been found in the Sespe Formation on the north side of Simi Valley.

During upper Sespe Formation time, there was a dramatic change in the interaction between the oceanic plate and the western edge of the North American continent. A transform fault offsetting the East Pacific Rise that had been pushing the oceanic plate to the west since Cretaceous Formation time now intersected the western margin of North America in the vicinity of central California. When this happened, about 30 million years ago, the subduction margin was slowly replaced by a margin in which the oceanic plate slipped past one another horizontally (in a sideways motion). This slippage occurred along the large transform fault associated with the sea-floor spreading center. Slippage has continued northwest and southeast of the intersection to present day at a rate of about 2 inches (5 cm) per year; hence, the transform fault has been increasing in length. Today, the transform fault is represented by the San Andreas fault. Slippage along this fault has caused the earth's crust west of the fault to move northwest away from the rest of southern California, which lies east of the San Andreas fault. In about 10 million years, Los Angeles will be adjacent to San Francisco.

VAQUEROS FORMATION

The top of the Sespe Formation interfingers with shallow-marine deposits at the bottom of the overlying Vaqueros Formation, which was laid down during late Oligocene to early Miocene time, about 23 to 20 million vears ago. The Vaqueros Formation consists of sandstone and siltstone that represent a transitional sequence from marsh and beach to shallow-marine deposits. The formation is about 1,600 feet thick (310 m) near the northwestern margin of Simi Valley but is not present east of the Big Mountain area because of erosion that took place prior to the deposition of the overlving Calabasas Formation. Volcanic glass debris in the Vagueros Formation indicates active volcanism was occurring during deposition of this formation. Initially, the ocean waters spread northward and eastward across a relatively flat coastal floodplain with wave-dominated sandy beaches and coastal salt marshes. Continued deepening of the marine environment resulted in a fairly deep offshore shelf environment, but water depths did not exceed 180 feet (60 m). Gradual uplift or a sea-level rise then took place, with an associated decrease in water depth. Limestone beds composed almost entirely of snails, large oysters, other large clams, and barnacles are fairly common in

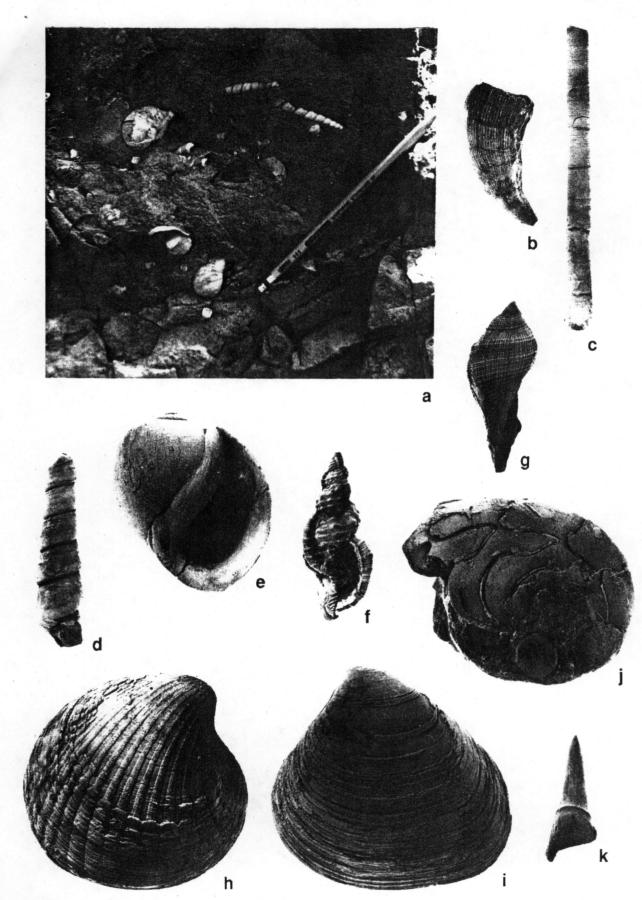


Figure 2. Representative macrofossils from the marine "Stewart bed" of the Llajas formation, north side of Simi Valley. All specimens are the same ones used in Squires (1984); a) typical exposure of the "Stewart bed"; b) solitary coral, Trochocyathus striatus, height 36 mm; c) scaphopod, Dentalium stentor, height 76 mm; d) snail, Turritella andersoni lawsoni, height 38 mm; e) snail, Eocernina hannibali, height 47 mm; f) snail, Cymatium (Septa) janetae, height 43 mm; g) snail, Ficopsis remondii crescentensis, height 43 mm; h) clam, Venericardia (Pacificor) hornii calafia, height 110 mm; i) clam, "Crassatella" uvasana, height 58 mm; j) nautiloid, Aturia myrlae, height 26 mm; k) shark tooth, Odontaspis sp., height 32 mm.

Figure 3. A turn-of-the century oil-well pump, used until recently on the Marr Ranch, northeastern Simi Valley. Photograph by R. L. Squires.

the shallow-marine, upper part of the formation. A representative snail and scallop are shown in Figure 4. The Vaqueros Formation in Simi Valley has also yielded a few marine mammals (porpoise and sea lion). The formation is exposed only in the northwestern part of Simi Valley on the south flank of Big Mountain.

CONEJO VOLCANICS

Overlying the Vaqueros Formation near the western margin of Simi Valley is a thin interval of Conejo Volcanics, and an unconformity separates the two formations. The Conejo Volcanics first accumulated as submarine lava flows, but eventually the volcanic pile became emergent through continued outpouring of lava flows and volcanic debris during middle Miocene time. The volcanics are not present beyond the north-central part of Big Mountain because of erosion that took place prior to the deposition of the overlying Calabasas Formation. The source area for the volcanics is the Conejo Hills southwest of Simi Valley. Radiometric age dates of the volcanics indicate that the Conejo Volcanics accumulated about 14 million years ago. The chemical composition of the Conejo Volcanics strongly points to a subduction zone-related origin for these rocks. Why there was volcanic activity during Conejo time is not clear, but some form of subduction may have occurred. Soon thereafter, slippage (discussed earlier under the Sespe Formation) along the San Andreas fault caused the presumed subduction-zone activities in the Conejo Hills area to cease because no more volcanic activity took place after 14 million years ago.

Exposures of the Conejo Volcanics are also present along Olsen Road in the vicinity of the Ronald Reagan Presidential Library and underlying the hill with the cross on it. At these two locales, the Conejo Volcanics are about 200 feet thick (60 m). The volcanics also flowed southward into the western Santa Monica Mountains area.

The Calabasas Formation

The Calabasas Formation was deposited during middle Miocene time about 13 million years ago. Near the extreme northwestern corner of Simi Valley (Figure 1), the formation overlies the Conejo Volcanics and an unconformity separates the two formations. Elsewhere along the south flank of Big Mountain, the Calabasas Formation overlies the Vaqueros Formation and an unconformity separates the two formations. The Calabasas Formation is about 295 feet (90 m) thick near the western margin of Simi Valley but is not present east of Big Mountain because of erosion that took place prior to the deposition of the overlying Modelo Formation. The sandstones of the Calabasas Formation are composed of beach sands and nearshore-marine deposits. Fossils are fairly common and include barnacles, scallops, sand dollars, and some whale vertebrae. In the Simi Valley area, the Calabasas Formation is present only in the northwestern part of Simi Valley on the south flank of Big Mountain.

The Modelo Formation

The Modelo Formation overlies the Calabasas Formation and an unconformity separates the two formations. The Modelo Formation was deposited during middle Miocene time, about 12 to 6 million years ago. The formation is 1,970 feet thick (600 m). The basal part of the formation consists of silty sandstone extremely rich in shallow-water benthic foraminiferal microfossils. The remainder of the Modelo Formation consists of diatomite. a soft white siliceous (rich in silica) deposit that formed in a cold, deepmarine environment and is composed largely of the remains of microscopic floating algae (diatoms). Tremendous diatom blooms were responsible for stagggering numbers of diatoms which subsequently died and settled to the ocean floor. This high productivity was spawned by late Miocene climatic cooling which intensified oceanic upwelling. The deep basinal depositional setting of the Modelo Formation was similar to the present offshore southern California continental borderland, the Gulf of California, and the western margin of South America. The basin in which the Modelo Formation in Simi Valley accumulated subsided rapidly and received a considerable thickness of sediment. These organic-rich deposits are the primary source for the rich oil accumulations in various rock units in Simi Valley.

The white diatomite in the Modelo Formation forms very distinctive exposures. Diatomite is exposed along the flank of Big Mountain, just west of Tapo Canyon, and forms a prominent cliff that many residents of Simi Valley refer to as "White Face." The top of Big Mountain is also made up of Modelo Formation diatomite. There are no stands of trees on top of Big Mountain because diatomite is not conducive to having water flow freely through it, and, therefore, deep-rooted plants cannot grow there. It is interesting to note, that the "rolling-hills" look that Big Mountain possesses resembles grass-covered hills of the Midwest. For that reason, movie companies filmed in the vicinity of Big Mountain when they wanted the "look" of Kansas or Minnesota. Many of the outdoor scenes in the TV series "Gunsmoke" were shot in the Big Mountain area. Also, the scene of Laura Ingalls running down a grassy, flowered-covered slope in the opening of the TV series "Little House on the Prairie" was filmed with Big Mountain landscape. The set of the town of Walnut Grove (supposedly a town in Minnesota) in the show "Little House on the Prairie" was built on the top of Big Mountain at its east end.

The Modelo Formation in Simi Valley has also yielded remains of land plants, clams, fish, whale bones, and possibly sea lions.

During Miocene time, there seems to have been 64 to 81 degrees of clockwise rotation of the western Transverse Ranges. Also, within the last few million years, a large "bend" has formed in the San Andreas fault in southern California north of the Transverse Ranges. This "bend" has caused the crustal plates to push against each other, as well as to slip past each other. Forces related to the pushing have caused rock layers south of the fault to be extremely compressed and form geologic structures or folds called synclines and anticlines, or to be cut and offset by faults.

Simi Valley is situated in a syncline caused by the compression (pushing) related to the "bend" in the San Andreas fault. A syncline is a "U"-shaped fold in which the rock layers are younger in geologic age nearer the middle of the structure. Simi Valley, furthermore, is in a syncline that plunges (tilts) downward in a westwardly direction. In order to visualize a plunging syncline, take a piece of paper, fold it into a "U" shape, and tilt it down and away from you.

Big Mountain just north of Simi Valley is an anticline. An anticline is an inverted "U"-shaped fold in which the rock layers are older in geologic age near the middle of the structure. If the rock conditions are right, oil can accumulate along the axis of an anticlines, and Big Mountain is one such

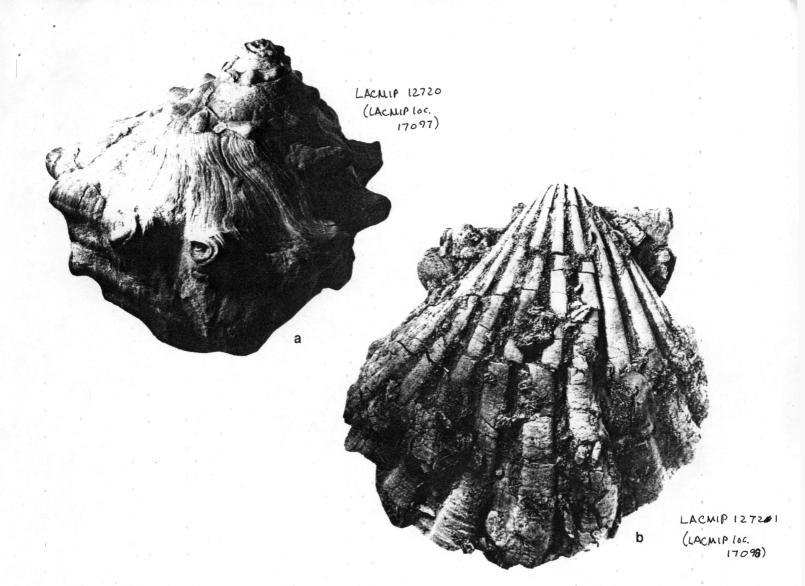


Figure 4. Two representative macrofossils from the Vaqueros Formation, Big Mountain Oil Field area, north side of Simi Valley. Both specimens photographed by R. L. Squires; a) snail Rapana vaquerosensis imperalis, height 100 mm; b) clam Macrochlamis magnolia, height 130 mm.

example. A significant quantity of oil has been found in the Big Mountain Oil Field by the Unocal Corporation. Production is from the Sespe and Llajas formations.

THE SIMI FAULT

The Simi fault is present along the base of the nearly straight foothills just north of the floor of Simi Valley. The fault, which parallels the Simi syncline and the Big Mountain anticline, trends in an east-west direction (Figure 1). The fault is part of the Simi-Santa Rosa fault system, which is about 30 miles (48 km) long. This fault system extends from the vicinity of Devil's Canyon, which is north of Chatsworth, to near the city of Camarillo. In Simi Valley, the Simi fault is not exposed because it is covered by alluvium.

The Simi fault system may have formed as early as 15 to 12 million years ago, but compressional forces since then have been responsible for most of the uplift associated with the fault. Recent studies indicate that the Simi fault has only a very low level of seismic activity, and, therefore, the fault is classified as being only potentially active. An "active" fault is one that has displayed movement within the last 10,000 years (Holocene time).

The Simi fault is not clearly understood. Most geologists believe that along most of its course, the northern side is uplifted and has been pushed out over the southern side by earthquakes related to compressional forces; thereby, producing a reverse fault (Figure 5). Some geologists believe that this reverse fault cuts into the earth at a relatively low angle and should be referred to as a thrust fault. The amount of vertical displacement of rock units cut by the Simi fault is about a mile (1.6 km) near the western margin of Simi Valley but only about 1,000 feet (300 m) in the vicinity of the Marr Ranch in the northeastern part of the valley.

There is also a small component of horizontal (sideways) slippage movement on the Simi fault. In a few places, such as the Chivo Canyon area on Marr Ranch in northeastern Simi Valley, exposures of the upper Santa Susana Formation and the Llajas Formation have been offset by the Simi fault and moved about 0.5 mile (0.8 km) to the west relative to the exposures of these rock units on the other side of the fault (left-lateral offset) (Figure 1).

The Simi anticline lies just north of the Simi fault between Madera Road and Tapo Canyon Road. This anticline parallels the trend of the fault, and is the result of bending (or drag folding) of rock layers in the immediate vicinity of the Simi fault (Figure 5). Low amounts of oil and gas have been extracted from porous sandstones of the Llajas and Sespe formations.

The Cañada de la Brea (C.D.L.B.) reverse fault north of the Simi Valley Freeway in the northwestern part of Simi Valley (Figure 1) is another fault that has drag folds (Figure 5). The C.D.L.B. Oil Field has produced oil from these folds.

THE SAUGUS FORMATION

The Saugus Formation overlies the Modelo Formation, and an unconformity separates the two formations. The Saugus Formation is about 2,130 feet thick (650 m). The lower part was deposited in a shallow-marine environment adjacent to a wave-dominated river delta. The sandstones in this part of the formation are locally very rich in fossils. A total of 106 species of macrofossils have been collected. Most are shallow-marine, cool-water snails and clams (especially oysters and scallops). Some representative macrofossils are shown in Figure 6. Locally, the oyster shells are abundant enough to form limestone beds called oyster coquinas. Some of these coquinas have been commercially quarried as a source of calcium. Some of the Saugus Formation snail and clam species still thrive in cool, shallow waters off the coast of California.

Also found in the lower part of the Saugus Formation, which was deposited mostly during Pliocene time about 3 million years ago, are some brachiopods (lamp shells), bryozoans, scaphopods, barnacles, sea urchins, sand dollars, great-white shark teeth, and a small collection of the rare remains of birds (albatross), baleen whales, a beaked whale, and land plants (California Live Oak). The whale specimens are unstudied.

The upper part of the Saugus Formation, which was deposited during early Pleistocene time about 1.5 to 1 million years ago, was deposited by rivers crossing the subaerial (exposed) part of the river delta. The sandstones and conglomerates in this part of the formation have yielded the remains of horse, tapir, deer, and mastodons in the northwestern San Fernando Valley (see Lander, this volume).

At the boundary between the lower and the upper parts of the Saugus Formation, shallow-marine beds interfinger with river deposits. Sand and gravel quarries in Tapo Canyon on the northern side of Simi Valley are in the Saugus Formation.

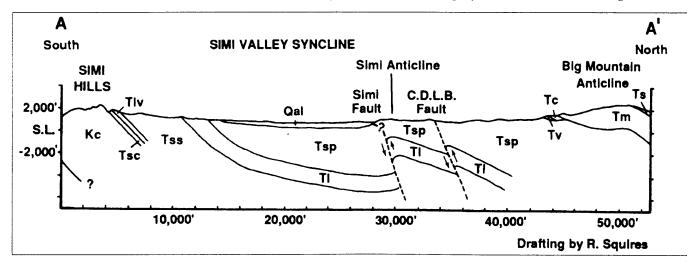
The Saugus Formation is not accessible to the public anywhere in Simi Valley. Most exposures of the formation are along the north and northeastern margins of Simi Valley. Erosion prior to the deposition of the Saugus Formation in this area (Figure 1) removed several formations and allowed the Saugus Formation to directly overlie the Llajas Formation and, locally, overlie the Santa Susana Formation.

Terrace deposits locally overlie the Saugus Formation and other formations in the northern part of Simi Valley. These nonmarine deposits consist of river-transported debris derived from underlying rock units, especially from the Modelo Formation. The terrace deposits have yielded the remains of extinct. Pleistocene land mammals, including horse, ground sloth, and mammoth that lived about 500,000 years ago (see Lander, this volume). During the Pleistocene, southern California was much cooler and wetter than today.

The Simi Alluvium

The youngest deposit in Simi Valley is the alluvium, which is unconsolidated sediment that underlies the floor of Simi Valley. The alluvium, which has been deposited by modern streams flowing across the valley floor, is several hundred feet thick. As mentioned earlier, Simi Valley is a westwardly plunging syncline. Groundwater, therefore, flows toward the western end of the valley, and the water table (depth to free-flowing underground water) is very shallow. Artesian water would flow in this area if rainfall and surface drainage were sufficient. If Simi Valley experienced a wet year, groundwater flowing westwardly in permeable beds (aquifers) within the alluvium would build up high hydrostatic pressure. If a well or fracture intersected any of the aquifers, there would be a flowing well or an artesian spring.

In retrospect, the Simi Valley region is a geologically complex area that has had a dynamic and varied history during the last 75 million years. The type of sediment deposited at any given time was dependent largely on geologic events occurring along the western edge of the North American continent. Simi Vallev has been profoundly affected by the change from a subduction margin to a slipping transform margin that occurred about 30 million vears ago and is presently still affecting western California from the Mexican border to north of San Francisco. Simi Vallev also has seen a profound change in marine climate from warm and tropical to cool and temperate. For most of the last 75 million years, Simi Valley has been covered by deep to shallow seas. Startling with Chatsworth Formation time and ending with lower Saugus Formation time, the sea advanced seven times across Simi Valley. Only during Sespe Formation time did the ocean retreat from the area for a relatively long interval. The present-day condition of Simi Valley is just a continuation of the retreat of the ocean that began when the upper part of the Saugus Formation began to be deposited about 1.5 to 1 million years ago.


ACKNOWLEDGMENTS

The author would like to thank certain land owners for graciously allowing me and my students to conduct geologic research on their private properties. Individuals include George Boyle (deceased), Phillip W. Gillibrand, Gerald Haigh (deceased), Wiff Haigh (deceased), Dale Poe, Orrin Sage, Jr., and Jim Runkle (deceased), R. Turley, and John Varble. Corporations include Brandeis-Bardin Institute, Getty Oil (now owned by Texaco), Lang Ranch Company, Marr Ranch Association, Moreland Development, Rocketdyne Santa Susana Field Laboratory, Southern Pacific Milling Company, Strathearn Cattle Company, and Unocal Corporation. Without their cooperation, attempts to better understand the geologic history of Simi Valley would have been impossible.

The author thanks Simi Valley residents David Liggett and Erica Sheldon who kindly read an early version of the manuscript and offered suggestions that improved it. The manuscript also benefited from a review by Bruce Lander (Paleo Environmental Associates, Inc.).

E. Bruce Lander supplied information about the fossils of back-boned animals in Simi Valley. Lawrence G. Barnes (Natural History Museum of Los Angeles County) provided information on the types of marine back-boned animals found in the Saugus Formation. Tony Marro and Ali Tabidian, both of California State University, Northridge, shared their knowledge about groundwater conditions of Simi Valley. Peter W. Weigand, California State University, Northridge, shared his knowledge of the Conejo Volcanics. (See appendix for literature cited.)

Figure 5. Geologic cross section of western Simi Valley along a longitude coincident with A-A' in Figure 1. Modified from Collender (1991, cross-section A) in Blake and Larson (1991). Horizontal scale equals vertical scale. Geologic symbols same as those used in Figure 1.

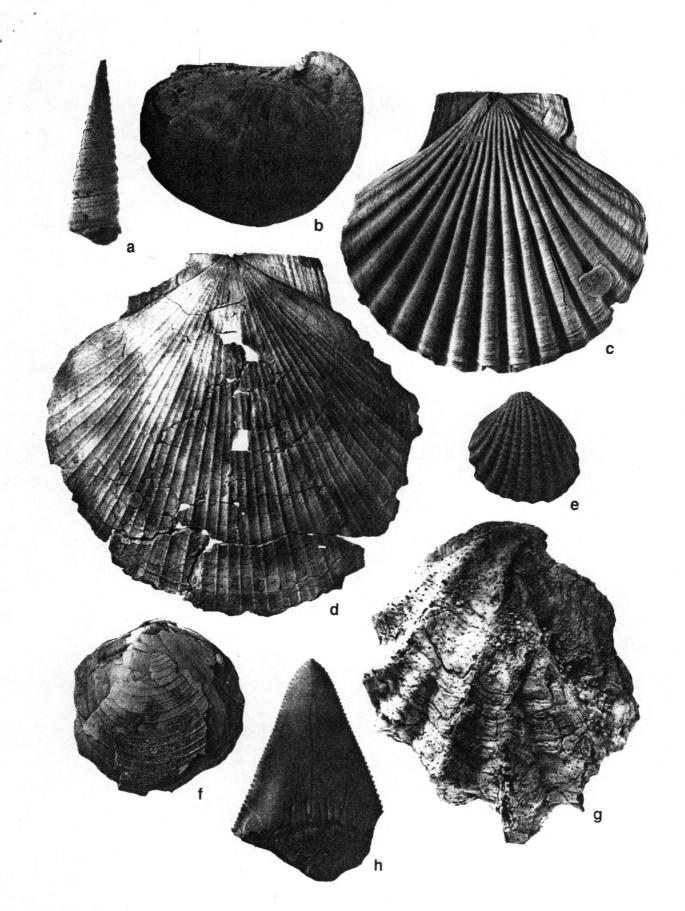


Figure 6. Representative macrofossil from the marine part of the Saugus Formation, north side of Simi Valley. All specimens are the ones used in Squires and White 1983 in Squires and Filewicz 1983; a) snail Turritella cooperi, height 33 mm; b) snail Crepidula princeps, width 90 mm; c) clam Pecten (Pecten) bellus, height 55 mm; d) Patinopecten healeyi, height 156 mm; e) clam Cyclocardia occidentalis, height 18 mm; f) clam Lucina (Lucinoma) annulata, height 52 mm; g) clam Dendostrea vespertina, height 86 mm; h) great-white shark tooth Carcharodon sp., height 60 mm.

SIMI VALLEY A JOURNEY THROUGH TIME To Lindsey Grover, Sincerely-Patricia Havens 1/24/98

Historical Text by Patricia Havens

Photographs Compiled and Edited by Bill Appleton Bill Aplate

* *

Published by the Simi Valley Historical Society and Museum 1997