Nel, A, Martinez-Delclos, x. Arilló A, : Penaluer E. 1999

 Palaeontology

 Palaeontology}

VOLUME 42 • PART 2 • APRIL 1999

Published by

The Palaeontological Association • London
Price $£ 40 \cdot 00$

THE PALAEONTOLOGICAL ASSOCIATION
 (Reqistered (harity No. 276.369)

The Associaton was bounded in 19576 promote rescarch in pataontology and its allied sciences.

COUNCIL 1998-1999

 Edinburgh EH9 3JW
Wheprestents: D) K M. (Onks, Depatment of Geology. National Museum and Gallery of Wales. Cardiff CFl $3 N P$
 Kent MEt + AW

Instimional Membership Ticasmer: Dr J. I. Fraveis. Deparment of Earth Sciences. The University. Leeds LS_ 9JJ
Sectary: Dr M. P. Sman, School of Earth Sciences. Iniversity of Birmingham. Birmingham B15 2 TT
 Edinhurgh EH9 3JW Ico-opted)
Nemstetter Reporter: D) P. PI aroon. (eology Deparment. Liniversity of Bristol. Wills Memorial Building. Queens Road. Bristol BSS IR.J
Markating Manager: Dr A. KiNi English Nature: Northminster Housc. Peterborough PEI 1UA

Eiditor:
Dr D. M. L NWiN, Institut fü Paläontologie. Museum fïr Naturkunde der Humboldt-Universität Berlin. Invalidenstrasse 43. D) 10115 Berlin. Germany

Or R. Wrom. Department of tarth Sciences. Universil! of Cambridge, Downing Street, Cambridge CB2 3EQ Dr D. A. T. Harprar, Geologish Museum. (ophenhagen University. Oster Voldgade 5-7.7.1350 Copenhagen K, Denmark Dr.A. R. Hemstry. Department of Lath Sciences. University of Wales College of Cardiff. Cardiff CFl 3 YE D) I. (\% A K. Universit! Museum of Zonlogy. University of Cambridge. Downing Street. Cambridge CB2 . 3 EJ Dr B. M. Cox. British Geological Survey: Keyworth, Nottingham NG12 5GGi
Dr I) K. Lormali (Technical Edion). Deparment of Geology, University of Portsmouth. Burnaby Building. Burnaby Road. Portsmouth POI 3QL
(Ohtre Members. Dr M. J. Smms. Department of Geology. Ulster Museum Botanic Gardens. Belfast BT9 5AB MrI: W. J. Briavi. 27. The Crescent, Maidenhead, Berkshire SL6 6AA

Ouerseas Represontatives

Arecotima: Dr M. O. Minctànoo. Division Paleoroologia invertebrados. Facultad de Ciencias Naturales y Museo. Paseodel Bosque.
 Profesor S. H. Whamms. Department of Earth Sciences. Memorial Liniversity, So John s. Newfoundland AlB 3X5. China: Dr Chang Met-M D) Rova; Jt-rl, Nimjing Imtitute of Geology and Palatontology, Chi-Ming-Ssu. Nanjing. France: Dr J.-L. Henry. Institut de Géologic. Universté de Rennes, Campus de Beaulieu. Avente du Général Leclere, 35042 Remes Cédex. Ihería: Professor F. Aavarez. Departamento de Geologia. Enisersidad de Oviedo. Cl. Jésus Arias de Velasco, s/n. 33005 Oviedo. Spain. Japan: Dr I. Hayami. University Muscum. Universits of Tokyo. Hongo 7-3-1. Tokyo. New Zealand: Dr R. A. Cooper, New Zealand Geological Survey, P.O. Box 30368 . Lower Hutt. Scandinavia: Dr R. Bromat:Y, Fredskowej 4. 2840 Holte, Denmark. USA: Professor A. J. RowebL. Department of Geology. University of Kansas, Lawrence, Kansas 6 go 44 . Professor N. M. Savagi, Department of Geology, University of Oregon. Eugene, Oregon 97403. Professor M. A. Warson. Deparment of Geology. College of Wooster. Wooster. Ohio +4961 . Gemmam: Profensor F. T. Fïrtsem. Institut für Paläontologie, Universität. D8700 Würzhurg. Pleicherwall 1

MEMBERSHIP

Membership is open to indis iduats and institutions on payment of the appropriate annual subscription. Rates for 1999 are:
Institutional membership . . $95.00(\mathrm{~L} . \mathrm{S} . \$ 190)$ Studentmembership £10.00 (U.S. $\$ 20)$
Ordinarymemberhip . . £28.00 (U.S. 850$)$ Retiredmembership . . . E14.00(U.S. $\$ 25$)
There is no admission fee. Correspondence concerned with Institutional Membership should be addressed to the Executive Officer. Student members are persons receising full-time instruction at educational institutions recognized by the Council. On first applying for membership, an application form should be obtained from the Executive Ofticer. Subseriptions cover one calendar year and are due each January: they should be sent to the Membership Treasurer. All members who join for 1999 will receive Palueontologs: Volume 22. Pats 1-6. Enquiries conceming back numbers should be directed to the Executive Officer.

Non-members may subseribe. and also obtain back issues up to five years old. at cover price through Blackwell Publishers Journals. P.O. Box 805 . I OX Cowley Road. Oxford OX + IFH. UK. For older issues contact the Executive Officer.

US Mailing: Periodicals postage paid at Rahway. New Jersey. Postmaster: send address corrections to Palceomtology: c/o Mereury Airfreight Intemational LId. 36.5 Blair Road. Avenel. NJ 0700 I . USA (US Mailing agent).
This joumal is accedited with the International Association for Plan Taxonomy for the purpose of registration of all fossil plants.

Cover: Late meraspid pygidium of the Lower Cambrian eodiscid trilobite Shi-hudiscus longquanemsis, from Pengshui, Sichuan. South China, presersed by phosphatio inerustation: $\times 252$ (see Zhang and Clarkson 1993: Palceothtology, 36. 785-806).

A REVIEW OF THE EURASIAN FOSSIL SPECIES OF THE

BEE APIS

by A. NEL, X. MARTÍNEZ-DELCLÒS, A. ARILLO and E. PEÑALVER

Abstract

Fossil Apis species from the Oligocene, Miocene and Plio-Pleistocene of Eurasia are described and their relationships with Recent species are discussed. Several new populations of fossil bees are reported from the Oligocene and Miocene of France and Spain, including Apis aquisextusensis sp. nov. The present state of knowledge of fossil bee systematics is poor because of the general lack of preserved characters. Some of the problems, and items requiring further investigation, are identified.

MaA (1953) divided Recent Apis into three genera, Megapis Ashmead, 1904, Apis Linnaeus, 1758 and Micrapis Ashmead, 1904, which Michener (1944) had earlier regarded as subgenera of Apis. To these three, Zeuner and Manning (1976) added the fossil subgenus Synapis Cockerell, 1907 from the Upper Oligocene of France and Germany. We follow the subgeneric classification of Michener (1944) rather than the generic classification of Maa (1953) because there is no good reason to consider Synapis as a separate genus. It is not well-characterized and is almost a 'melting-pot' for the bees of the Oligo-Miocene with plesiomorphic characters in their wing venation. The use of the subgenus Synapis is still convenient for naming some Oligo-Miocene bees but is of little significance in a phylogenetic classification. Since Zeuner and Manning's (1976) work on fossil Apis, which omitted a species described by Riha (1973) from Bohemia, some new species have been discovered in China and Japan. In addition, we have recently found numerous specimens of fossil bees in the Oligocene of Provence, southern France and the Miocene of central France and Cerdanya in Lleida, Spain. We have also restudied the holotype of Synapis cuenoti Théobald, 1937. Our friend Mr P. Brisac has discovered well preserved fossil Apis in the Miocene of Ardèche, France and one of us has recovered two bees in the Miocene of Rubielos de Mora, Teruel, Spain. Localities which have yielded fossil Apis are shown on Text-figure 1.

We follow an amended venational nomenclature after Michener (1944), Eickwort (1969), Wootton (1979) and Alexander (1991), but not Maa (1953, p. 538). For the names of points of intersections of veins, we follow the nomenclature of Louis (1963, 1966, 1971) (see Text-fig. 2A and Table 5). The first article of the hind tarsus is here called the basitarsus (sensu Snodgrass 1956) (= metatarsus sensu Ruttner 1988).

Although phylogenetic studies of Recent Apis have been undertaken by Alexander (1991), Garnery et al. (1991), and Willis et al. (1992), summarized in Engel and Schultz (1997), it is nearly impossible to integrate fossil bees with these because of the lack of preserved characters. For example, following Alexander's (1991) study, we attempted to make a list of characters that could be examined in nearly all fossil material. We discovered only seven, as follows: (1), compound eyes hairy: present/absent; (2), angle (OSX) of forewing: $>45^{\circ} /<45^{\circ}$; (3), angle (SVY) of forewing: $>45^{\circ} /<45^{\circ}$; (4), distal abscissa of hindwing vein M: present/absent; (5), cell 2R: distally narrowed/not distally narrowed; (6) desclerotization of vein $1 \mathrm{~m}-\mathrm{cu}$ in the middle (forewing): on distal side only/on both sides; (7), cubital index: $>3 /<3$. The cubital index is usually named $\mathrm{Ci}(=\mathrm{CB} / \mathrm{CA}=\mathrm{a} / \mathrm{b}$ sensu Rutner 1988, p. 42, fig. 4.7, p. 72, fig. 6.8) $(=\mathrm{TS} / \mathrm{TV}$ sensu Louis 1971) (see Text-fig. 2A). As we have more fossil taxa than characters, it is hopeless trying to construct a phylogeny. Other characters used by Alexander (1991) or Garnery et al. (1991) are too delicate and usually not preserved in the available material. Construction of a phylogeny will only be possible after the discovery of further specimens and a careful revision of all the known material, especially the fossil bees which were described by $\operatorname{Statz}(1931,1934,1942,1943)$ and Armbruster (1938).

The following measurements, based on Ruttner (1988), give an idea of how intraspecific variation

text-fig. 1. Localities with fossil Apis. 1, Céreste, France; 2, Rott, Germany; 3, Camoins-les-Bains, France; 4, Aix-enProvence, France; 5, Kundratice, Czech Republic; 6, Rubielos de Mora, Spain; 7, Iki Island, Japan; 8, Shanwang, China; 9, Parschlug, Austria; 10, Randecker Maar, Germany; 11, Bellver de Cerdanya, Spain; 12, Gabbro, Italy; 13, Catania, Italy; 14, Saint-Reine, France; 15, Montagne d'Andance, France; 16, Kuala Lumpur, Malaysia.
within the Recent species of Apis can be relatively great: (1) for Apis cerana Fabricius, 1793, the forewing length varies between 7.5 and 8.9 mm , the forewing width varies between 2.6 and 2.7 mm , and the mean value of the cubital index is 4.40; (2) for Apis mellifera Linnaeus, 1758 , the forewing length varies between 7.64 and 9.75 mm (worker), the forewing width varies between 2.64 and 3.31 mm , and the mean value of the cubital index is 2.30 with a variation between 1.53 and 3.60 ; (3) for the Recent species of the Apis dorsata Fabricius, 1793 group, the forewing length varies between 12.5 and 14.5 mm ; (4) for Apis koschevnikovi (Buttel-Reepen, 1906), the forewing length varies between 8.5 and 8.8 mm , the forewing width varies between 2.9 and 3.1 mm , and the cubital index between 5.6 and 9.5 (Ruttner et al. 1989); (5) for Apis florea Fabricius, 1787, the forewing length varies between 6.5 and 7.0 mm (see Text-fig. 13).

It is difficult to establish the limits of any intraspecific variations in fossil Apis species. Comparisons with Recent taxa, based on biometrical analyses similar to those proposed by Ruttner (1988) or Ruttner and Tassencourt (1978), are impossible to make on the basis of the few available specimens. Furthermore, there is no guarantee that a phylogenetic classification could be constructed on the basis of such phenetic analyses (Penny 1982; Darlu and Tassy 1993). We prefer to use open nomenclature for many of the fossil
bee populations described herein because of difficulties of comparison with previously described species. The definition of several populations named herein species A, B, etc., is as informative as giving new species names and more realistic in view of the poor present state of knowledge of fossil bee systematics. In the following systematic descriptions of Eurasian fossil Apis, the taxa are ordered chronostratigraphically from old to young.

Repositories of specimens. The following abbreviations are used: EFN (Ecole Nationale des Eaux et Forêts, Nancy), LACM (Los Angeles County Museum), MNCN (Museo Nacional de Ciencias Naturales, Madrid), MNHN (Laboratoire de Paléontologie, Muséum National d'Histoire Naturelle, Paris), MPV (Museo Paleontológico, València), NHM (The National History Museum, London).

SYSTEMATIC PALAEONTOLOGY

Order hymenoptera Linnaeus, 1758

Family apidae Latreille, 1802
Tribe apini Latreille, 1802
Genus apis Linnaeus, 1758
Bees from the Upper Oligocene of Cereste, Vaucluse, France
Apis (Synapis) cuenoti Théobald, 1937
Text-figures 2B-G, 3A-E; Plate 1, figure 1
1937 Apis cuenoti Théobald, p. 401, pl. 8, fig. 16; pl. 28, fig. 8.
1953 'Apis' cuenoti Théobald; Maa, p. 631.
1969b Apis cuenoti Théobald; Kelner-Pillault, p. 525.
1976 Apis (Synapis) cuenoti (Théobald); Zeuner and Manning, p. 240.
1978 Apis cuenoti Théobald; Burnham, p. 122.
1984 Apis cuenoti Théobald; Lutz, p. 13, pl. 4, figs 15-16.
Type horizon. Upper Oligocene, Upper Stampian, lacustrine laminites.
Type locality. Céreste, Vaucluse, France.
Material. Holotype EFN no. 173 (nearly complete mummy; only distal half of abdomen, antenna and fore- and median legs missing; head deformed). MNHN-LP-R. 08383 (part and counterpart of thorax with a hind leg, a forewing, a hindwing and abdomen preserved connected), MNHN-LP-R. 08396 (state of preservation not good enough for detailed description); also a specimen figured by Lutz (1984).

Description. The original description of Théobald (1937, p. 401) is not very precise so, we give some additional details below.

Holotype: Body dark brown; abdomen black. Head 2.4 mm long, 3.6 mm wide. Diameter of eye $1.2-1.5 \mathrm{~mm}$. Distance between eyes 0.9 mm . Eyes have some little hairs; head hairy. Ocelli not visible. Thorax very hairy, deformed, 5.5 mm long, 5 mm wide. Abdomen very hairy; length of its preserved part 7.5 mm , width 5.5 mm . Wings hyaline. Forewing 12.6 mm long, 3.7 mm wide. Cell 2 R 4.5 mm long, 0.6 mm wide, distally closed but not distally narrowed. Cells IR and IRs similar to those of Recent Apis (Text-fig. 2B) but cell 2Rs clearly widened. Costal side of cell 1Rs distinctly shorter than posterior side (WX 0.5 mm , NS 2.1 mm). Vein 1 m -cu begins near base of cell 1 Rs. Pterostigma (Text-fig. 2D) similar to Recent Apis. Crossvein Icu-a opposite branching of M and CuA , in furcal position (Text-fig. 2E). Hindwing 9.5 mm long. Cells Rs and M well-separated by abscissa of vein M , and vein cu-a nearly makes right angle with 1A (Text-fig. 2C). Hind legs are not well preserved (Text-fig. 2F-G) but clearly without any spurs on their tibiae. Hind basitarsus 3.2 mm long, 1.2 mm wide. Femora 3 mm long, 0.7 mm wide. Tibiae $3.5-4 \mathrm{~mm}$ long, 1.2 mm wide. Hind tibiae covered with long hairs along outer margins.
R.08383: Body brown, wings hyaline. Thorax and abdomen hairy and only slightly deformed, visible in dorsal view.

TEXT-FIG. 2. A, Forewing of an Apis sp., showing the cells, veins and node nomenclature. B-G, Apis (Synapis) cuenoti Théobald, 1937; holotype EFN no. 173; Upper Oligocene, Céreste, Vaucluse, France. B, right forewing; c, right hindwing; D, detail of the right forewing pterostigma; E, detail of the forewing vein $\mathrm{cu}-\mathrm{a}$; F , left hind leg; G, right hind leg. Scale bars represents $1 \mathrm{~mm}(\mathrm{~B}-\mathrm{C}, \mathrm{F}-\mathrm{G})$ or 0.05 mm (D-E). Drawings made using a Camera lucida.

text-fig. 3. A-E, Apis (Synapis) cuenoti Théobald, 1937. A-C, MNHN R.08383; A, left forewing; B, left hind leg; c, left hindwing; D-E, MNHN R.08396; D, left forewing; E, left hind leg. F, Apis sp. A; MNHN R.08384; Upper Oligocene, Camoins-les-Bains, Marseille Basin, France; left forewing. Scale bars represent 1 mm . Drawings made using a Camera lucida.

Thorax $c .6 \mathrm{~mm}$ long and 5 mm wide. Abdomen 11.5 mm long, 5.5 mm wide. Forewing 12.6 mm long, 3.8 mm wide. Venation similar to that of holotype (Text-fig. 3A). Cell 2 R 4.6 mm long, 0.6 mm wide. Cell R 4.9 mm long. Cell 1 R 1.8 mm long, 0.6 mm wide. Cell 1 Rs 2.2 mm long, 0.6 mm wide. Cell $2 R \mathrm{~s} 2.3 \mathrm{~mm}$ long, 0.8 mm wide. XY 1.5 mm , VS 1.5 mm , ratio XY/VS 1 . WX 0.5 mm , NS 2.2 mm . Vein lcu-a in a furcal position, below branching of M and CuA. Hindwing similar to that of holotype (Text-fig. 3c). Vein cu-a nearly makes right angle with IA. One hind leg well preserved (Text-fig. 3B); visible structures similar to those of leg of Recent Apis: row of long hairs present along outer margin of tibia, corbicula present on tibia, rastellum at apex of tibia, tibia without any spurs, basitarsus widened, with long hairs aligned in ten rows along outer margin and with well-developed pollen press. Hind tibia 4.2 mm long, 1.2 mm wide. Hind basitarsus 3 mm long, 1.3 mm wide. Basitarsus obviously longer and broader than that of Recent Apis mellifera (Ruttner and Tassencourt 1978). Number of rows of bristles on basitarsus not determinable.
R.08396: Thorax 6.7 mm long, 5.6 mm wide. Forewing $c .11 \mathrm{~mm}$ long and 3.6 mm wide. Venation not well preserved but all visible parts strictly similar to those of holotype and R. 08383 (Text-fig. 3D). Cell 1 R 1.9 mm long, 0.5 mm wide. Cell 1 Rs 2 mm long, 0.5 mm wide. Cells 2 R and 2 Rs not completely preserved but probably similar to those of R. 08383 . Vein cu-a in somewhat prefurcal position, 0.2 mm before fork of $\mathrm{M}+\mathrm{CuA}$. Hind basitarsus 2.4 mm long, 1.2 mm wide. Femora 3.3 mm long, 0.7 mm wide. Tibiae 4.2 mm long, 0.9 mm wide. Hind tibia 1.75 times longer than hind basitarsus. Basitarsus distinctly shorter than that of R. 08383 and holotype; pilosity comparatively reduced (Text-fig. 2E). Mean of forewing length of three specimens 12 mm .

Remarks. The structure and hind leg pilosity show that R. 08383 and the holotype are workers (Snodgrass 1956). Maa (1953) and Zeuner and Manning (1976) attributed Apis cuenoti to the subgenus Synapis and considered that it could not be identified as Apis (Synapis) henshawi Cockerell, 1907 because of its eye pilosity and its very long wings. Although they considered that 'upon reexamination, the specimen may turn out to resemble this species more closely than is at present apparent', our study indicates that the two species are very different. A. cuenoti is close to Recent Apis because of the hairy eyes but resembles Synapis in having the forewing vein lcu-a opposite the fork of vein $\mathrm{M}+\mathrm{CuA}$. This last character, shared by numerous Bombini, is probably plesiomorphic within the tribe Apini.

Despite the opinion of Théobald (1937, p. 402), A. cuenoti has no clear phylogenetic affinities with Apis (Megapis) dorsata, from which it clearly differs in its venation. A. cuenoti is also clearly different from the Apis from Aix-en-Provence and Camoins-les-Bains, France (see below) because of its greater size.
R. 08396 has nearly the same venation as other specimens but its hind leg is very different, with a shorter basitarsus and reduced pilosity. It probably belongs to the same species but it could be a drone or a queen. The only known specimen of Apis (Synapis) henshawi kaschkei (Statz, 1931) from the Oligo-Miocene of Rott (Germany) also has a short basitarsus, and could also represent a different caste (drone or queen?).

Bees from the Upper Oligocene-Lower Miocene of Rott, Rheinland, Germany

Apis (Synapis) henshawi henshawi Cockerell, 1907

1907
1915
1934
1942
1943
1952
1973
1976
1978
1983

Synapis henshawi Cockerell, p. 229.
Apis oligocenica Meunier, p. 210.
Synapis henshawi Cockerell; Statz, p. 5, figs 1, 4-7.
Synapis henshawi Cockerell; Statz, p. 1, figs 2-4.
Synapis henshawi Meunier, Cockerell; Statz, pp. 103, 109, two unnumbered text-figs.
Apis (Synapis) henshawi Cockerell; Manning, pl. 1, fig. 3.
Synapis henshawi (Cockerell); Sphon, p. 55.
Apis (Synapis) henshawi Cockerell; Zeuner and Manning, p. 240.
Apis henshawi Cockerell; Burnham, p. 118, fig. 4, p. 122.
Apis henshawi Cockerell; Culliney, p. 32, fig. 1.

Type horizon. Upper Oligocene-Lower Miocene.
Type locality. Rott, near Bonn, Germany.
Material. Holotype in collection of Museum of Comparative Zoology, Harvard University, number unknown (Zeuner
and Manning 1976); LACM 3919 (Sphon 1973). The holotype of Apis oligocenica Meunier, 1915 is in the Heimatmuseum, Siegburg an der Lahn, Germany.

Apis (Synapis) henshawi dormiens Zeuner and Manning, 1976
1907 Apis dormitans (nec Heyden 1862); Cockerell, p. 228.
1908 Apis dormitans Cockerell; Handlirsch, p. 1357.
1931 Synapis dormitans Cockerell; Statz, p. 47, figs 1-9.
1931 Synapis dormitans (Cockerell); Statz, pp. 42, 46, figs 1a, 2b, 3c, 4a, 5-9.
1932 Synapis dormitans (Cockerell); Alfonsus, p. 275, unnumbered fig.
1933 Synapis dormitans (Cockerell); Watson, p. 48, unnumbered fig.
1934 Synapis dormitans (Cockerell); Statz, p. 1, figs 2, 8, 10.
1942 Synapis dormitans Cockerell; Statz, p. 1, figs 1, 5-6, 8-13, 20-21.
1943 Synapis dormitans (Cockerell); Statz, pp. 101, 105 and 108, three unnumbered text-figs.
1959 Synapis dormitans (Cockerell); Furst, p. 48, unnumbered fig.
1969 a Synapis dormitans Cockerell; Kelner-Pillault, p. 92, fig. B (p. 90), fig. B (p. 91).
$1969 b$ Synapis dormitans Cockerell; Kelner-Pillault, p. 528, figs 6, 9.
1973 Synapis dormitans (Heyden, 1862); Sphon, p. 55.
1976 Apis (Synapis) henshawi dormiens Zeuner and Manning, p. 241.
1978 Apis henshawi dormitans (Cockerell); Burnham, p. 122.
1989 Apis (Synapis) henshawi dormiens Zeuner and Manning; Lutz, p. 37, fig. 4.8.
Type horizon. Upper Oligocene-Lower Miocene.
Type locality. Rott, near Bonn, Germany.
Material. Holotype LACM 3915 and others in LACM (Statz coll.; listed by Sphon (1973) under the name Synapis dormitans); one specimen in Museum of Comparative Zoology, Harvard University, number unknown (Zeuner and Manning 1976); NHM In. 59634 and In. 36655.

Apis (Synapis) henshawi kaschkei (Statz, 1931) -

Plate 1 , figure 2
1931 Synapis kaschkei Statz, p. 50, figs 10-11.
1934 Synapis kaschkei Statz; Statz, p. 3, figs 3, 9.
1942 Synapis kaschkei Statz; Statz, p. 2, fig. 7.
1973 Synapis kaschkei Statz; Sphon, p. 55.
1976 Apis (Synapis) henshawi kaschkei (Statz, 1931); Zeuner and Manning, p. 243.
1978 Apis henshawi kaschkei (Cockerell); Burnham, p. 122.
Material. Holotype LACM 3920 (Sphon, 197), Statz coll.; Upper Oligocene-Lower Miocene; Rott, near Bonn, Germany.

Status of the subspecies of Apis (Synapis) henshawi
A. (S.) henshawi Cockerell, 1907 is the type species of the subgenus Synapis Cockerell, 1907. Zeuner and Manning (1976) considered that there were at least three subspecies of A. (S.) henshawi in the same outcrop of the Upper Oligocene-Lower Miocene at Rott which seens unusual and surprising. Normally, three (or even two) subspecies cannot be found in the same place because of possible hybridization. The validity of the subspecific status of the three 'forms' of A. (S.) henshawi is very doubtful. There are four possibilities. (1), The three 'forms' might not be of exactly the same age. If so, their subspecific status is feasible. However, this seems unlikely because we have found a similar phenomenon at Céreste, with the discovery of a specimen of A. (S.) cuenoti which has the same hind leg characters as A. (S.) henshawi kaschkei. The specimen of A. (S.) cuenoti was found in the same layer as normally developed specimens;
the two different 'forms' lived together at Céreste, and the same situation probably occurred at Rott. (2), The three 'forms' could be castes (worker, queen and drone) of the same species. This is highly probable for A. (S.) henshawi kaschkei, based on only one specimen, but is not very plausible for the numerous specimens of A. (S.) henshawi dormiens if, as seems likely, queens and drones were as rare in the ancient forest at Rott as they are now. (3), Polymorphism could be higher in the worker caste of Oligocene bees than today. (4), One or two of the 'forms', it not all three, were different species.

At present, the choice between these hypotheses cannot be made because of insufficient information about the taphonomy at Rott and the polymorphism of Oligocene bees. More collections are needed from Rott but also from other Oligocene outcrops, like Céreste, before the problem can be solved.
‘Apis' dormitans Heyden, 1862
1862 Apis dormitans Heyden, p. 76, pl. 10, fig. 8.
1976 'Apis' dormitans Heyden; Zeuner and Manning, p. 251.
Material. Holotype, NHM no. 58778; Upper Oligocene-Lower Miocene; Rott, near Bonn, Germany.
Remarks. According to Zeuner and Manning (1976), this species is an incertae sedis.

Bees from the Upper Oligocene of Marseille, Bouches-du-Rhône, France

Apis sp. A

Text-figure 3F
Material. MNHN-LP-R. 08384 (part and counterpart of a forewing, without any preserved coloration and pilosity) and MNHN-LP-R. 08385 (impression of bee in dorsal position; only thorax, abdomen, hind legs and forewings preserved; body covered by some chalk which masks details; only wings available for detailed study); Upper Oligocene, Upper Stampian, lacustrine laminites; Marseille Basin, Camoins-les-Bains, Bouches-du Rhône, France.

Description. R. 08384 (Text-fig. 3F): Wing 10 mm long and 3.4 mm wide. Cell 2 R 4.2 mm long, $0.5-0.55 \mathrm{~mm}$ wide, closed, slightly broader in proximal part than in distal part. Cell R 4.7 mm long. Cell 1 R 1.6 mm long and 0.6 mm wide. Cell 1Rs 2.1 mm long and 0.5 mm wide. Cell 2Rs 1.6 mm long and 0.5 mm wide. XY 0.6 mm , VS 1 mm , ratio XY/VS $0 \cdot 6$. Cell 2 Rs not widened. Structure of all cells identical to those of Recent Apis. Pterostigma small, similar to that of A. mellifera. Crossvein Icu-a in furcal position, exactly opposite fork between M and CuA .
R. 08385 : Thorax 3 mm long and 4 mm wide. Abdomen 6 mm long and 4.8 mm wide. Hind tibia 2.2 mm long and 0.9 mm wide. Length of hind basitarsus unknown, width 0.9 mm . Tibia and hind basitarsus widened but structure not determinable. Forewing venation similar to R.08384, except that crossvein Icu-a is in slightly prefurcal position, below division between M and CuA. Forewing about 10 mm long, width unknown. Vein cu-a of hindwing nearly perpendicular to vein 1 A .

Remarks. These specimens are clearly different from Apis aquisextusensis sp. nov. (see below) because of the narrow cell 2 R and the position of vein 1cu-a. The crossvein $1 \mathrm{cu}-\mathrm{a}$ of the forewing in a furcal position is characteristic of the subgenus Synapis. The specimens are smaller than A. cuenoti, and their narrow cell 2Rs also distinguish it from the latter.

EXPLANATION OF PLATE 1

Fig. 1 Apis (Synapsis) cuenoti Théobald, 1937; MNHN R.08383; forewing length $12.6 \mathrm{~mm} ; \times 2$.
Fig. 2. Apis (Synapsis) henshawi kaschkei (Statz, 1931) ... \quad orewing length $9.2 \mathrm{~mm} ; 6$.
Figs 3-4. Apis aquisextusensis sp. nov. 3, holotype, MNHN R. 08381 ; forewing length $8.5 \mathrm{~mm} ; \times 2$. 4, paratype, MNHN R.08382; forewing length $8.6 \mathrm{~mm} ; \times 5$.

Text-fig. 4. A-I, Apis aquisextusensis sp. nov.; Upper Oligocene, Aix-en-Provence, Bouches-du-Rhône, France. A-B, holotype MNHN R.08381; A, right forewing; B, left hindwing. C-E, H, paratype R. 08382 ; C, right forewing; D, right hindwing; E, left hind leg; H, detail of the junction between hind tibia and basitarsus. F-G, paratype MNHN R.10421; F, hind leg; G, apex of the abdomen; I, left forewing. Scale bars represent 1 mm (A-G) or 0.5 mm (H). Drawings made using a Camera lucida.

Even if these bees have dimensions similar to A. henshawi from the Oligocene of Rott, Germany, their narrow cell 2Rs is different and it is obviously impossible to identify them as A. henshawi. They probably belong to a new species but their fragmentary state of preservation does not allow us to name them specifically, because no obvious autapomorphic character can be established. More material is needed.

Bees from the Upper Oligocene of Aix-en-Provence, Bouches-du-Rhône, France

Apis aquisextusensis sp. nov.
Plate 1, figures 3-4; Text-figure 4

Derivation of name. After the latin name Aquae Sextus for Aix-en-Provence, the type locality.
Material. Holotype MNHN-LP-R. 08381 (a nearly complete insect (part and counterpart) in dorsal view; four wings well preserved; pilosity not visible; body partly deformed; organic matter replaced by calcium carbonate; no coloration preserved; only median parts of antenna preserved); paratypes R. 08382 (part and counterpart of a nearly complete bee in the same state of preservation) and R. 10421 (impression of a nearly complete bee in dorsal view); Upper Oligocene, Upper Chattian; Aix-en-Provence, Bouches-du-Rhône, France.

Diagnosis. Body length $12.7-12.8 \mathrm{~mm}$. Forewing 8.5 mm long. A little smaller than worker Apis mellifera. Metathoracic leg structures (tibia and basitarsus) similar to those of worker A. mellifera but metathoracic basitarsus shorter and narrower. Eyes appear bare. Cell 2R of forewing distally narrow and vein $1 \mathrm{cu}-\mathrm{a}$ in prefurcal position. Forewing cell 2Rs not widened. Hindwing crossveins 1cu-a and 1A nearly make right angle. Cells Rs and M of hindwing well separated.

Description. Holotype: Head 2 mm long, 3.2 mm wide, deformed and covered with long hairs which cannot be determined as either simple or plumose. Eyes 1.2 mm long and 0.7 mm wide, probably bare (no visible trace of pilosity). Thorax 4.3 mm long, 3.9 mm wide, covered with small hairs. Thoracic structures not well preserved. Abdomen elongate, 6.5 mm long, 4.5 mm wide, dorsally rather densely covered with hairs. Sternites not visible. Prothoracic and mesothoracic legs not well preserved. A metathoracic leg well preserved. Metathoracic tibia widened, 3 mm long, 0.95 mm wide, covered with hairs along outer margin. Rastellum (sensu Snodgrass 1956) on distal apex and no spur. Hind basitarsus widened, covered with hairs along outer margin and with well-defined pollen press (sensu Snodgrass 1956). Forewing 8.5 mm long and 2.8 mm wide (Text-fig. 4A). Cell 2 R very elongate (3.2 mm long, 0.3 mm wide in distal half and 0.45 mm in proximal half), distally closed and clearly narrowed at distal end. Cell R 3.4 mm long. Cell IR 1.4 mm long and 0.5 mm wide. Cell 1 Rs 1.6 mm long and 0.38 mm wide. Cell 2 Rs not widened, 1.4 mm long and 0.38 mm wide. XY 0.5 mm , VS 0.6 mm , ratio XY/VS 0.83 . Crossvein $1 \mathrm{~m}-\mathrm{cu}$ meets cell 1 Rs near its base. NO 0.35 mm , OS 1.2 mm (sensu Louis 1966). Costal margin of cell 1Rs distinctly shorter than posterior margin. WX 0.4 mm , NS 1.6 mm . Vein 1 cu-a clearly prefurcal, 0.2 mm from branching of M and CuA. Vein cu-a of hindwing (Text-fig. 4B) nearly makes right angle with vein 1A. Cells Rs and M clearly separated by abscissa of M. Hamuli not preserved.

Paratype R.08382: Head 2.2 mm long, 3.2 mm wide, covered with long hairs. Eyes without hairs. Thorax 4.2 mm long, 4.1 mm wide, deformed but covered with hairs. Abdomen 6.3 mm long and 4.6 mm wide. A well preserved hind leg (Text-fig. 4E, H). Hind tibia widened (2.8 mm long, 0.8 mm wide), densely covered with long hairs along outer edge, with shorter hairs along inner edge, without any spur but with rastellum. Hind basitarsus widened (1.85 mm long, 0.9 mm wide), covered with long hairs and with well-developed pollen-press. Forewing 8.5 mm long and 2.8 mm wide. Dimensions and structures of wings identical to those of holotype (Text-fig. 4c-D).

Paratype R.10421: Head $c .2 \mathrm{~mm}$ long, 3 mm wide, covered with long hairs. Eyes without hairs. Thorax 4 mm long, 4 mm wide, deformed but covered with hairs. Abdomen 8 mm long and 5 mm wide (Text-fig. 4G). A well preserved hind leg (Text-fig. 4 F). Hind tibia widened (2.8 mm long, 0.8 mm wide), densely covered with long hairs along outer edge, and shorter hairs along inner edge, rastellum but no spur. Hind basitarsus widened (1.85 mm long, 0.9 mm wide), covered with long hairs, and with well-developed pollen-press. Forewing 8.6 mm long and about 3 mm wide. Dimensions and structures of four wings identical to those of holotype (Text-fig. 4I).

Remarks. The structures of the four wings and the hind legs clearly show that these fossils belong to the
genus Apis. The dense pilosity of the hind legs suggests that they are workers (Snodgrass 1956). The venation and the very similar dimensions demonstrate that the described specimens belong to the same species.

Apis aquisextusensis sp. nov. could be related to the subgenus Micrapis Ashmead, 1904 because its cell 2 R is distally narrowed. Also, its $\mathrm{cu}-\mathrm{a}$ in the hindwing makes closer to a right angle with 1 A than in Micrapis florea. Nevertheless, it differs from the subgenus Micrapis in its greater dimensions and having the hindwing cell Rs well-separated from cell M.

The structure of the hindwing would suggest some affinities with Apis and Megapis but the structure of the forewing cell 2 R is different from these subgenera. Vein Icu-a of the forewing, which is in a prefurcal position, differs from the subgenus Synapis but the bare eyes suggest affinities with A. (S.) henshawi. The wing venation, especially the non-widened cell 2 Rs, shows that A. aquisextusensis sp. nov. is a very different species.

Apis sp. B.

$$
\text { Text-figure } 5 \mathrm{~A}-\mathrm{B}
$$

Material. MNHN-LP-R. 10429 (part and counterpart of a nearly complete bee, in dorsal view; wing venation only partly preserved, apical parts of the wings having been destroyed); Upper Oligocene, Upper Chattian; Aix-enProvence, Bouches-du-Rhône, France.

Description. Head 2.1 mm long, 3.5 mm wide, covered with long hairs. Eyes without hairs. Thorax 5 mm long, 5 mm wide, deformed but covered with hairs. Abdomen 7.5 mm long and 5 mm wide. Legs absent or not well preserved. Hind leg visible. Hind tibia and basitarsus widened, covered with long hairs, and with a well-developed pollen-press. Forewing c. 11.9 mm long (Text-fig. 5A), longer and slightly broader than wing of Apis aquisextusensis sp. nov. Vein $1 \mathrm{cu}-\mathrm{a}$ in furcal position. Cell 2Rs 1.7 mm long and 0.9 mm wide. XY 1 mm , VS 0.8 mm , ratio XY/VS 1.25 . Cell 2R distally narrowed, 3.3 mm long, proximal width 0.4 mm , distal width 0.3 mm . Hindwing not well preserved (Text-fig. 5B) but vein ab M, separating cells Rs and M, apparently present. Vein cu-a makes right angle with 1A.

Remarks. The main differences between this bee and A. aquisextusensis sp. nov. are: (1), its forewing is longer, about 12 mm long compared to 8.5 mm for A. aquisextusensis; (2), cell 2Rs is widened, broader than in A. aquisextusensis; (3), vein 1 cu -a of forewing is in a furcal position. They share the basally widened cell 2 R of the forewing and vein $\mathrm{cu}-\mathrm{a}$ of the hindwing making a right angle with vein 1 A .

It is difficult to determine whether the visible differences between this fossil and A. aquisextusensis are due to intraspecific variations or because they are different species. More material is required before this can be resolved although we believe that they are probably the same species.

Apis sp. C

Text-figure 5c

Material. MNHN-LP-R. 10426 (impression of nearly complete bee, in dorsal view; wing venation only partly preserved, apical parts of wings destroyed); Upper Oligocene, Upper Chattian; Aix-en-Provence, Bouches-duRhône, France.

Description. Head 2.0 mm long, 3.0 mm wide, covered with long hairs. Eyes not clearly visible but apparently without hairs. Thorax 4.0 mm long, 4.0 mm wide, deformed but covered with hairs. Abdomen 6 mm long and 5 mm wide. Legs poorly preserved. Forewing $c .10 .0 \mathrm{~mm}$ long and 3.0 mm wide (Text-fig. 5 c). Cell 2 R 3.7 mm long and 0.3 mm wide. Cell 2Rs 1.5 mm long and 0.9 mm wide. XY 0.8 mm , VS 1 mm , ratio XY/VS 0.8 .

Remarks. This specimen differs from Apis sp. B in the non-distally narrowed cell 2R and its crossvein 1cu-a which is clearly in a praefurcal position, but the two forms share a relatively large forewing and very similar proportions of other cells.

text-fig. 5. A-b, Apis sp. B; MNHN R.10429; Aix-en-Provence; A, left forewing; b, left hindwing. C, Apis sp. C MNHN R.10426; Aix-en-Provence; left forewing. D-L, Apis sp. D; MPV-91-RM; Rubielos de Mora, Spain; D, right hindwing; E, right forewing; F, detail of the median part of right forewing; G , tongue; H , right mandible; I , right antenna; J, left hind tarsi; K, right hind leg (notice the deformation); L, abdomen. Scale bars represent 1 mm (A-E, L) or 0.5 mm (F-K).

It is impossible to say whether these two specimens belong to different species. Indeed, Apis sp. C, A. sp. B and A. aquisextusensis are all very similar, although $A . \mathrm{sp}$. C is distinctly longer and broader than A. aquisextusensis and has a distinctly broader cell 2 Rs. More specimens are needed before the exact number of fossil species in the Oligocene of Aix-en-Provence can be assessed.
'Apis' aquitaniensis de Rilly, 1930
1930 Apis aquitaniensis; de Rilly [reference not traced; see Remarks].
1931 'Abeille mellifère' Alphandéry, p. 3, text-fig.
1938 Apis aquitaniensis de Rilly; Armbruster, p. 88.
1949 Apis aquitaniensis de Rilly; de Rilly, p. 125.
1953 'Apis' aquitaniensis de Rilly; Maa, p. 631.
1969b Apis aquitaniensis de Rilly; Kelner-Pillault, p. 525.
1976 'Apis' aquitaniensis de Rilly; Zeuner and Manning, p. 250.
1978 Apis aquitaniensis de Rilly; Burnham, p. 122.
Material. Holotype Musée d'Histoire Naturelle of Marseille no. 5979, not traced, probably lost; Upper Oligocene, Upper Chattian; Aix-en-Provence, Bouches-du-Rhône, France.

Remarks. Maa (1953) indicated that this fossil could belong to Synapis, although he did not see the holotype. As already stated by Zeuner and Manning (1976), this species has never been well described. Its exact taxonomic position is uncertain but it is probably not an Apis, although the presence of several genuine Apis in the Upper Oligocene of Aix-en-Provence is now clearly demonstrated. The exact date and place of publication of 'Apis' aquitaniensis by de Rilly remain uncertain. Zeuner and Manning (1976) indicated that it was first published by de Rilly in 1930 in the journal 'L'Apiculteur', but there is no paper by de Rilly in the issue (Vol. 74) for that or adjoining years. Alphandéry (1931) reported that the species had been studied by de Rilly and Vayssière but gave no indication that they had published a description. Zeuner and Manning (1976) noted that there could be a figure of the holotype published by de Rilly in 1924, although they did not cite the reference and we could not find any trace of such a paper. The first published description that we have seen is that of Alphandéry (1931) (as 'Abeille mellifère'). Some confusion between the various de Rilly references may have arisen because the part number of the French journal La Nature, in which de Rilly's 1949 paper was published is the same as an issue of the English journal Nature published in 1930. It is possible that until 1949, aquitaniensis was an MS species only.

Bee from the Oligo-Miocene of Bohemia, Czech Republic

Apis (Synapis) petrefacta Ríha, 1973
1973 Synapis petrefacta Ríha, p. 217, text-fig. 1, pl. 1, figs 1-2.
1979 Synapis petrefacta Ríha; Ríha, p. 29.
Material. Holotype Paläontologischen Abteilung des Nationalmuseums, Prague, Inv-Nr. P-399/P-400 (part and counterpart); Oligo-Miocene, volcanic bituminous claystone; Kundratice, Litomerice, Bohemia, Czech Republic.

Remarks. This species is not listed in Zeuner and Manning (1976). According to Ríha (1973), the forewing length is $c .9 .6 \mathrm{~mm}$ which is distinctly shorter than that of A. cuenoti (mean 12 mm). Also, if the illustration of Riha (1973) is correct, there are differences in the structure of cells 2Rs and 1Rs between the two species. Comparison with S. henshawi is more difficult because of the latter's great variability.

Bees from the Lower-Middle Miocene of Rubielos de Mora, Teruel, Spain

Apis sp. D

Text-figure 5D-L

Material. Holotype MPV-91-RM (nearly complete bee; only slightly deformed by cleavage of bedding); LowerMiddle Miocene (Martínez-Delclòs et al. 1991). Rubielos de Mora, Teruel Province, Spain.

Description. Head 3.5 mm long and 2.5 mm wide, covered with long hairs. Eyes hairy. Ocelli not visible. Not possible to determine whether eyes separated or jointed because of deformation. Antenna 3.1 mm long. Scape 1 mm long (Textfig. 5I). 13 segments visible but base of antennal funicle not preserved. Proboscis (or maxillo-labial complex sensu Correia 1973) 2.1 mm long (Text-fig. 5 G). Left galea partly broken. Last three segments of labial palp visible. Second segment (first visible) of labial palp longer than two apical segments. Segments of labial palp rather flattened (0.08 mm wide). Right galea 0.9 mm long and exactly covering labial palp. Glossa 1.6 mm long, longer than galeas, apically flattened and covered with small dense hairs. Prementum 0.3 mm long, less than half of length of glossa. Whole structure of proboscis similar to that of Recent Apis mellifera (Correia 1973, fig. 44). One mandible partly visible (Text-fig. 5H), similar to that of Recent worker Apis, without acute teeth (Michener and Fraser 1978). Thorax 3.0 mm long, 2.5 mm wide; apparently bare but possibly hairs destroyed. Abdomen 8.5 mm long and 5.0 mm wide (Textfig. 5L). Structures of different segments very deformed. Whole sting apparatus pushed out of abdomen and lying near its apex. Sting barbed and sting sheath almost bare, as in Recent Apis sp. (Alexander 1991). One hind leg and tarsi of other legs very well preserved (Text-fig. $5 \mathrm{~J}-\mathrm{K}$). Hind tibia and basitarsus comparatively elongate; tibia 3.0 mm long, 0.7 mm wide, ratio length/width 4.28 ; left basitarsus 2.0 mm long, 0.7 mm wide, ratio length/width 2.85 ; right basitarsus 1.5 mm long, 0.7 mm wide, ratio length/width 2.14 ; elongations of hind tibia and basitarsus probably consequence of deformation due to cleavage. Hairs which border tibia and the basitarsus not well preserved but parallel rows of setae on posterior surface of basitarsus visible. Ten rows of hairs on posterior surface of basitarsus. Forewing 9.5 mm long and 2.3 mm wide (Text-fig. 5E-F). Cell 2 R very elongate, distally closed, clearly not narrowed at its distal end, 3.2 mm long, 0.3 mm wide in distal half, 0.3 mm wide in proximal half. Cell R 4.2 mm long. Cell 1 R 1.4 mm long and 0.4 mm wide. Cell 1 Rs 1.6 mm long, 0.4 mm wide. Cell 2Rs 1.6 mm long, 0.6 mm wide. XY 0.8 mm , VS 0.9 mm , ratio XY/VS 0.88 . Crossvein 1 m -cu meets 1 Rs some distance distal of its base. NO 0.4 mm , OS 1.2 mm (sensu Louis 1966). Anterior margin of 1Rs distinctly shorter than posterior margin, WX 0.4 mm , NS 1.6 mm . Cells $1 \mathrm{R}, 1 \mathrm{Rs}, 2 \mathrm{Rs}$ and pterostigma similar to those of A. mellifera. Vein $1 \mathrm{cu}-\mathrm{a} 0.3 \mathrm{~mm}$ from branching of M and CuA , clearly prefurcal as for A. mellifera. Hindwing vein cu-a (Text-fig. 5D) makes acute angle with vein 1 A , as in A. mellifera. Cells Rs and M clearly separated by long abscissa of M. Hamuli not preserved.

Remarks. The structures of the forewings and the hind legs clearly show that this specimen belongs to the genus Apis. It had already acquired the Recent structures of the proboscis of the genus. The presence of a sting demonstrates that it is a female or a worker. Following Snodgrass (1956), the parallel rows of setae on the posterior surface of basitarsus are typical of a worker. This bee is probably a genuine worker and not a queen. Its venation is very similar to that of Apis mellifera. The narrow wings are a product of fossilization. This bee is related to A. mellifera but its exact affinities with Recent species are impossible to establish because the available characters by which differences can be gauged are very few and not preserved. Nevertheless, this specimen demonstrates the presence of genuine Apis clearly related to A. mellifera in the Early Miocene of Western Europe.

Bees from the Middle Miocene of Iki Island, Japan
'Apis'sp.

1970 'Apis' sp., Fujiyama, p. 69, pl. 15, fig. 3.
1978
'Apis' sp., Burnham, p. 119.
Material. NSM-Pl-7418 (? worker); Middle Miocene, diatomitic palaeolake; Chôjabaru Formation, Iki Island, Japan.

Remarks. Although Fujiyama (1970) did not describe this bee, he indicated that it is possibly an Apis sensu stricto. The fossil, which is not cited in Zeuner and Manning (1976), needs restudy.

Bees from the Upper Miocene of Shanwang, Shandong Province, China

Apis miocenica Hong, 1983
1983 Apis miocenica Hong, p. 10, pl. 2, fig. 3.
1985 Apis miocenica Hong; Hong and Wang, p. 11, fig. 7.
1985 Apis miocenica Hong; Hong, p. 62, text-fig. 44.
1989 Apis miocenica Hong; Zhang, p. 322, text-figs 324-326, pl. 83, figs 1-3.
1990 Apis miocenica Hong; Zhang, p. 91, fig. 4.

Material. Holotype, Shandong Provincial Museum, China, no. 79040; Miocene, Shanwang Formation; Linqu County, Shandong Province, China.

Apis longitibia Zhang, 1990
1990 Apis longitibia Zhang, p. 85, p. 91, text-fig. 3, pl. 1, figs 5-6.
1994 Apis longitibia Zhang; Zhang, Sun and Zhang, p. 185, text-fig. I70, pl. 33, fig. 4.
Material. Holotype, Shandong Provincial Museum, China, no. 82773; Miocene, Shanwang Formation; Linqu County, Shandong Province, China.

Apis fota Zhang, 1989
1989 Apis fota Zhang, p. 323, text-figs 327-329, pl. 83, figs 4-6.
Material. Shandong Provincial Museum, China, holotype no. 830072, paratypes nos 820036 and 820126 ; Miocene, Shanwang Formation; Linqu County, Shandong Province, China.

Apis shandongica Zhang, 1989
1989 Apis shandongica Zhang, p. 325, text-figs 330-331, pl. 83, fig. 5.
Material. Holotype, Shandong Provincial Museum, China, no. 820158; Miocene, Shanwang Formation; Linqu County, Shandong Province, China.

Remarks. Using Zhang's (1989) illustrations of A. miocenica, A. fota and A. shandongica, it is difficult to differentiate them on the basis of wing venation alone. Their wing dimensions are also similar. A revision of these three species is clearly necessary. Zhang (1990) compared A. miocenica and A. longitibia and differentiated them using the following characters: (1), A. longitibia has its forewing vein 1cu-a in a furcal position, while in A. miocenica it is prefurcal; (2), cell 2 R of A. longitibia is distinctly narrower than in A. miocenica; (3), the forewing basal part of vein M is curved in A. longitibia whereas it is straight in A. miocenica; (4), the hindwing distal part of vein M is Y -shaped in A . longitibia whereas it is more-or-less straight in A. miocenica.

Character (1) suggests that A. longitibia is close to the Synapis group and that A. miocenica would be representative of the more Recent groups of Apis. However, as already stated, vein 1cu-a in a furcal position is a plesiomorphic character which is little help in the determination of the phylogenetic position of an Apis.

According to Zhang's (1989) illustrations, both A. longitibia and A. miocenica have no abscissa of vein M in their hindwing, but according to Hong's (1985) figure, the hindwing of A. miocenica has a long abscissa of vein M .

Zhang (1990) also indicated a rather strange character for an Apis: A. longitibia has a very long and narrow hind tibia, twice the length of the basitarsus. This character appears to be unique within the genus Apis and it looks like the hind tibia of Electrapis apoides Manning, 1960 (Upper Eocene, Baltic amber) as figured in Kelner-Pillault (1969a, pl. 4, fig. A). It is somewhat strange that an Apis with a very Recent wing venation could have such a plesiomorphic structure in the proportions of its hind leg. This very interesting character needs confirmation. Apis (Synapis) henshawi kaschkei (Statz, 1931) from Rott, Germany, and specimen R. 08396 of Apis cuenoti from Céreste, France, also show a short basitarsus and a comparatively very long hind tibia. A. longitibia could possibly be a drone or a female of A. miocenica. According to Hong (1983), the hind tibia of A. miocenica is not well preserved. Both A. longitibia and A. miocenica have forewings $10.0-11.7 \mathrm{~mm}$ long.

Bees from the Upper Miocene of Parschlug, Austria

Apis sp. E
Text-figure 6A-B

Material. MNHN-LP-B. 31781 (impression of nearly complete forewing; no preserved coloration; extreme base and posterior margin of apex missing); MNHN-LP-B. 31782 (impression of apical half of forewing, without any trace of coloration); Miocene, 'Unterer Horizont' (Beier 1952); Parschlug, Steiermark, Austria.

Description. B. 31781 (Text-fig. 6A): Wing 11.5 mm long, 3.7 mm wide. Venation similar to that of Recent Apis. Cell 2R closed, 4.1 mm long and 0.6 mm wide in both distal and proximal parts. Cell R 5 mm long. Vein $1 \mathrm{cu}-\mathrm{a}$ in prefurcal position (distance from 1 cu -a to separation between M and CuA 0.2 mm). Cell 1 R 1.6 mm long, 0.6 mm wide. Cell IRs 0.8 mm long, 0.6 mm wide. Cell 2Rs 2 mm long, 0.7 mm wide. XY 1.2 mm , VS 1 mm , ratio XY/VS 1.2 . Cell 2Rs widened. Vein 1 m -cu begins near base of cell 1Rs (NO 0.45 mm , OS 1.5 mm). Costal margin of 1Rs distinctly shorter than posterior one (WX $0.4 \mathrm{~mm}, \mathrm{NS} 1.8 \mathrm{~mm}$). Pterostigma similar to that of Recent Apis.
B. 31782 (Text-fig. 6B): Structures and dimensions similar to specimen B. 31781 .

Remarks. These two wings belong to Apis sensu lato. It is impossible to attribute them to a precise Recent subgenus, and the sex and caste of these bees are undetermined. Giving a specific name to these fossils is inappropriate, even if they definitely belong to the same species. The wings are similar to those of fossil bees from the Upper Miocene of La Montagne d'Andance (France) described below; they show nearly the same proportions and dimensions of the forewing. However, the fragmentary state of preservation of the material from Parschlug prevents any conclusion being drawn concerning the conspecificity of these different bee populations. It is also difficult to compare them with A. armbrusteri Zeuner, 1931 (Upper Miocene of Germany).
'Apis' styriaca Pongracz, 1931
1931 Apis styriaca Pongracz, p. 105.
1938 Apis styriaca Pongracz; Armbruster, p. 88.
1976 'Apis' styriaca Pongracz; Zeuner and Manning, p. 251.
Type horizon. Miocene, 'Unterer Horizont' (Beier 1952).
Type locality. Parschlug, Steiermark, Austria.
Material. Whereabouts of holotype unknown.
Remarks. Zeuner and Manning (1976, p. 251) considered Apis styriaca to be a nomen nudum because Pongracz (1931) did not describe his specimen. The discovery of the two new wings (Apis sp. E above) shows the presence of genuine Apis at the Parschlug site.

text-fig. 6. A-B, Apis sp. E; Upper Miocene, Parschlug, Austria; A, MNHN B.31781; right forewing; b, MNHN B.31782; right forewing. c-e, Apis sp. F; Upper Miocene, Bellver, Spain; c, MNHN R.08386, left forewing; D, MNHN R.10425, left forewing; E, MNHN R.10422, left forewing. Scale bars represent 1 mm . Drawings made using a Camera lucida.

Bees from the Upper Miocene of the Randecker-Maar, Böttingen, Germany

Apis armbrusteri Zeuner, 1931

Remarks. Zeuner (1931) and later Armbruster (1938) and Zeuner and Manning (1976) described four 'subspecies' of this fossil bee, from two neighbouring outcrops: the Upper Miocene of the Randecker Maar and the 'Böttinger Marmor'. Ruttner (1988) used these subspecific divisions without comment.

Apis armbrusteri armbrusteri Zeuner, 1931
1931 Apis armbrusteri Zeuner, p. 292, fig. 21, pl. 8, fig. 1.
1934 Apis armbrusteri Zeuner; Statz, p. 7.
1938 Apis armbrusteri Zeuner; Armbruster, pp. 16, 45.
1976 Apis armbrusteri armbrusteri Zeuner, Zeuner and Manning, p. 244.
1983 Apis armbrusteri Zeuner, Culliney, p. 33.
1988 Apis armbrusteri Zeuner; Rutter, p. 26.
Material. Holotype and paratypes in the Württembergische Naturliensammlung, Stüttgart, coll. Böttingen; Upper Miocene, Sarmatian; Böttingen, Swabian Alb, Württemberg, Germany.

Apis armbrusteri scharmanni (Armbruster, 1938)
1938 Hauffapis scharmanni Armbruster, pp. 44, 113, fig. 78.
1976 Apis armbrusteri scharmanni (Armbruster); Zeuner and Manning, p. 246.
Material. Holotype, figured by Armbruster (1938, fig. 78), in the private collection of Hauff, Holzmaden (current whereabouts unknown); Upper Miocene, Sarmatian; Randecker Maar (Bleich 1988), Württemberg, Germany.

Apis armbrusteri scheeri (Armbruster, 1938)
1938 Hauffapis scheeri Armbruster, p. 43, 92, figs 50, 52, 62, 66, 69, 71, 73.
1976 Apis armbrusteri scheeri (Armbruster); Zeuner and Manning, p. 247.
Material. Lectotype selected by Zeuner and Manning (1976), figured in Armbruster (1938, fig. 71), in the private collection of Schempp, Stüttgart-Weil (Germany) (current whereabouts unknown); Upper Miocene, Sarmatian; Randecker Maar, Württemberg, Germany.

Apis armbrusteri scheuthlei (Armbruster, 1938)
1938 Hauffapis scheuthlei Armbruster, p. 43, figs 63, 65, 67, 70, 72, 76-77, 79.
1976 Apis armbrusteri scheuthlei (Armbruster); Zeuner and Manning, p. 247.
Material. Lectotype selected by Zeuner and Manning (1976), figured in Armbruster (1938, fig. 63), in the private collections of Schempp and Hauff (see above); Upper Miocene, Sarmatian; Randecker Maar, Württemberg, Germany.

Remarks. As with A. henshawi, the presence of several subspecies of the same bee in the same outcrop (Randecker Maar) is unusual. The real status of these 'forms' is still to be determined; they could represent intraspecific variation of workers, sexual castes (but not according to Zeuner and Manning), different species, or maybe a combination of these. Zeuner and Manning (1976) maintained the subspecies merely for convenience in naming the different forms.

The 'subspecies' A. armbrusteri scharmanni and A. armbrusteri scheeri have about the same dimensions as Recent A. mellifera but A. armbrusteri scheuthlei is larger. The subspecies A. armbrusteri armbrusteri is known from bodies of bees fossilized as negative impressions (holes) in a travertine. Their
wing venations are unknown. By contrast, the bodies of the specimens of the other 'subspecies' are less well known than their wings because they are fossilized as impressions or mummies in laminites. Comparison between the type material of A. armbrusteri armbrusteri and the forms from the Randecker Maar is obviously difficult. Ruttner (1988, p. 27) indicated that A. armbrusteri is very similar to the Recent species A. dorsata, but specimens of the latter are broader and have longer wings.

Apis cf. armbrusteri scheuthlei (Armbruster, 1938)

Text-figure 7A-D

Material. Bayerische Staatssammlung für Palaeontologie und Historische Geologie, specimen 1982 XIV (impression of nearly complete specimen in very fine state of preservation); Upper Miocene, Sarmatian; Randecker Maar, Württemberg, Germany.

text-fig. 7. Apis cf. armbrusteri scheuthlei Zeuner, 1931; Bayerische Staatssammlung für Palaeontologie und Historische Geologie, no. 1982 XIV; A, right forewing; B, right hindwing; C, right hind leg; D, left hind leg. Scale bars represent 1 mm . Drawings made using a Camera lucida.

Description. Forewing 9.7 mm long, 3.2 mm wide. Cell 2 R 3.4 mm long, 0.4 mm wide in both proximal and distal halves and well closed. 1cu-a in clearly praefurcal position, distance between $1 \mathrm{cu}-\mathrm{a}$ and point of separation of M and CuA 0.3 mm . Cell IR 1.3 mm long, 0.5 mm wide. Cell 1 Rs 1.5 mm long, 0.5 mm wide. Cell 2 Rs 1.5 mm long, 0.5 mm wide, broadened. Vein 1 m -cu joins 1 Rs near its base (NO 0.3 mm ; OS 1.3 mm). XY 0.9 mm , VS 0.9 mm . Pterostigma small, similar to that of A. mellifera. Cells Rs and M of hindwing clearly separated by long abscissa of M (Text-fig. 7B). Hamuli not preserved. Vein cu-a nearly perpendicular to vein 1 A . Head 2 mm long and 3.5 mm wide. Eyes visible but impossible to determine if hairy. Thorax 4.5 mm long and 4 mm wide, appears bare but hairs may have been destroyed. Abdomen elongate, 8.5 mm long and 5 mm wide. Structures of different segments very deformed. Sting apparatus not visible but its insertion on ventral surface of abdomen clearly visible. Two hind legs very well preserved (Text-fig. 7C-D). Hind tibia and basitarsus comparatively elongate (left tibia 2.9 mm long, 0.8 mm wide, ratio length $/$ width 3.6 ; right tibia 3.1 mm long, 0.9 mm wide, ratio length/width 3.4 ; left basitarsus 2.3 mm long, 0.9 mm wide, ratio length/width 2.5 ; right basitarsus 1.9 mm long, 0.9 mm wide, ratio length $/$ width $2 \cdot 1$. Elongations of hind tibia and basitarsus partly consequence of deformation due to cleavage. Hairs bordering tibia and basitarsus few and short.

Remarks. This specimen is from the same outcrop as A. armbrusteri scharmanni, A. armbrusteri scheeri and A. armbrusteri scheuthlei. The broad cell 2 Rs , the large wing and body dimensions and the slender legs suggest some affinities closer to A. armbrusteri scheuthlei than the two other forms, but also with Recent bees of the A. dorsata group rather than A. mellifera. The presence of a sting demonstrates that it is a female or a worker. The hind legs are very similar to those of the specimen from Rubielos de Mora (Apis sp. D, specimen MPV-91-RM).

Bees from the Upper Miocene of Bellver de Cerdanya, Lleida, Spain

Apis sp. F

Text-figures $6 \mathrm{C}-\mathrm{E}, 8 \mathrm{~A}-\mathrm{F}$; Plate 2, figure 1
Type horizon. Middle to Upper Vallesian, Upper Miocene (Roca and Santanach 1986).
Type locality. Bellver de Cerdanya, Lleida, Spain.
Material. MNHN-LP-R. 08386 (196 Bellver, Nel coll.), MNHN-LP-R.10425, MNHN-LP-R.10422, MNHN-LPR. 10423 , MNHN-LP-R.10424, MNHN-LP-R.10432, MNHN-LP-R.10431; MNCNI 21614 and MNCNI 21615. All are impressions (and often counterparts) of single forewings without any preserved trace of coloration. The extreme base of each wing is often broken. R. 10431 is a nearly complete bee preserved in part and counterpart. All of the specimens, except R.10431, R. 10432 and MNCNI 21615, come from the locality called coll de Saig, along the road between Bellver and Prats. R. 10431 comes from the locality named San Salvador, near the coll de Saig. R. 10432 comes from an outcrop along the road between Bellver and Casa Vilella. MNCNI 21615 comes from the outcrop called Baltargar, near Beders.

Description. R. 08386 (Text-fig. 6c): Forewing 9.6 mm long, 3.2 mm wide. Cell 2 R well closed, 4.1 mm long, 0.4 mm wide in both proximal and distal halves. 1cu-a in clearly praefurcal position, distance between lcu-a and point of separation of M and CuA 0.5 mm . Cell 1 R 1.5 mm long, 0.6 mm wide. Cell 1 Rs 2 mm long, 0.5 mm wide. Cell 2Rs 2 mm long, 0.8 mm wide. Vein $1 \mathrm{~m}-\mathrm{cu}$ joins near base of 1 Rs (NO 0.6 mm , OS 1.5 mm). XY 1.4 mm , VS 1.1 mm . Pterostigma small, similar to that of A. mellifera.

All the other specimens have forewing venations very similar to specimen R. 08386 . Specimen R. 10423 has small supplementary veinlet in cell 1 R.
R. 10425 (Text-fig. 6D): Forewing 10.7 mm long, 3.6 mm wide. Cell 2R 4.4 mm long, 0.5 mm wide. Cell 1 R 1.5 mm long, 0.5 mm wide. Cell IRs 2 mm long, 0.5 mm wide. Cell 2Rs 2 mm long, 0.9 mm wide. XY 1.3 mm , VS 1.1 mm .
R. 10422 (Text-fig. 6E): Forewing 10.8 mm long, 3.7 mm wide. 2 R 4.2 mm long, 0.5 mm wide. 1 R 1.3 mm long, 0.6 mm wide. 1 Rs 1.8 mm long, 0.6 mm wide. 2 Rs 2 mm long, 1.1 mm wide. XY 1.3 mm , VS 1.2 mm .
R. 10423 (Text-fig. 8A; Pl. 2, fig. 1): Forewing 10.5 mm long, 3.6 mm wide. 2 R 4.1 mm long, 0.4 mm wide. 1R 1.3 mm long, 0.5 mm wide. 1 Rs 1.9 mm long, 0.7 mm wide. 2 Rs 2.1 mm long, 1.1 mm wide. XY 1.3 mm , VS 1.3 mm .
R. 10424 (Text-fig. 8b): Forewing c. 10.4 mm long, width unknown. 2R 3.8 mm long, 0.5 mm wide. 1 R 1.7 mm long, 0.6 mm wide. 1 Rs 2.1 mm long, 0.5 mm wide. $2 R \mathrm{~s} 1.9 \mathrm{~mm}$ long, 0.8 mm wide. XY 1 mm , VS 1 mm .

TEXT-FIG. 8. A-F, Apis sp. F; A, MNHN R.10423; left forewing; b, MNHN R.10424; left forewing; c, MNHN R. 10431 ; left forewing; D, MNHN R.10432; right forewing; E, MNHN R.10431; right forewing; F, MNCNI-21614; left forewing. G, Apis sp. G; MNHN R. 08389 ; Upper Miocene, Sainte-Reine, Cantal, France; right forewing. Scale bars represent 1 mm . Drawings made using a Camera lucida.
R. 10432 (Text-fig. 8D): Forewing 10.4 mm long, width unknown. 2R 4.3 mm long, 0.4 mm wide. 1 R 1.5 mm long, 0.6 mm wide. 1 Rs 2 mm long, 0.5 mm wide. 2Rs 2.1 mm long, 0.8 mm wide. XY 1.2 mm , VS 1.2 mm .
R. 10431 (Text-figs 8c, E): Forewing c. 10 mm long, width unknown. 2R 3.9 mm long, 0.5 mm wide. 1 R 1.3 mm long, 0.6 mm wide. 1 Rs I .9 mm long, 0.6 mm wide. $2 \mathrm{Rs} c .2 \mathrm{~mm}$ long and $c .1 \mathrm{~mm}$ wide. XY 1.1 mm , VS unknown. Body not well preserved and impossible to determine if eyes hairy. Structures of hind legs not well preserved but hind tibiae widened and hairy, $c .2 \mathrm{~mm}$ long and 1 mm wide. Head of unknown length, 4 mm wide. Pronotum 5 mm long, 5 mm wide. Abdomen 9 mm long, 6 mm wide. One hindwing partly preserved.

MNCNI 21614 (Text-fig. 8F): Forewing 10 mm long, $c .3 \mathrm{~mm}$ wide. 2 R 3.9 mm long, 0.5 mm wide. 1 R 1.3 mm long, 0.5 mm wide. 1 Rs 1.9 mm long, 0.6 mm wide. 2 Rs 1.8 mm long, 0.9 mm wide. XY 1.1 mm , VS 1 mm .

MNCNI 21615 not well preserved.
Mean length of forewings 10.4 mm .

Remarks. The small amount of variation between these wings is compatible with intraspecific diversity, and the specimens probably all belong to the same species. They are similar to A. mellifera but all are bigger than that species, with longer forewings and broader 2 Rs cells. They have a very similar venation to Apis sp. E (Parschlug), A. sp. I (Montagne d'Andance) and A. sp. G. (Sainte-Reine), but they are smaller (their forewing length varies from 9.8 to 10.5 mm with a mean of 10.4 mm compared with $11-12.4 \mathrm{~mm}$, with a mean of 11.9 mm for the population of Montagne d'Andance and $11-12.6 \mathrm{~mm}$ with a mean of 11.8 mm for the population of Sainte-Reine). It is highly probable that the population from Bellver belongs to a different species or subspecies. Comparison with Apis armbrusteri is difficult because wing length variation of the latter species is unknown, but their wing venations are very similar. Until a revision of A. armbrusteri has been undertaken, it is not advisable to name this new population.

Bee from the Upper Miocene of Gabbro, Toscana, Italy

> Apis (Apis) melisuga (Handlirsch, 1908)

1908 (Apidae) melisuga Handlirsch, p. 893.
1969 b Apidae melisuga Handlirsch; Kelner-Pillault, p. 525.
1976 Apis (Apis) melisuga (Handlirsch, 1908); Zeuner and Manning, p. 248.
1988 [Apidae] melisuga Handlirsch; Ponomarenko and Schultz, p. 19.
Material. Holotype, Geologisch-Paläontologischen Abteilung, Naturhistorischen Museum Wien, 1984/32/264; Upper Miocene, Messinian; Gabbro, Toscana, Italy.

Remarks. Zeuner and Manning (1976) considered this fossil bee to be a genuine Apis, even subgenus Apis, but also noted that it resembled A. (Megapis) dorsata, and that new material would be necessary for definite determination.
'Bee' from the Upper Miocene of Catania, Sicily, Italy
'Apis' catanensis Roussy, 1960
1960 Apis catanensis avolii Roussy, p. 8, fig. 2.
1969 b Apis catanensis avolii Roussy; Kelner-Pillault, p. 524.
1976 Apis catanensis Roussy; Zeuner and Manning, p. 257.
1989 Isoptera; Kohring and Schlüter, pp. 49, 52.

Material. Holotype in the private collection of A. and G. Avolio, jewellers of Sicily; Upper Miocene, Messinian; Simetite, Sicily, Italy.

Remarks. Roussy (1960) thought that this fossil belonged to the A. dorsata group but Kohring and Schlüter (1989) indicated that it appears to be an Isoptera.

Bees from the Upper Miocene (Upper Messinian) of Sainte-Reine, Cantal, France

First group: larger bees with longer wing and widened cell 2Rs
Apis sp. G
Text-figures 8G, 9
Material. MNHN-LP-R.08388, MNHN-LP-R.08389, MNHN-LP-R.08390. All are more or less deformed although their forewings are well preserved; Upper Miocene, Upper Messinian (Roiron 1991; Serieyssol and Gass 1991); Sainte-Reine, Murat, Cantal, France.

Description. Bees with typical venation of Recent Apis, with crossvein 1cu-a prefurcal. Forewing mean length 11.8 mm .
R. 08389 (Text-figs 8G, 9A-C): Forewing with impression of thorax. Wing hyaline, similar to that of A. mellifera. Forewing 12 mm long, 3.7 mm wide. Cell 2 R 4.4 mm long, 0.6 mm wide. Cell 1 R 1.5 mm long, 0.6 mm wide. Cell 1 Rs 1.7 mm long, 0.6 mm wide. Cell 2 Rs widened, 2.1 mm long, 1 mm wide. XY 1.2 mm , VS 1.3 mm , ratio XY/VS 0.92 . Abnormal veinlet in cell IR. Cells Rs and M clearly separated in hindwing.
R. 08388 (Text-fig. 9D-F): Body with remains of two forewings and hindwings, identical to those of R. 08389 . Forewing $c .12 .6 \mathrm{~mm}$ long, $c .4 \mathrm{~mm}$ wide. 2 R 4.4 mm long, 0.6 mm wide. 1 R 1.7 mm long, 0.7 mm wide. 1 Rs 1.9 mm long, 0.7 mm wide. 2Rs widened, 2 mm long, 1.1 mm wide. XY 1.6 mm , VS 1.2 mm . Hindwing Rs and M clearly separated and cu-a nearly perpendicular to vein 1 A .
R. 08390 (Text-fig. 9G-H): Body covered by ? iron oxide with forewing identical to those of R.08388. Costal half of 2R darker than rest of wing. Forewing 11 mm long, 3.8 mm wide. 2 R 4 mm long, 0.6 mm wide. 1 R 1.5 mm long, 0.6 mm wide. 1Rs 2 mm long, 0.6 mm wide. 2Rs widened, 2 mm long, 1.1 mm wide. XY 1.4 mm , VS 1 mm .

Remarks. Even if these specimens are somewhat smaller than the bees from the Upper Miocene of Montagne d'Andance (see below), they are very similar in wing venation and coloration. The best preserved specimen (R.08390) even shows the same dark border of cell 2 R as in the best preserved specimens from Andance (R. 54922 and R.54926). It is still impossible to decide whether these two fossil populations are conspecific. The difference in age of the strata at the two quarries ($5.34 \pm 0.3 \mathrm{Ma}$ for Sainte-Reine and 10.3-5.9 Ma for Montagne d'Andance) suggests that they may belong to different species or subspecies but, if so, they must be very closely related.

Second group: smaller bees with shorter wing and cell 2 Rs not widened

Apis sp. H

Text-figure 10A-D
Material. MNHN-LP-R. 08391 and MNHN-LP-R. 08392 (specimens more or less deformed; forewings in good state of preservation); Upper Miocene (Roiron 1991; Serieyssol and Gasse 1991); Sainte-Reine, Murat, Cantal, France.

Description. Venation typical of Recent Apis, with crossvein 1cu-a prefurcal. Forewing mean length 8.5 mm . R. 08391 (Text-fig. 10A-C): Body with forewing. Forewing 8.5 mm long, width unknown. 2 R 2.8 mm long, 0.3 mm wide. 1 R 1.1 mm long, 0.4 mm wide. 1Rs 1.5 mm long, 0.5 mm wide. 2 Rs not widened, 1.4 mm long, 0.7 mm wide. XY 0.7 mm , VS 0.7 mm , ratio XY/VS 1. Pterostigma abnormal. R. 08392 (Text-fig. 10B, D): Body with two forewings. Forewing 8.6 mm long, width unknown. 2 R 3.2 mm long, 0.4 mm wide. Length and width of 1 R unknown. 1 Rs 1.7 mm long, 0.5 mm wide. 2Rs not widened, 1.4 mm long, 0.9 mm wide. XY 0.6 mm , VS 0.5 mm , ratio XY/VS 1.2 .

Remarks. The fossil bees of Sainte-Reine can be separated into two groups on the basis of the forewing dimensions and structure of cell 2Rs. These differences could be of specific or sexual origin. If the latter,

TEXT-FIG. 9. A-H. Apis sp. G; A-C, MNHN R.08389; A, detail of the centre of the wing; b, pterostigma; C, left hindwing; D-F, MNHN R.08388; D, left forewing; E, left hindwing; F, detail of the left forewing centre; G-H, MNHN R.08390, detail of the centre of the wing; H, right forewing. Scale bars represent 1 mm (C-E, H) or 0.5 mm (A-B, F-G). Drawings made using a Camera lucida.
the smallest bees could be workers and the biggest drones or females(?). Such differences can be seen in different castes of Apis mellifera. Although the presence of so many females and/or drones would be very strange, more specimens are necessary before any final conclusion can be reached. Nevertheless, the possibility that these two groups of bees represent two different species is more likely because the same phenomenon occurs in the Upper Miocene of Montagne d'Andance.

Bees from the Upper Miocene of Montagne d'Andance, Ardèche, France

First group: larger bees with longer wing and widened cell 2Rs

Apis sp. I

Text-figures 10E-H, 11-12; Plate 2, figures 2-4

Material. MNHN-LP-R.54926, R. 54921 (both in dorsal view, bodies black), R. 54922 (in lateral position, with forewing 5 mm away, body black), R. 54924 ; R. 55166 and R. 55206 (both coalified impressions, parts and counterparts, fossilized in dorsal view), R. 55167 (coalified impression fossilized in lateral view) and R.55169; Upper Miocene, Lower Turolian (Demarcq et al. 1989; Serieyssol and Gasse 1991); Montagne d’Andance, Saint Bauzile, Ardèche, France.

Description. All specimens have darker costal margin along cell 2R, least visible in R. 54924 and R. 54921 .
R. 54922 (Text-fig. 10E, G): head 5 mm long, deformed, laterally visible, covered with long hairs but not possible to determine whether these are simple or plumose. No visible trace of pilosity on eyes. Thorax 5.5 mm long, covered with small hairs. Thoracic structures not well preserved. Abdomen dorsally rather densely covered with hairs, rather rounded, 12 mm long, with sternites not visible. Prothoracic and mesothoracic legs not well preserved. A metathoracic leg well preserved. Metathoracic tibia widened, 3 mm long and 1.6 mm wide, covered with hairs along outer margin with rastellum on distal apex and no spur. Hind basitarsus widened, 2.8 mm long and 1.5 mm wide, covered with hairs along outer margin. Very well-defined pollen press (sensu Snodgrass 1956) on hind basitarsus. Forewing $c .12 \mathrm{~mm}$ long and 3.7 mm wide. Cell 2 R very elongate, distally closed with costal margin darker, 4.6 mm long and 0.4 mm wide in both distal and proximal halves. 1 R 1.6 mm long, 0.6 mm wide. 1 Rs 2 mm long, 0.5 mm wide. 2 Rs 2.1 mm long, 1.2 mm wide. Vein 1 m -cu meets 1 Rs near its base. NO 0.5 mm , OS 1.5 mm . Costal margin of 1 Rs distinctly shorter than posterior margin. WX 0.5 mm , NS 2.1 mm . Cells 1 R, 1 Rs, 2Rs and pterostigma similar to those of A. mellifera except that 2Rs widened (XY 1.5 mm , VS 1.3 mm , ratio XY/VS $1 \cdot 15$). Vein lcu-a clearly prefurcal as in A. mellifera. lcu-a 0.5 mm from branching of M and CuA . 1 m -cu weakly sclerotized along distal margin. Vein cu-a of hindwing not well preserved but makes nearly a right angle with 1 A . Hindwing cells Rs and M clearly separated by abscissa of M. Hamuli not preserved.
R. 54926 (Text-figs $10 \mathrm{H}, 11 \mathrm{~A}$): head not well preserved, length not determinable, deformed, dorsally visible, covered with long hairs; not possible to determine whether hairs simple or plumose. No visible trace of pilosity on eyes. Thorax c. 5 mm long, covered with small hairs. Thoracic structures not well preserved. Abdomen dorsally rather densely covered with hairs, rather rounded, 11 mm long with sternites not visible. Prothoracic and mesothoracic legs not visible. A metathoracic leg present but not well preserved, similar to that of R.54922. Forewing venation identical to that of R.54922. Forewing 11.2 mm long and $c .4 \mathrm{~mm}$ wide. 2 R 4.6 mm long, 0.4 mm wide both in distal and proximal halves. 1R 1.6 mm long, 0.7 mm wide. 1 Rs 2 mm long, 0.6 mm wide. 2 Rs distinctly widened, 2.2 mm long, 1.1 mm wide. NO 0.5 mm , OS 1.5 mm . WX 0.5 mm , NS 2.1 mm , XY 1.4 mm , VS 1.4 mm , ratio XY/VS 1 . 1cu-a clearly prefurcal, 0.5 mm from branching of M and CuA . 1 m -cu weakly sclerotized along distal margin. Vein cu-a of hindwing nearly makes right angle with vein 1 A . Hindwing cells Rs and M clearly separated by abscissa of M. 15 hamuli clearly visible.
R. 54921 (Text-fig. 11D): head not well preserved, length not determinable, deformed, ventrally visible, covered with long hairs; not possible to determine whether hairs simple or plumose. No visible trace of pilosity on eyes. Antenna well preserved. Thorax c. 5 mm long, covered with small hairs. Thoracic structures not well preserved. Abdomen dorsally rather densely covered with hairs, rather rounded, 12 mm long, with sternites not visible. Prothoracic and mesothoracic legs not visible. A metathoracic leg present but not well preserved, similar to that of R.54922. Forewing venation identical to that of R.54922, 12.4 mm long and $c .4 .6 \mathrm{~mm}$ wide. 2 R 4.6 mm long, 0.6 mm wide both in distal and proximal halves. 1 R 1.7 mm long, 0.7 mm wide. 1 Rs 2 mm long, 0.6 mm wide. 2Rs widened, 2.3 mm long, 1.2 mm wide. NO 0.6 mm , OS 1.6 mm . WX 0.6 mm , NS 2.1 mm . XY 1.6 mm , VS 1.6 mm , ratio XY/VS 1 .

text-fig. 10. a-D, Apis sp. H; Upper Miocene, Sainte-Reine, Cantal, France; A, MNHN R.08391, right forewing; B, MNHN R.08392, right forewing; C, R.08391, detail of the pterostigma; D, R.08392, detail of the centre of the wing. E-H, Apis sp. I; Upper Miocene, Montagne d'Andance, Ardèche, France; E-G; MNHN R.54922; E, left forewing; F, centre of the wing; G, left hindwing; H, MNHN R.54926; left hindwing. Scale bars represent 1 mm (A-B, E, G-H) or 0.5 mm (C-D, F). Drawings made using a Camera lucida.

1cu-a clearly prefurcal, 0.5 mm from branching of M and $\mathrm{CuA} .1 \mathrm{~m}-\mathrm{cu}$ weakly sclerotized along distal margin. Hindwing identical to that of R. 54926.
R. 54924 (Text-fig 11c): head not well preserved, length not determinable, deformed, only ventral side visible, covered with long hairs and not possible to determine whether hairs simple or plumose. No visible trace of pilosity on eyes. Thorax $c .5 .5 \mathrm{~mm}$ long and 6 mm wide, covered with small hairs. Thoracic structures not well preserved. Abdomen dorsally rather densely covered with hairs, rather rounded, 10 mm long and 8 mm wide, with sternites not visible. Legs not well preserved. Forewing venation identical to $\mathrm{R} .54922,11 \mathrm{~mm}$ long and about 4 mm wide. 2R nearly 4.5 mm long, 0.5 mm wide in both distal and proximal halves. 1 R 1.6 mm long, 0.6 mm wide. 1 Rs 2 mm long, 0.6 mm wide. 2Rs distinctly widened, 2.2 mm long, 1.1 mm wide. NO 0.4 mm , OS 1.6 mm . WX 0.5 mm , NS 2.1 mm , XY 1.3 mm , VS 1.3 mm , ratio XY/VS 1 . 1cu-a clearly prefurcal, 0.6 mm from branching of M and CuA .1 m -cu weakly sclerotized along distal margin. Hindwing identical to that of R.54926. Twenty-one hamuli clearly visible.
R. 55166 (Text-fig. 11B, E): Although complete, body not well preserved. Head 2 mm long, 3.5 mm wide. Thorax 6 mm long, 5 mm wide. Abdomen 11 mm long, 7.5 mm wide, well-rounded. Whole body black and covered with rather dense pilosity but impossible to determine whether eyes covered with hair. Wings especially well preserved. Forewing 12.4 mm long, 4.2 mm wide. 2 R 4.5 mm long, 0.6 mm wide in both distal and proximal halves. 1 R 1.6 mm long, 0.8 mm wide. 1 Rs 2.1 mm long, 0.7 mm wide. 2Rs widened, 2.3 mm long, 1.2 mm wide. $\mathrm{NO} 0.5 \mathrm{~mm}, \mathrm{OS} 1.7 \mathrm{~mm}$. WX 0.5 mm , NS 2.2 mm . XY 1.5 mm , VS 1.5 mm , ratio XY/VS 1 . 1cu-a clearly prefurcal, 0.6 mm from branching of M and $\mathrm{CuA} .1 \mathrm{~m}-\mathrm{cu}$ weakly sclerotized along distal margin. Vein cu-a of hindwing nearly makes right angle with 1 A . Hindwing cells Rs and M clearly separated by abscissa of M which is 0.5 mm long. Some hamuli visible. Hindwing 8.2 mm long, 2.5 mm wide.
R. 55206 (Text-figs $11 \mathrm{~F}, 12 \mathrm{~A}-\mathrm{B}$): Although complete, body not well preserved. Head 3 mm long, 4 mm wide. Thorax 6 mm long, 5 mm wide. Abdomen well-rounded, 12 mm long, 8 mm wide. Whole body black and covered by rather dense pilosity but impossible to determine whether eyes were covered with hair. Wings well preserved. Forewing 12.4 mm long, width unknown. 2R 4.3 mm long, 0.6 mm wide in both distal and proximal halves. 1 R 1.6 mm long, 0.7 mm wide. 1 Rs 2.2 mm long, 0.9 mm wide. 2 Rs distinctly widened, 1.9 mm long, 1.3 mm wide. NO 0.7 mm , OS 1.6 mm . WX 0.6 mm , NS 2.2 mm . XY 1.3 mm , VS 1 mm , ratio XY/VS 1.3 . 1cu-a clearly prefurcal, 0.6 mm from branching of M and CuA. $1 \mathrm{~m}-\mathrm{cu}$ weakly sclerotized along distal margin. Vein cu-a of hindwing makes nearly a right angle with vein 1A. Hindwing cells Rs and M clearly separated by abscissa of M which is 0.3 mm long. Few hamuli visible. Length and width of hindwing unknown.
R. 55167 (Text-fig. 12C): Incomplete body not well preserved. Head 3 mm long, width unknown. Thorax 6 mm long, width unknown. Abdomen well-rounded, 12 mm long, 8 mm wide. Whole body black and covered with a rather dense pilosity but impossible to determine whether eyes were covered with hair. Wings well preserved. Forewing 12.4 mm long, width unknown. 2R 4.5 mm long, 0.6 mm wide both in distal and proximal halves. 1 R 1.6 mm long, 0.7 mm wide. 1 Rs 2 mm long, 0.7 mm wide. 2Rs distinctly widened, 2.2 mm long, 1.3 mm wide. NO 0.6 mm , OS 1.5 mm , WX 0.6 mm , NS 2 mm . XY 1.3 mm , VS 1.4 mm , ratio XY/VS 0.9 . 1cu-a clearly prefurcal, 0.6 mm from branching of M and $\mathrm{CuA} .1 \mathrm{~m}-\mathrm{cu}$ weakly sclerotized along distal margin. Hindwing not preserved.
R. 55169 (Text-fig. 12D-E): Incomplete body not well preserved. Head 3 mm long, 4 mm wide. Thorax 6 mm long, 6 mm wide. Abdomen well-rounded, 11 mm long, 8 mm wide. Whole body black and covered with rather dense pilosity but impossible to determine whether eyes were covered with hair. Wings well preserved. Forewing 12.6 mm long, 4.2 mm wide. 2R 4.6 mm long, 0.6 mm wide both in distal and proximal halves. 1 R 1.6 mm long, 0.7 mm wide. 1Rs 2.1 mm long, 0.7 mm wide. 2Rs widened, 2.2 mm long, 1.2 mm wide. NO 0.6 mm , OS 1.6 mm . WX 0.6 mm , NS 1.9 mm . XY 1.3 mm , VS 1.4 mm , ratio XY/VS 0.9 .1 cu -a clearly prefurcal, 0.6 mm from branching of M and CuA . 1 m cu weakly sclerotized along distal margin. Hindwings well preserved but length and width unknown; vein cu-a nearly makes right angle with vein 1 A . Hindwing cells $R s$ and M clearly separated by abscissa of M which is 0.9 mm long. Some hamuli visible.

Remarks. These bees are very similar to Apis sp. G from Sainte-Reine, especially in their dimensions

EXPLANATION OF PLATE 2

Fig. 1. Apis sp. F; MNHN R.10423; forewing length $10.5 \mathrm{~mm} ; \times 2$.
Figs 2-4. Apis sp. I. 2, MNHN R.55166; forewing length $12.4 \mathrm{~mm} ; \times 2 \cdot 2$. 3, MNHN R.55167; forewing length $12.4 \mathrm{~mm} ; \times 2.4 .4$, MNHN R. 55169 ; forewing length $12.6 \mathrm{~mm} ; \times 3$.
Fig. 5. Apis sp. J; MNHN R.55168; forewing length $8.8 \mathrm{~mm} ; \times 2.5$.

NEL et al., Apis

TEXT-FIG. 11. A-F, Apis sp. I; A, MNHN R.54926; left hindwing; B, MNHN R.55166; left hindwing; c, MNHN R.54924; left forewing; D, MNHN R.54921; right forewing; E, R.55166; left forewing; F, MNHN R.55206; right forewing. Scale bars represent 1 mm . Drawings made using a Camera lucida.

TEXT-FIG. 12. A-E, Apis sp. I; A, MNHN R.55206; left forewing; B, right hindwing; c, MNHN R.55167, left forewing; D, MNHN R.55169, left forewing; E, MNHN R.55169, left hindwing. Scale bars represent 1 mm . Drawings made using a

Camera lucida.
(mean forewing length 11.6 mm). They show the same wing venation and coloration, and probably belong to the same species, but the difference in age makes this uncertain.

Apis sp.

Remarks. Riou (1988) figured and briefly described some fossil bees from the same outcrop as Apis sp. I which are probably the same species (apparently having the same dimensions, venation and coloration of the forewing). He assigned them to a new species, but in an unpublished thesis of the Ecole Pratique des Hautes Etudes, and it is not possible to examine his specimens as they are held in his private collection. He did not compare his 'new species' with A. armbrusteri and other Miocene Apis species and his diagnosis of his 'new' species is not clear: 'species characterized by its large size and its resemblance to bumble bees of the genus Bombus.' These Apis do not resemble the genus Bombus and a diagnosis of a Recent or fossil Apis species cannot be based only on characters such as 'resemblance' or 'large size'. Only very careful comparison with A. armbrusteri will perhaps allow the creation of a new species for this population from the Montagne d'Andance.

Second group: smaller bees with shorter wing and cell 2Rs not widened.
‘Cf. Apis mellifera Linneaus, 1758’ sensu Riou (1988)

Material. R-195, in B. Riou's private collection, La Voulte, France; Upper Miocene, Lower Turolian; Montagne d'Andance, Saint Bauzile, Ardèche, France.

Remarks. This fossil bee is considered by Riou (1988) as a worker of Apis mellifera but, based on his incomplete illustrations and description, it is difficult to be certain of this by comparing the dimensions of the body and forewing with Recent species. In fact, differences between some Recent species (A. cerana Fabricius, 1793 and A. mellifera) are very difficult to determine (see Ruttner 1988) and are based on comparison of genitalia, sternite and hind legs. These comparisons are still to be made with this fossil specimen, so we must consider that Riou's (1988) determination is not yet confirmed. The fossil 'Cf. Apis mellifera Linné, 1758' sensu Riou (1988) must be considered as an incertae sedis.

Apis sp. J

Text-figure 13A-G; Plate 2, figure 5

Material. MNHN-LP-R. 55168 and R. 55207 (coalified impressions and counterpart of bees fossilized in dorsal view; wings well preserved; hind leg partly preserved on R. 55207 but bodies poorly preserved); Upper Miocene, Lower Turolian; Montagne d'Andance, Saint Bauzile, Ardèche, France.

Descriptions. R.55207. Although complete, body shows little detail. Head c. 2.5 mm long, 3 mm wide. Thorax 4 mm wide. Abdomen well-rounded, 7 mm long, 5.5 mm wide. Whole body black and covered with rather dense pilosity but not possible to determine whether eyes were covered with hair. Forewing (Text-fig. 13A-B): 8.6 mm long, 2.8 mm wide. $2 \mathrm{R} c .3 .1 \mathrm{~mm}$ long, 0.4 mm wide both in distal and proximal halves. 1 R 1.1 mm long, 0.4 mm wide. 1 Rs 1.4 mm long, 0.4 mm wide. 2Rs not widened, 1.4 mm long, 0.7 mm wide. NO 0.4 mm , OS 1.1 mm . WX 0.4 mm , NS 1.5 mm , XY 0.6 mm , VS 0.8 mm , ratio XY/VS 0.75 . 1cu-a clearly prefurcal, 0.3 mm from branching of M and CuA. $1 \mathrm{~m}-\mathrm{cu}$ weakly sclerotized along distal margin. Hindwing $c .5 \cdot 2 \mathrm{~mm}$ long, 1.6 mm wide. Vein cu-a makes nearly a right angle with vein 1 A (Text-fig. 13C-D). Cells Rs and M not separated because abscissa of M absent. Some hamuli visible. Only one hind leg visible but not well preserved (Text-fig. 13E). Tibia 2.8 mm long and 1 mm wide. Basitarsus 1.7 mm long and 0.9 mm wide. Ratio of length of tibia/length of basitarsus 1.6 , ratio of length of basitarsus/width 1.8 . Tibia and basitarsus with long hairs.
R.55168: Body poorly preserved. Thorax c. 4 mm long, 4 mm wide. Abdomen well-rounded, 7 mm long, 5 mm

TEXT-FIG. 13. A-G, Apis sp. J. A-E, MNHN R.55207; Montagne d’Andance, Ardèche, France, Upper Miocene; A, right forewing; b, left forewing; C , left hindwing; D, right hindwing; E, left hind leg showing tibia and tarsi. F-G, MNHN R.55168; F, left forewing; G, right hindwing. H, Apis mellifera; Recent; left forewing. I, Apis florea; Recent; left forewing. J, Apis dorsata; Recent; left forewing. Scale bars represent 1 mm . Drawings made using a Camera lucida.
wide. Whole body black and covered with a rather dense pilosity but impossible to dertermine whether eyes were covered with hair. Forewing 8.8 mm long, 2.8 mm wide (Text-fig. 13F; Pl. 2, fig. 5). 2R c. 3.2 mm long, 0.4 mm wide both in distal and proximal halves. 1 R 1.2 mm long, 0.5 mm wide. 1 Rs 1.3 mm long, 0.4 mm wide. 2 Rs not widened, 1.3 mm long, 0.8 mm wide. NO 0.2 mm , OS 1.2 mm . WX 0.4 mm , NS 1.3 mm , XY 0.6 mm , VS 0.8 mm , ratio XY/VS 0.75 . Icu-a clearly prefurcal, 0.2 mm from branching of M and CuA .1 m -cu weakly sclerotized along distal margin. Hindwing $c .5 .2 \mathrm{~mm}$ long, 1.6 mm wide (Text-fig. 13 G). Vein cu-a nearly makes right angle with vein 1 A . Cells Rs and M not separated because abscissa of M absent. Some hamuli visible. No legs preserved.

Remarks. These bees are distinctly smaller than Apis sp. I from the same outcrop. They have some important different characters: (1) there is no abscissa of vein M in the hindwing, while A. sp. I has a very long one; (2) the forewing is distinctly shorter ($8.6-8.8 \mathrm{~mm}$ long), while A. sp. I has mean forewing length of 11.9 mm ; (3) cell 2Rs is not widened, with a very closed angle YVX (15°), whereas A. sp. I has a more open angle YVX, mean 28°; (4) the radial index is $1 \cdot 7$, whereas it is about $1 \mathrm{in} A$. sp. I.

They belong to a species probably related to 'Cf. Apis mellifera' sensu Riou (1988) which is also based on a single specimen from the same outcrop, with similar body and wing dimensions but, as Riou's description is not very precise, it is impossible to make any closer comparisons.

The wing dimensions of A. sp. J are also similar to those of Recent A. mellifera but, as we have already noted with 'Cf. Apis mellifera' sensu Riou (1988), it is still impossible to say that these bees really belong to A. mellifera sensu stricto. Body and wing dimensions of A. sp. H (Upper Miocene of Sainte-Reine) are also very close to those of R.55207. It appears that, both at Sainte-Reine and at Andance, there were two different species of Apis, a larger one, similar and probably related to Recent A. dorsata, and a smaller one probably related to A. mellifera. However, it is still impossible to say that the large 'Andance bee' (A. sp. I) is the same as the large 'Sainte-Reine bee' (A. sp. G) and also that the small 'Andance bee' is the same as the small 'Sainte-Reine bee'. Further discoveries of new material are necessary before any conclusion can be made about this.

The small bees of Sainte-Reine and Andance seem to be less numerous than the large species (five 'small' specimens against 16 'large' specimens in the Nel, Brisac and privately held Riou collections for both quarries). This could be an artefact of sampling. If not, the difference in the proportions of the different species remains to be explained, and only further research will give an answer.

PLIO-PLEISTOCENE RECORDS OF APIS

A specimen of Apis (A.) mellifera Linnaeus, 1758 was reported in copal by Foord (1890). Cockerell (1909) first described a piece of amber in the collections of Cambridge University which contains two bee specimens, stating that they came from the coast of Yarmouth (England). Subsequently, he noted that the provenance of this amber (or copal) was problematical: it could be genuine English amber or African copal (Cockerell 1921). Maa (1953) was less sure of the origin. Kelner-Pillault (1969b) believed that it came from the Pleistocene of England, Zeuner and Manning (1976) believed that they were genuine Apis mellifera from East Africa. Spahr (1987) was undecided, and Ruttner (1988, p. 26) stated, without discussion, that these bees were of very Recent African origin. African copal is Pleistocene or Recent (Burleigh and Whalley 1983).

A 'Honeybee comb' was reported by Stauffer (1979) from a Plio-Pleistocene cave deposit, Batu Caves, Kuala Lumpur, Malaysia.

ORIGIN OF APIS

The Upper Eocene genus Electrapis Cockerell, 1908, which was attributed by Manning (1952), KelnerPillault (1969a, 1969b), Zeuner and Manning (1976) and Culliney (1983) to the Apini, and even considered to be the direct ancestor of Apis, is thought by Kerr and Da Cunha (1976), after a numerical taxonomic study, to be a Meliponini. As their work was not a phylogenetic analysis, the real relationships between Apis and Electrapis have not really been elucidated, as indicated by Burnham (1978). Genuine fossil Apoidea are known in the Upper Cretaceous (Cenomanian amber of New Jersey, USA; Grimaldi et al. 1989). Even if Apoidea is a very ancient group, as demonstrated by the discoveries in the Cretaceous,
the genus Apis seems to have appeared 'suddenly' during the Late Oligocene. Two main theories have been proposed regarding the 'locus of origin' of the genus Apis: (1) Apis could have originated in India and South East Asia because the recent distribution of the Apini is centred in the Oriental region (Culliney 1983). (2) According to Hong and Miao's (1992) theory, the Apoidea could have originated during the late Early Cretaceous in the North China Palaeocontinent and the genus Apis during the Cenozoic in China.

The alleged oldest fossil 'bee' Palaeapis beiboziensis Hong, 1984 from the Early Cretaceous Laiyang Formation of China is probably not an Apoidea. The oldest known Apis are neither Chinese nor Indian but from the West Palaearctic. A biogeographical study based on a phylogenetic analysis of recent and fossil species is clearly needed.

CONCLUSIONS

The venations of the bees Apis armbrusteri and A. spp. E, F, G and I from the Upper Miocene of Western Europe (populations from Austria, south-west Germany, south-central France and Cerdanya, Spain) are very similar to that of Recent Apis dorsata, except for the wing dimensions; A. dorsata is bigger than all the others although it is virtually impossible to distinguish well-characterized species amongst these populations. Possibly, there was a 'superspecies' or a species complex of Apis during the Late Miocene in the region, with (sub)species, mainly characterized by their size. Apis dorsata is a Recent species now living in India and South-East Asia but the existence of Western Palaearctic fossil species related to A. dorsata suggests that this group of bees was not restricted to South-East Asia in the past. These bees also suggest that, during the Late Miocene, the palaeoclimate was warmer than that in Recent times in Western Europe, even in the mountains (Bellver de Cerdanya and Sainte-Reine are 1100 m altitude palaeolakes).

It appears that during the Late Miocene in Europe, these fossil relatives of the dorsata group were living with smaller bees more closely related to Recent A. mellifera. Our study also confirms that Apis (Synapis) spp. (very similar to Recent forms) were already present during the Late Oligocene in Western Europe together with representatives of Recent subgenera. The taxonomy of fossil Apis is still very confused because of the multiplicity of more or less poorly defined 'species' and 'subspecies' but mainly because of the lack, in fossil material, of many of the characters which are used in the taxonomy of Recent Apis. Genuine Apis are also present in the Miocene of Japan and China, so it appears that the genus had already colonized all the Palaearctic region at the very beginning of the Miocene if not during the Late Oligocene. Contrary to the opinion of Hong and Miao (1992), the oldest known Apis are from Western Europe (Germany and France), not from the Miocene of China. Late Eocene Apis are unknown.

Acknowledgements. We thank Mlle Lionnet, library keeper at the Ecole des Eaux et Forêts of Nancy, who allowed us to reexamine the holotype of A. cuenoti, M. Patrick Brisac for the donation of his fossil bee material from the Upper Miocene of La Montagne d'Andance and the curator of the Los Angeles County Museum for the loan of the photograph of the holotype of A. (S.) kaschkei. The field research on fossil bees in the quarries of Sainte-Reine has been made possible with the permission, guidance and help of Mr Yves Aufauvre, director of the Society Celite France (Murat) and Mr Gayral, director of the Society C.E.C.A.-Rioms-es-Montagne. We also thank the anonymous reviewers for their comments and suggestions.

REFERENCES

alexander. b. A. 1991. Phylogenetic analysis of the genus Apis (Hymenoptera: Apidae). Annals of the Entomological Society of America, 84, 137-149.
alfonsus. e. C. 1932. A fossil bee from long ago. American Bee Journal, 72, 275.
alphandery, e. 1931. Traité complet d'apiculture. Berger-Levrault, Paris, vi+572 pp.
armbruster. L. 1938. Versteinerte Honigbienen aus dem obermiocänen Randecker Maar. Archiv für Bienenkunde, 19, 1-48 and 97-133.
ashmead. W. H. 1904. Remark on honeybees. Proceedings of the Entomological Society of Washington, 6, 120-123. BEIER. M. 1952. Miozäne und Oligozäne Insekten aus Österreich und den unmittelbar angrenzenden Gebeiten. Sitzungberichte Akademie Wissenschaftlichen Wien, (1), 161, 129-134.
BLEICH. K. E. 1988. Entwicklung und Umwelt des miozänen Randecker Maarsees (Schwäbische Alb, SW-Deutschland). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 177, 263-288.
burnham, L. 1978. Survey of social insects in the fossil record. Psyche, 85, 85-133.
burleigh, R. and whalley, p. 1983. On the relative geological ages of ambers and copals. Journal of Natural History, 17, 919-921.
Buttel-reepen, h. von 1906. Apisticae. Beiträge zur Systematik, Biologie, sowie zur geschichtlichen und geographischen Verbreitung der Honigbiene (Apis mellifica L.), ihrer Varietäten und der übrigen Apis-Arten. Mittellungen aus dem zoologischen Museum in Berlin, 3, 117-201.
COCKERELL. T. D. A. 1907. A fossil honey-bee. The Entomologist, 40, 227-229.

- 1908. Descriptions and records of bees, 20. Annals and Magazine of Natural History, (8), 2, 323-334.
- 1909. Some European fossil bees. The Entomologist, 42, 313-317.
- 1921. An ortalid fly in British amber. The Entomologist, 54, 30-31.

CORREIA, M. 1973. Etude morphologique et morphométrique des pièces buccales des principaux genres d’Apoidea. Publicações do Instituto de Zoologia «Dr. Augusto Nobre», Faculdade de Ciências do Porto, 118, 9-117.
CULLINEY, T. W. 1983. Origin and evolutionary history of the honeybees Apis. Bee World, 64, 29-38.
DARLU. P. and TASSY. P. 1993. Reconstruction phylogénétique: concepts et méthodes. Collection Biologie Théorique, Masson, Paris, Milan, Barcelona, 245 pp.
DEMARCQ, G., MEIN, P., BALLESIO, R. and ROMAGGI, J.-P. 1989. Le gisement d'Andance (Coiron, Ardèche, France) dans le Miocène supérieur de la vallée du Rhône: un essai de corrélation marin-continental. Bulletin de la Société Géologique de France, (8), 5, 797-806.
EICKWORT. G. C. 1969. A comparative morphological study and generic revision of the Augochlorine bees (Hymenoptera, Halictidae). The University of Kansas Science Bulletin, 48, 325-524.
engel. m. S. and schultz. T. R. 1997. Phylogeny and behavior in honey bees (Hymenoptera: Apidae). Annals of the Entomological Society of America, 90, 43-53.
FABRICIUS, J. C. 1787. Mantissa Insectorum sistens eorum species nuper detectas adjectis characteribus genericis, differentiis specificis, emendationibus, observationibus. Hafniae, 2, Append. spec. nov., 377-382.

- 1793. Entomologia systematica emendata et aucta, secumdum classes, ordines, genera, species, adjectis synonymis, locis, observationibus, descriptionibus. Hafniae, 3, 1-487 and 1-349.
FOORD, A. S. 1890. Notes on a collection of East Coast amber belonging to Mrs Burwood of Yarmouth. Transactions of the Norfolk and Norwich Naturalists' Society, 5, 92-95.
fujiyama. I. 1970. Fossil insects from the Chôkabaru Formation, Iki Island, Japan. Memoirs of the Natural Science Museum of Tokyo, 3, 65-74.
furst, p. T. 1959. The Oligocene world of George Statz. Pacific Discovery, 12, 11-19.
garnery, L., VAUTRIN. D.. CORNUET, J. M. and Solignac. m. 1991. Phylogenetic relationships in the genus Apis inferred from mitochondrial DNA sequence data. Apidologie, 22, 87-92.
GRIMALDI, D., BECK. C. W. and BOON. J. J. 1989. Occurrence, chemical characteristics, and paleontology of the fossil resins from New Jersey. American Museum Novitates, 2948, 1-28.
HANDLIRSCH, A. 1906-08. Die fossilen Insekten und die Phylogenie der rezenten Formen. Ein Handbuch für Paläontologen und Zoologen. Engelmann, Berlin, 1433 pp.
HEER, O. 1849. Die Insektenfauna der Tertiargebilde von EEningen und von Radoboj. Neue Denkschriften Allgemeinen Schweizerischen Gesellschaft für die Gesammten Naturwissenschaften, 11, 1-264.
HEYDEN, C. von 1862. Gliedertheire au der Braunkohle des Niederrhein's, der Wetterau und der Röhn. Palaeontographica, 10, 62-82.
HONG. Y. C. 1983. [Fossil insects in the diatomites of Shanwang.] Bulletin of the Tianjin Institute Geological Mineral Resources, 8, 1-15. [In Chinese].
- 1984. New fossil insects of Laiyang Group from Laiyang Basin, Shandong Province. Professional Papers of Stratigraphy and Palaeontology, 11, 31-41. [In Chinese, with English abstract].
_ 1985. Fossil insects, scorpionids and araneids in the diatoms of Shandong. Geological Publishing House, Beijing, China, 80 pp. [In Chinese, with English abstract].
__ and MIAO, S.-J. 1992. Fossil bee and its origin with discussion on the origin of the angiosperm. Memoirs of Beijing Natural History Museum, 51, 1-19. [In Chinese, with English abstract].
_- and wang, w. L. 1985. [Miocene Diptera and Hymenoptera (Insecta) of Shanwang Province, China.] Memoirs of Beijing Natural History Museum, 31, 1-22. [In Chinese].
kelner-pillault, s. $1969 a$. Abeilles fossiles ancètres des apides sociaux. Proceedings of the Congress of the International Union for the Study of Society Insects, Bern, 15-20 September 1969, 6, 85-93.
- 1969b. Les abeilles fossiles. Memorie della Società Entomologica Italiana, 48, 519-534.

KERR. W. and DA CUNHA, R. A. 1976. Taxonomic position of two fossil social bees (Apidae). Revista da Biologia Tropical, 24, 35-43.

KOHRING, R. and SChlÜTER, T. 1989. Historische und paläontologische Bestandsaufnahme des Simetits, eines fossilen Harzes mutmaßlich mio/pliozänen Alters aus Sizilien. Documenta Naturae, 56, 33-58.
LANHAM, U. N. 1951. Review of the wing venation of the higher Hymenoptera (suborder Clistogastra), and speculations on the phylogeny of the Hymenoptera. Annals of the Entomological Society of America, 44, 614-628.
latreille, P. A. 1802. Histoire naturelle, générale et particulière des Crustacés et des Insectes. Ouvrage faisant suite aux oeuvres de Leclerc de Buffon et partie du cours complet d'Histoire naturelle rédigé par C.S. Sonnini. T. 3-4, and X. Familles naturelles et genres. Paris, Dufart, 1-467 and 1-387.
Linnaeus, c. von 1758. Systema Naturae per regna tria naturae secundum classes, ordines, genera, species cum characteribus, differentiis synonymis, locis. Ed. decima reformata. Holmiae, Laur. Salvii, 1, 823 pp.
Louis. J. 1963. Etude de la translation du point discoìdal (discoidal Alverschiebung) de l'aile de l'abeille (A. mellifica L.). Annales Abeille, 6, 303-320.

- 1966. Sur la constance d'une figure géométrique virtuelle dans la nervation de l'aile antérieure des Hyménoptères mellifères (Fam. Apoidea). Comptes Rendus de l'Académie des Sciences de Paris, (D), 263, 1391-1394.
- 1971. Etudes sur les ailes des Hyménoptères. IV. - L'aile chez les Hyménoptères autres que l’abeille domestique («A. mellifica» L.) et les mellifères. Apidologie, 2, 99-110.
lutz, h. 1984. Beitrag zur Kenntnis der Unteroligozänen Insektenfauna von Cereste (Süd-Frankreich). Documenta Naturae, 21, 1-26.
-_ 1989. Die fossile Insektenfauna von Rott. 33-46. In koenigswald. w. v. (ed.). Fossilagerstätte Rott bei Hennef am Siebengebirge. Rheinlandia Verlag, Siegburg, 82 pp .
má. т. 1953. An inquiry into the systematics of the tribus Apidini or Honeybees (Hym.). Treubia, 21, 525-640.
manning, F. J. 1952. Recent and fossil honey bees: some aspects of their cytology, phylogeny and evolution. Proceedings of the Linnean Society of London, 163, 3-7.
manning, F. J. 1960. A new fossil bee from Baltic amber. XI Internationaler Kongress für Entomologie, Verhandlungen, Vienna, 1, 306-308.
martínez-delclós, x., peñalver, e. and belinchón, m. 1991. Primeras aportaciones al estudio de los insectos del Mioceno de Rubielos de Mora, Teruel (España). Revista Española de Paleontología, Numero Extraordinario (El Estudio de la Forma Orgánica y sus consecuencias en Paleontologia Sistemática, Paleoecología y Paleontología Evolutiva), 125-137.
MASON. W. R. M. 1990. Cubitus posterior in Hymenoptera. Proceedings of the Entomological Society of Washington, 92, 93-97.
meunier, f. 1915. Über einige fossile Insekten aus den Braunkohlenschchten (Aquitanien) von Rott (Siebengebirge). Zeitschrift der Deutsches Geologische Gesselschaft, 67, 205-217.
michener, C. D. 1944. Comparative external morphology, phylogeny, and a classification of the bees (Hymenoptera). Bulletin of the American Museum of Natural History, 82, 158-317.
and FRASER. A. 1978. A comparative anatomical study of mandibular structure in bees (Hymenoptera: Apoidea). The University of Kansas Science Bulletin, 51, 463-482.
PENNY, D. 1982. Towards a basis for classification: the incompleteness of distance measures, incompatibility analysis and phenetic classification. Journal of Theoretical Biology, 96, 129-142.
pongracz. a. 1931. Bemerkungen über die Insektenfauna von Eningen nebst Revision der Heerschen Typen. Verhandlungen des Naturihistorisch-Medizinischen Verein zu Heidelberg, Neue Folge, 17 (2), 104-125.
ponomarenko, a. g. and schultz. o. 1988. Typen der geologisch-paläontologischen Abteilung: fossile Insekten. Katalogue Wissenchaften Sammlung Naturhistorischen Museum, Wien, 6 (Paläozoologie 1), 1-40.
Ríha. P. 1973. Synapis petrefacta sp. n., eine neue Bieneart aus dem Tertiär des Böhmischen Mittelgebirges. Věstnik Ústředniho ústavu geologického, 48, 217-220.
- 1979. Katalog der tertiären und quartären fossilen Insekten der Tschechoslowakei. Entomologie Problemy, 15, 13-31.
rilly. f. de 1930. L'abeille fossile française. L'Apiculteur. [reference not traced].
- 1949. Une abeille fossile française: L'Apis aquitaniensis. La Nature, 3168, 125.

RIOU, B. 1988. Les insectes du Miocène supérieur de la Montagne d'Andance (Ardèche), implications paléoclimatiques et paléogéographiques. Unpublished thesis, Ecole Pratique des Hautes Etudes, Sciences de la Vie et de la Terre (3éme section), Laboratoire de Préhistoire et de Paléoécologie du Quaternaire (Dijon).
roca. e. and santanach. p. 1986. Génesis y evolución de la fosa de la Cerdaña (Pirineos Orientales). Geogaceta, 1, 3738.
roiron, P. 1991. La macroflore d'âge Miocène supérieur des diatomites de Murat (Cantal, France). Implications paléoclimatiques. Palaeontographica, Abteilung B, 223, 169-203.
roussy, l. 1960. Insectes et abeilles fossiles de l'ambre de Sicile. Gazette Apicole, 635, 5-8.

RUTTNER. F. 1988. Biogeography and taxonomy of honeybees. Springer Verlag, Heidelberg, Berlin, New York, 284 pp. KAUHAUSEN, D. and KOENIGER, N. 1989. Position of the red honey bee, Apis koschevnikovi (Buttel-Reepen, 1906), within the genus Apis. Apidologie, 20, 395-404.

- and TASSENCOURT. L. 1978. Biometrical-statistical analysis of the geographic variability of Apis mellifera L. Apidologie, 9, 363-381.
SCUDDER, S. H. 1891. Index to the known fossil insects of the world including myriapods and arachnids. Bulletin of the
United States Geological and Geographical Survey of the Territories, 71, 1-744.
SERIEYSSOL, K. and GASSE. F. 1991. Diatomées néogènes du Massif Central français: quelques faits biostratigraphiques. Comptes Rendus de l'Académie des Sciences de Paris, (2), 312, 957-964.
snodgrass. r. E. 1956. Anatomy of the honey bee. Comstock Publishing Associated, a division of Cornell University Press, Ithaca, New York, 334 pp.
SPAHR, U. von 1987. Ergänzungen und Berichtigungen zu R. Keilbachs Bibliographie und liste der Bernsteinfossilien*
- Ordnung Hymenoptera. Stuttgarter Beitrage zur Naturkunde, (B), 127, 1-121.

SPHON. G. G. 1973. Additional type specimens of fossil invertebrata in the collections of the Natural History Museum of Los Angeles County. Contribution in Science, Los Angeles County Museum, 250, 1-68.
statz. g. 1931. Eine neue Bienenart aus Rott am Siebengebirge. Ein Beitrag zur Kenntnis der fossilen Honigbienen. Wissenschaftliche Mitteilungen des Vereins für Natur - Heimatkunde im Köln, 1, 39-60.

- 1934. Neue Beobachtungen über fossile Bienen aus dem tertiären Ablagerungen von Rott am Siebengebirge.

Archiv für Bienenkunde, 15, 1-10.

- 1942. Bienen, Blätter und Blüten aus dem rheinichen Braukohlenwalde. Deutschen Imkerführer, 16, 1-6.

1943. Bienen, Blätter und Blüten aus dem rheinichen Braukohlenwalde. Rheinische Heimatpfiege, 13 (for 1941), 100-112.
Stauffer. P. H. 1979. A fossilized honeybee comb from Late Cenozoic cave deposit at Basu Caves, Malay Peninsula.
Journal of Paleontology, 53, 1416-1421.
théobald, n. 1937. Les insectes fossiles des terrains oligocènes de France. Mémoires de la Société des Sciences de Nancy, 1, 1-473.
watson, L. R. 1933. As I see the old bee. American Bee Journal, 73, 48-49.
WILLIS, L. G., WINSTON. M. L. and hONDA, B. M. 1992. Phylogenetic relationships in the honeybee (genus Apis) as determined by the sequence of the cytochrome oxidase II region of mitochondrial DNA. Molecular Phylogenetic Evolution, 1, 169-178.
wootton. r. J. 1979. Function, homology and terminology in insect wing. Systematic Entomology, 4, 81-93.
zeuner. F. E. 1931. Die Insektenfauna des Böttinger Marmors. Fortschrifte Geologie. Palaeontologie, 9, 247-406.
-_ and manning. F. J. 1976. A monograph on fossil bees (Apoidea). Bulletin of the British Museum (Natural History), Geology Series, 27, 149-268.
zhang. J.-F. 1989. Fossil insects from Shanwang, Shandong, China. Shandong Science and Technology Publishing House, Jinan, China, 459 pp. [In Chinese, with English abstract].

- 1990. New fossil species of Apoidea. Acta Zootaxonomia Sinica, 15, 83-91.
- sun. b. and zhang, x. 1994. Miocene insects and spiders from Shanwang, Shandong. Science Press, Beijing, China, 298 pp. [In Chinese, with English abstract].

A. NEL

Laboratoire d'Entomologie Muséum National d'Histoire Naturelle 45 Rue de Buffon, F-75005, Paris, France
e-mail anel@mnhn.fr
X. MARTÍNEZ-DELCLÒS

Departament Geologia dinàmica
Geofísica i Paleontologia
Facultat de Geologia
Universitat de Barcelona
Zona universitaria Pedralbes
E-08071, Barcelona, Spain
e-mail delclos@natura.geo.ub.es
A. ARILLO

Departamento Biologia Animal I (Entomología) Facultat de Biologia, Universidade Complutense E-28040, Madrid, Spain
e-mail aarillo@eucmax.sim.ucm.es

E. PEÑALVER

Departamento Geologia, Facultat de Biologia Universidade València
Typescript received 11 September 1995
Revised typescript received 22 January 1998

E-46100 Buyassot, València, Spain
e-mail penalver@uv.es

TABLE 1. Forewing nomenclature of veins. The present designation of the wing veins is based on Wootton (1979) and Mason (1990). The symbol (v) indicates that the authors consider the structure as a vein. The terminology of Eickwort (1969) is based on Michener (1944) and Lanham (1951).

Maa (1953)	Eickwort (1969)	present designation
(v) icul	(v) cu-v	(v) 1cu-a
(v) 2 A	frf (frenal fold)	frf
?	(v) V	(v) 1 A
?	(v) $\mathrm{M}+\mathrm{Cu}$	(v) $\mathrm{M}+\mathrm{CuA}$
(v) mcul	(v) M	(v) M
(v) Cu	(v) Cu	(v) CuA
(v) mcu2	(v) $1 \mathrm{~m}-\mathrm{cu}$	(v) $1 \mathrm{~m}-\mathrm{cu}$
?	(v) Cu 2	(v) 2cu-a
?	(v) Cul	(v) CuA
(v) mcu3	(v) $2 \mathrm{~m}-\mathrm{cu}$	(v) $2 \mathrm{~m}-\mathrm{cu}$
(v) M3 + 4	(v) $\mathrm{M}+\mathrm{Rs} / \mathrm{M}$	(v) $\mathrm{M}+\mathrm{Rs} / \mathrm{M}$
(v) M	(v) Rs	(v) Rs
(v) iml	(v) $1 \mathrm{r}-\mathrm{m}$	(v) $1 \mathrm{r}-\mathrm{m}$
(v) im2	(v) $2 \mathrm{r}-\mathrm{m}$	(v) $2 \mathrm{r}-\mathrm{m}$
(v) $\mathrm{Ml}+2$	(v) Rs	(v) Rs
?	?	$\mathrm{Sc}+\mathrm{R}+\mathrm{Rs}$
?	(v) R1	(v) R
Pt	Stg (or Pt)	Pt
?	(v) C	(v) C
?	vf (vannal fold)	vf (+CuP)
?	(v) r	(v) r-rs
?	smcr (submarginal crease)	smer

table 2. Forewing nomenclature of cells. The two different nomenclatures for cells proposed respectively by Michener (1944) and Eickwort (1969) do not correspond exactly with the modern nomenclature of veins, but as there is no possibility of confusion between the names of veins and those of cells, we introduce only few nomenclatural changes in order to minimize confusion in the terminology.

Maa (1953)	Michener (1944)	Eickwort (1969)	present designation
bm	R	?	cell R
1 sm	1st M	?	cell 1M
2sm	2nd M	?	cell 2M
r	1 st R1	1R1	cell 1 R
3r	2nd R1	2R1	cell 2R
1 m	1st Rs	1Rs	cell 1 Rs
2 m	2nd Rs	2Rs	cell 2 Rs
3 m	?	?	cell 3Rs
3 sm	?	?	cell 3M
1a	?	?	cell A (anal cell)
?	1 st Cu	?	cell 1 cu-a (1st cubito-anal cell)
?	2nd Cu	?	cell 2 cu-a (2nd cubito-anal cell)

table 3. Hindwing nomenclature of veins.

Maa (1953)	Eickwort (1969)	Michener (1944)	Alexander (1991)	present designation
(v) M	(v) Rs	(v) Rs	(v) Rs	(v) Rs
?	(v) r-m	(v) r-m	?	(v) $\mathrm{r}-\mathrm{m}$
?	(v) R	(v) R	?	(v) $\mathrm{Sc}+\mathrm{R}+\mathrm{Rs}$
(v) $\mathrm{M} 1+2$?	?	(v) Rs	(v) Rs
(v) M3 +4	?	?	(v) abscissa of M	(v) ab M
(v) mcul	(v) M	(v) M	(v) M	(v) M
?	?	(v) $\mathrm{M}+\mathrm{Cu}$	(v) $\mathrm{M}+\mathrm{Cu}$	(v) $\mathrm{M}+\mathrm{CuA}$
(v) icul	(v) m-cu	(v) cu-v	?	(v) cu-a
(v) $\mathrm{Cu} 2+1 \mathrm{~A}$	(v) V	(v) V	(v) 1 A	(v) 1 A
(v) Cul	?	?	(v) Cu	(v) CuA
?	jf (jugal fold)	?	(v) 2 A	(v) 2 A
?	smcr	?	?	smcr
?	vf (vanal fold)	?	?	vf

table 4. Hindwing nomenclature of cells. We do not follow the nomenclature of Maa (1953) for the hindwing cells because it does not correspond to that for the forewing cells.

present designation	Maa (1953)
cell R (equivalent of Rc of forewing)	bm (proximal cell between R, Rs and $\mathrm{Cu}+\mathrm{M}$)
cell Rs	m (distal cell between Rs and abscissa of M)
cell M	sm (cell between CuA and M)
cell 2A (second anal cell)	jl (jugal lobe)
cell 1A (first anal cell)	vl (vanal lobe between 1 A and 2A)

TABLE 5. Comparison of the names for points of intersection of wing veins. Unfortunately many workers have given different names to the points of intersection of the forewing veins of Hymenoptera (Louis 1966, 1971; Ruttner 1988; Alexander 1991). It is particularly regrettable that Ruttner and his school did not follow Louis' nomenclature which was complete but probably had the disadvantage of being written in French and not English. Note: there seems to be an error in figures $2-3$ of Alexander (1991): point A in figure 2 is not the equivalent of point A in figure 3 .

Louis (1971)	Alexander (1991)	Ruttner (1988)
O	A	H
S	B	B
X	C	I
V	D	A
Y	E	E
T	?	C
F	?	X
W^{\prime}	?	Y (or L) !
U	?	D
W	?	M
?	?	E^{\prime}
N	?	J
?	?	N
M	?	P
K	?	Q
H	?	R
I	?	O
R	?	G
Q	?	F
P	?	K

table 6. Miocene fossil bees from France, Austria and Spain. Measurements are in mm. Characters of the forewing: FL, forewing length (sensu Ruttner 1988); FB, forewing width (sensu Ruttner 1988); Ci, cubital index ($=\mathrm{CB} / \mathrm{CA}=\mathrm{a} / \mathrm{b}$ sensu Ruttner 1988, p. 42, fig. 4.7, p. 72, fig. 6.8) (=TS/TV sensu Louis 1971); Pci, Precubital index (= BJ/MH sensu Ruttner 1988) (= SN/WO sensu Louis 1971); Dbi, dumbbell index (= BA/IE sensu Ruttner 1988) (= SV/XY sensu Louis 1971); Ri, radial index (=E'X/E'Y sensu Ruttner 1988) (=YF'/YW' sensu Louis 1971); Dm, distance between vein icu-a and the point of separation between the veins M and CuA ($=\mathrm{QR}$ sensu Ruttner 1988; = HK sensu Louis 1971); this is positive if vein icu-a is in a proximal position relative to the point of separation between M and CuA , but otherwise negative; Lpt, length of the pterostigma ($=\mathrm{LN}$ sensu Ruttner 1988; = $\mathrm{M}^{\prime} \mathrm{W}^{\prime}$ sensu Louis 1971); Wp, width of the proximal half of cell 2Rs; Wd, width of distal half of cell 2Rs; Angle YVX (sensu Louis 1971); Angle KIH (sensu Louis 1971) (= angle QOR sensu Ruttner 1988).

The hindwing's characters, i.e. the length of the abscissa of vein M and the number of hooks are difficult to use because the hooks of the hindwing are rarely preserved. Also, the body's characters, i.e. the length of hairs on tergite $5=\mathrm{h}$ (sensu Ruttner and Tassencourt 1978, fig. 1), the length and width of the basitarsus, and the length of the body, are often difficult to use because of the degree of deformation.

	F_{L}	F_{B}	Ci	Pci	Dbi	Ri	Dm	Lpt	Wp	Wd	YVX	KIH
A. mellifera	9.3	$3 \cdot 2$	1.2	3	0.7	1.3	$0 \cdot 3$	0.8	0.4	$0 \cdot 4$	20°	100°
A. florea	$6 \cdot 8$	$2 \cdot 2$	3.6	$2 \cdot 2$	$1 \cdot 3$	1.7	$0 \cdot 2$	0.8	0.3	$0 \cdot 2$	20°	110°
A. dorsata	14.2	$4 \cdot 7$	$4 \cdot 8$	3	1	$1 \cdot 1$	0.7	1.2	0.7	0.7	27°	115°
A. cuenoti												
R. 08383 Céreste	$12 \cdot 6$	3.8	$3 \cdot 6$	$3 \cdot 2$	1	0.9	0	0.8	0.6	0.6	29°	105°
173EFN Céreste	12.6	3.7	$3 \cdot 4$	3	1	$0 \cdot 8$	0	$0 \cdot 8$	0.6	0.6	32°	105°
R. 08396 Céreste	≈ 11	$3 \cdot 6$?	?	?	$0 \cdot 8$	$0 \cdot 2$	0.7	0.5	0.5	?	110°
Apis sp. A												
R. 08384 Camoin	10	$3 \cdot 4$	$2 \cdot 3$	3.6	1.8	$1 \cdot 3$	0	0.7	0.4	$0 \cdot 4$	10°	90°
R. 08385 Camoin	≈ 10	?	?	?	$1 \cdot 3$	1.3	0.2	0.7	0.4	$0 \cdot 4$	15°	105°
A aquisextusensis												
R. 08381 Aix	8.5	$2 \cdot 8$	6	2.8	$1 \cdot 2$	1.6	$0 \cdot 2$	0.7	0.45	$0 \cdot 3$	15°	110°
R. 08382 Aix	8.5	$2 \cdot 8$?	2.9	?	1.7	0.15	0.8	0.45	$0 \cdot 3$?	90°
R. 10421 Aix	$8 \cdot 6$	≈ 3	6	2.9	1.5	1.8	0.2	$0 \cdot 8$	0.4	$0 \cdot 3$	15°	115°
Apis sp. B												
R. 10429 Aix	11.9	?	1.8	$3 \cdot 2$	$0 \cdot 8$	1	0	$0 \cdot 3$	0.45	$0 \cdot 3$	28°	105°
Apis sp. C												
R. 10426 Aix	10	≈ 3	2	$2 \cdot 6$	$1 \cdot 2$	1.4	$0 \cdot 2$	$0 \cdot 6$	0.3	$0 \cdot 3$	25°	110°
Apis sp. D												
MPV-91-RM	9.5	$2 \cdot 3$	3	3.9	$1 \cdot 1$	$1 \cdot 3$	$0 \cdot 3$	$0 \cdot 8$	0.3	$0 \cdot 3$	20°	120°
1982 XIV Mun.	9.7	$3 \cdot 2$	4.4	$2 \cdot 7$	1	1	$0 \cdot 3$	0.7	0.4	$0 \cdot 4$	30°	120°
Apis sp. E												
B. 31781 Parsch.	11.5	$3 \cdot 7$?	$2 \cdot 5$	$0 \cdot 8$	1.2	0.25	1	0.6	0.6	34°	125°
B. 31782 Parsch.	?	?	$3 \cdot 1$	2.4	0.9	$1 \cdot 3$?	0.9	0.6	0.6	50°	?
Apis sp. F												
R. 10423 Bellver	$10 \cdot 5$	3.6	2	3	0.9	0.9	0.4	0.7	0.4	0.4	32°	110°
R. 10425 Bellver	10.7	$3 \cdot 6$	$3 \cdot 6$	$3 \cdot 5$	$0 \cdot 8$,	0.6	$0 \cdot 6$	0.5	0.5	32°	110°
R. 08386 Bellver	9.6	$3 \cdot 2$	2	$3 \cdot 5$	0.8	0.9	0.5	$0 \cdot 6$	$0 \cdot 4$	$0 \cdot 4$	35°	105°
R. 10424 Bellver	10.4	?	2.9	4	1	0.9	0.5	1	0.5	$0 \cdot 5$	25°	105°
R. 10422 Bellver	10.8	$3 \cdot 7$	$3 \cdot 8$	2.9	1	1	0.5	0.7	0.5	0.5	29°	110°
R. 10432 Bellver	10.4	?	$3 \cdot 3$	$3 \cdot 5$	1	1	0.5	0.8	0.5	0.5	27°	120°
R. 10431 Bellver	≈ 10	?	?	$3 \cdot 3$?	1	0.5	0.8	0.5	0.5	?	110°
MNCNI-21614	10	≈ 3	3	$3 \cdot 5$	0.9	0.9	0.5	0.7	0.5	$0 \cdot 5$	30°	110°
Apis sp. G												
R. 08389 Murat	12	3.7	$3 \cdot 6$	3	1	1	0.5	0.7	0.6	0.6	30°	90°
R. 08388 Murat	$12 \cdot 6$	≈ 4	$2 \cdot 6$	2.5	$0 \cdot 8$	0.8	0.5	0.7	0.6	0.6	44°	112°
R. 08390 Murat	11	$3 \cdot 8$	2.7	2.7	0.7	0.8	0.6	0.9	0.6	0.6	37°	115°

TABLE 6 continued.

	F_{L}	F_{B}	Ci	Pci	Dbi	Ri	Dm	Lpt	Wp	Wd	YVX	KIH
Apis sp. H												
R. 08391 Murat	8.5	?	3.7	3	1	1.2	0.3	0.9	0.4	0.4	30°	105°
R. 08392 Murat	8.6	?	3	3	1	1.8	?	1.2	0.4	0.4	20°	?
Apis sp. I												
R. 54924 Andan.	11	≈ 4	2.5	2.8	1	?	0.6	1	0.5	0.5	25°	110°
R. 54922 Andan.	≈ 12	3.7	3	2.9	0.9	≈ 1	0.5	0.8	0.4	0.4	35°	110°
R. 54921 Andan.	12.4	4.6	2.8	2.7	1	0.8	0.6	1	0.5	0.5	30°	110°
R. 54926 Andan.	11.2	≈ 4	2.7	2.7	1	1.1	0.5	1	0.5	0.5	25°	110°
R. 55166 Andan.	12.4	4.2	2	2.8	1	0.9	0.6	0.7	0.6	0.6	29°	115°
R. 55206 Andan.	12.4	?	4	2.8	0.8	1	0.6	1	0.6	0.6	32°	118°
R. 55167 Andan.	12.4	?	3.2	2.7	1	1.1	0.6	1	0.6	0.6	26°	105°
R. 55169 Andan.	12.6	4.2	$2 \cdot 3$	2.8	1.1	$1 \cdot 1$	0.6	1	0.6	0.6	25°	110°
Apis sp. J												
R. 55207 Andan.	8.6	2.8	5	2.7	1.5	1.7	0.3	0.8	0.4	0.4	15°	128°
R. 55168 Andan.	8.8	2.8	5	$2 \cdot 3$	1.5	1.6	0.2	0.8	0.4	0.4	12°	$112{ }^{\circ}$

NOTES FOR AUTHORS

 welcome. and short papers can often be published rapidly. A high standard of illustration is a feature of the journad sis parts are published each year and are sent free to all member of the Asociation. Typescript should conform in sy te to thone abredy publishe in this journal, and should be sent to the Secretary of the Publications Commitlec. Dr R. Wood. Department of Earth Sciences. University of Cambridge, Downing Street, Cambridge CB2 3EQ, who will supply detailed instructions for authors on tequey thewe are published in Palacontology 1996, 39. 1065-1075).

SPECIAL PAPERS IN PALAEONTOLOGY

 separate works conforming in the style of Palacontolog... Two issues are published each year. Members may wheribe to thi by
 for Ordinary and Student Members. A single copy of each Special Paper is atailable on a non-subseription basis on Ordmary and Student Members only. for their personal use at a discount of 25 per cent below the listed prices: contat the Executive Offieer Non-members may obtain No. 55 onwards at cover price from Blachwell Publithers, and older insues from Dr Tim Palmer. I. (i.E.S. University of Wales. Aherystwyth. SY23 3DB. UK. For all orders of Spectol Papers through the Execulive officer, please wht t. 50 per item for postage and packing in the UK. or $£ 3.00$ (1 S 56) werseas.

PALAEONTOLOGICAL ASSOCIATION PUBLICATIONS

Special Papers in Palacontology

 and are available together with those listed below:
 19 tert-figs. 37 plates. Price $\mathfrak{E} 40$ (US. $\$ 80$).
 $8+$ pp.. 22 tex-figs. 9 plates. Price $£ 35$ (U.S. $\$ 70$).
 (U.S. $\$ 90$).
 Price Et0 (U.S. $\$ 80$).
54. (for 1995): Taxonomy and evolution of Landovery hiserial graptoloid from the southern ('rals, western Kabahbam.

 (U.S. $\$ 90$).
56. (for 1996): Fossil and Recent egeshell in amniotic vertebrates: fince structure comparative morphology and classification. bek. E. Makhallov. 80 pp.. 21 text-figs. 15 plates. Price $£ 35$ (U.S. $\$ 70$).
 8 text-figs. 9 plates. Price $\mathfrak{f} 30(\mathrm{U} . \mathrm{S} . \$ 6(0)$.

59.(for 1998): Late Ordovician brachiopods from the South China Plate and their palatogeographical significalle

Field Guides to Fossils

These are avalable from the Executive Officer. Blackwell Publishers and major booksellers. Plase add $£ 1.50$ per book for poutage and packing in the UK, or $£ 3.00$ (US $\$ 6$) overseas. Payments should be in Sterling or in U.S. dollars, with all exchange charve prepaid. Cheques should be made payable to the Palaeontological Association.
 U.S. \$12).
 (Members £9.90) or U.S. $\$ 20$)
 (Members $\mathfrak{£ 3 . 7 5}$ or U.S. $\$ 7.50$).
 (Members $£ 12$ or U.S. \$24).

 (Members £9 or U.S. \$18).
 (Members fill or U.S. \$24).
Palacontology
VOLUME 42 • PART 2
CONTENTS
An Early Bathonian Tethyan ammonite fauna from Argentina AIBERTO C. RIC('ARDI alld (iERI F. G. WISTERMANN 193
Oelandiella, the earliest Cambrian helcionelloid molluse from Siberia alexander p. gubanov dild John S. Pleiel. 211
A new Carboniferous rugose coral genus from northern England IOHN R. NUDDS 223
Using critical path method to analyse the radiation of rudist bivalves
J. R. STON: (nd M. TEIFORD 231
A review of the Eurasian fossil species of the bee Apis
 243
Shark and ray teeth from the Hauterivian (Lower Cretaceous) ofnorth-east England
CHARIIE: J. UNDERWOOD), SIMON F. MITCHEI.I. and kefs J. veletkamp 287
Lower and Middle Jurassic woods of the Cleveland Basin (North Yorkshire). England
HELIEN S. MORGANS 303
Gigantonoclect: an enigmatic Permian plant from North China WANG 7.I-QIANG 329)A replacement name for the trilobite Lalax Holloway and Lane nonHamilton375

