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Abstract.—Many biogeographic problems are tested on phylogenetic trees. Typically, the uncertainty in
the phylogeny is not accommodated when investigating the biogeography of the organisms. Here we
present a method that accommodates uncertainty in the phylogenetic trees. Moreover, we describe
a simple method for examining the support for competing biogeographic scenarios. We illustrate
the method using mitochondrial DNA sequences sampled from modern humans. The geographic
origin of modern human mtDNA is inferred to be in Africa, although support for this hypothesis was
ambiguous for data from an early paper.

Debate on the origin of anatomically
modern humans has concentrated on two
competing hypotheses. The “out-of-Africa
hypothesis” argues that modern humans
originated in Africa and then migrated to
other parts of the world, replacing other
species of Homo as they spread (Stringer
and McKie, 1996). The “regional continu-
ity hypothesis,” on the other hand, argues
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for a single species of Homo widely spread
throughout the Old World, with populations
connected through gene �ow (Wolpoff and
Caspari, 1997). Anatomically modern hu-
mans are then thought to have originated
over a wide geographic area and after any
migration event from Africa. The usual ap-
proach taken in a molecular test of these
competing hypotheses is to collect DNA
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sequences, usually from a single nonrecom-
bining locus, and then to reconstruct the phy-
logenetic history of the gene. If the most
recent common ancestor (MRCA) of mod-
ern humans is reconstructed as coming from
Africa, then the data are considered to be
consistent with the out-of-Africa hypothe-
sis. This approach has been applied nu-
merous times, �rst on mitochondrial DNA
(mtDNA) sampled from individuals from di-
verse geographic origins (Cann et al., 1987;
Vigilant et al., 1991) and later with genetic
data sampled from the Y chromosome
(Underhill et al., 2000). With a few exceptions
(e.g., see Adcock et al., 2001), the results ap-
pear to favor the out-of-Africa hypothesis.

Any test of the out-of-Africa hypothe-
sis presents several dif�cult statistical chal-
lenges, reviewed in Penny et al. (1995). First,
the datasets generated tend to be very large.
The early paper by Vigilant et al. (1991), for
example, included >130 sequences, which
at the time represented a very large phy-
logenetic analysis. More recent datasets in-
clude >1,000 DNA sequences (Krings et al.,
1997). Adequately exploring tree space by
using a reasonable method of phylogenetic
analysis remains very dif�cult for large
datasets. Second, the uncertainty in the
phylogenetic trees must be satisfactorily
accommodated. Many of the phylogenetic
analyses of DNA sequences sampled from
modern humans have a large degree of un-
certainty (Maddison et al., 1992); it is im-
portant, then, that a test of the out-of-Africa
hypothesis not depend on any single tree
being correct. Finally, it is not clear how to
evaluate the support that an alignment of
DNA sequences has for the out-of-Africa hy-
pothesis. This paper is intended to describe
one framework for investigating the out-of-
Africa hypothesis, as well as related ques-
tions. The approach can be applied to large
datasets, provides a framework for evaluat-
ing competing hypotheses, and addresses the
shortcomings of earlier approaches while ac-
commodating phylogenetic uncertainty. We
apply the method to the original mtDNA se-
quences analyzed by Vigilant et al. (1991),
plus the few additional sequences examined
by Maddison et al. (1992). We show that,
although the original Vigilant et al. (1991)
study was consistent with an African origin
for modern human mtDNA, the evidence for
this hypothesis is not overwhelming. We also
demonstrate how previous work can serve

as the prior for further data analysis, allow-
ing diverse types of information to be com-
bined in a single study. We do this using a
new datasetof 200 human sequences; a recent
Neandertal sequence serves as the outgroup.

ACCOMMODATING PHYLOGENETIC
UNCERTAINTY WHEN TESTING THE

OUT-OF-AFRICA HYPOTHESIS

Testing the out-of-Africa hypothesis
involves comparing two hypotheses: that
modern humans originated in Africa, and
that modern humans did not originate in
Africa. These hypotheses are dif�cult to
test directly with molecular data. What
usually can be inferred is the geographic
origin of the particular sequence that was
examined, but not the geographic origin
of a population. A sample of individuals
sequenced for a nonrecombining genetic
locus will yield a most recent common
ancestor; the geographic origin of the sam-
ple can be inferred by various techniques,
such as the parsimony method. Distin-
guishing between the out-of-Africa and
the regional continuity hypotheses on the
basis of genetic data from a single locus
may be dif�cult. The regional continuity
hypothesis, for example, is consistent with
some portions of the human genome hav-
ing common ancestor in Africa. However,
as more loci are sampled, which hypothesis
best explains the data should become more
clear. In this paper, we concentrate on how to
analyze the genetic data from a single locus.
Moreover, we are interested in comparing
the following hypotheses—M1, M2, M3, M4,
and M5,—that the common ancestor of
the sample lived in Africa, Europe, the
Americas, Asia, or Australia/Oceania,
respectively.

We assume that an alignment of s DNA
sequences, each c sites long, is provided.
We also assume that the sequences do not
recombine, as would be the case for ge-
netic data sampled from mtDNA or from the
Y chromosome (but see Awadallaet al., 1999).
By assuming that recombination is not a
factor, we can allow the same phylogenetic
tree to apply to all of the sites in the se-
quence. Moreover, when the ancestral geo-
graphic region of the sequence is inferred, it
will apply to the entire sequence. The aligned
DNA sequences will be denoted X D fxi j g,
where i D 1, : : : , s and j D 1, : : : , c. We wish
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to evaluate the posterior probability of each
hypothesis conditional on the observed DNA
sequences, f (Mi j X ). In this study, we cal-
culate the posterior probability of a hypothe-
sis by summing the posterior probabilities of
all phylogenetic trees that are consistent with
the hypothesis (Huelsenbeck et al., 2000). We
use the parsimony method to reconstruct the
ancestral geographic region for a tree. Each
phylogenetic tree, ¿ , is either inconsistent
with, consistent with, or ambiguously sup-
ports, an origin on continent i . Hence, the
posterior probability of an origin on conti-
nent i is

f (Mi j X ) D
B(s)X

j D 1

I (¿ j ) f (¿ j j X )

where B(s) is the number of possible phylo-
genies for s sequences and I (¿ j ) is an index
variable that takes the values

I (¿ j ) D

8
>>>><

>>>>:

0, if the MRCA is not assigned
to continent i

1=k, if theMRCA isambiguously
assigned to continent i

1, if the MRCA is assigned to
continent i

(k is the number of ambiguous ancestral ar-
eas). Here, f (¿ i j X ) is the posterior proba-
bility of the i th phylogenetic tree. The poste-
rior probability of a phylogeny is calculated
using Bayes’s rule

f (¿ i j X ) D
f (X j ¿i ) f (¿i)

PB(s)
j D 1 f (X j ¿ j ) f (¿ j )

where f (X j ¿i ) is the likelihood of the ith
phylogeny and f (¿i ) is the prior probabil-
ity of the ith phylogeny (Li, 1996; Mau, 1996;
Rannala and Yang, 1996; Mau and Newton,
1997; Yang and Rannala, 1997; Larget and
Simon, 1999; Mau et al., 1999; Newton et al.,
1999). In this paper, we consider all B(s)
trees to be equally probable a priori [i.e.,
f (¿i ) D 1

B(s) ]. Knowledge of only the phy-
logeny of the species, however, is insuf�-
cient to allow calculation of the likelihood
(Felsenstein, 1981). In addition to a phylo-
genetic tree, one must assume a stochas-
tic model of DNA substitution to calculate
the likelihood. A phylogenetic model incor-
porates information on the lengths of the
branches on the ith phylogeny (ºi ) as well
as information on the pattern of nucleotide

substitution (parameters contained in a vec-
tor µ). The likelihood of the ith tree, then, is

f (X j ¿i ) D
Z

º,µ
f (X j ¿i , ºi , µ) f (º i , µ) dº i dµ

where integration is over the space of
the branch lengths and substitution model
parameters. Likelihoods can be calculated
under any of the standard models of DNA
substitution, reviewed in Swofford et al.
(1996). In this study, we use uninformative
priors for the branch lengths and substitu-
tion model parameters over the range of rea-
sonable values for these parameters. Specif-
ically, we assume a uniform (0,10) prior on
branch lengths, a uniform (0,20) prior on the
rates of substitution, a uniform (0,50) prior
on the shape parameter of the gamma distri-
bution (for among-site rate variation), and a
�at Dirichlet (1,1,1,1) prior on base frequen-
cies. These priors were chosen because they
are �at over biologically plausible values for
the parameters. Moreover, we assume a gen-
eral model of DNA substitution that allows
each substitution type to have its own rate
and allows base frequencies potentially to
differ (i.e., the GTR model of DNA substi-
tution; Tavaré, 1986). The rate of substitution
from nucleotide i to nucleotide j is desig-
nated ri j . Rate variation across sites is accom-
modated by assuming that the rate at a site
is a random variable drawn from a gamma
distribution with shape and scale parameters
set to ® (Yang, 1993, 1994). Speci�cally, we
use the discrete approximation, suggested by
Yang (1994), with four rate categories. The
parameters of the substitution model, then,
are µ D frAC, rAG , rAT, rCG, rCT, ¼A, ¼C, ¼G, ®g
(ri j D r j i and the substitution rates are rel-
ative to the rate between G $ T, rGT D 1;
¼T D 1 ¡ ¼A ¡ ¼C ¡ ¼G). A general model of
DNA substitution was chosen because it ac-
commodated several possible rate models.
Inspection of posterior distributions for rate
parameters, base frequencies, and among-
site rate variation suggests that the general
model was appropriate (Table 1).

One potential weakness of the approach
we have described is its reliance on the parsi-
mony method to reconstruct the geographic
region of the MRCA of the sequences. The
parsimony method can become unreliable
when character transformations are frequent
relative to branching events. Hence, another
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TABLE 1. Parameter estimates of the substitution
model. The columns indicate the parameter, mean, and
95% credible interval for the parameter. The parameters
are V, the tree length; ri j , rate of substitution between
nucleotides i and j measured relative to the rate between
G and T (rGT D 1); ¼i , base frequencies; and ®, gamma
shape parameter for among-site rate variation.

Parameter Mean Credible interval

V 1.81 (1.51, 2.30)
rAC 2.53 (0.75, 5.55)
rAG 31.54 (9.69, 64.68)
rAT 2.19 (0.54, 5.12)
rCG 2.48 (0.55, 6.04)
rCT 48.71 (14.48, 98.01)
rGT 1.0
¼A 0.302 (0.277, 0.327)
¼C 0.347 (0.323, 0.372)
¼G 0.134 (0.117, 0.152)
¼T 0.217 (0.197, 0.237)
® 0.246 (0.211, 0.285)

assumption of this analysis is that migra-
tion events are rare compared with coales-
cence events. This assumption can be relaxed
by assuming that the characters (continen-
tal area) change on the tree according to
a stochastic process, such as the Markov–
Bernoulli process; we do not do so in this
analysis, however, because we do not expect
character transformations to be frequent rel-
ative to branching events. In this case, char-
acter transformations represent migration
eventsamong continents.Continental migra-
tion is probably rare relative to coalescence
events.

The posterior probability of a phylogenetic
tree is almost impossible to evaluate analyt-
ically because it involves a summation over
all possible trees and, for each tree, integra-
tion over the branch lengths and substitu-
tion model parameters. We use the program
MrBayes 1.1 (Huelsenbeck and Ronquist,
2001) to approximate the posterior probabil-
ities of trees. This program uses a variant of
Markov chain Monte Carlo (MCMC) that is
less prone to entrapment in local optima than
is normal MCMC (Metropolis et al., 1953;
Hastings, 1970; Geyer, 1991; Green, 1995).
MCMC approximates the posterior proba-
bility of a phylogenetic tree by constructing
a Markov chain that has as its state space
the parameters of the phylogenetic model.
The states of the chain are sampled as it
runs. The proportion of the time that any
phylogenetic tree is represented in the sam-
ple is a valid approximation of its posterior
probability (see Tierney, 1994). The variant of

MCMC we use, Metropolis-coupled Markov
chain Monte Carlo (Geyer, 1991), runs sev-
eral chains simultaneously. All but one of the
chains are heated, meaning that they more
easily explore the space of phylogenetic trees.
A heated chain has steady-state distribution
of f (¿ j X )¯ , where ¯ is a heating parameter.
The heated chains better explore the space
of trees because the tree landscape is �at-
tened relative to the cold (or unheated; ¯ D 1)
chain. After all of the chains have been ad-
vanced one step, a swap of the states for two
randomly chosen chains is attempted. This
strategy allows the cold chain to jump a deep
valley in the landscape of trees when a suc-
cessful swap between the cold and a heated
chain is made.

MCMC is not a maximization (or mini-
mization) algorithm that may be familiar to
the reader. Instead, MCMC is used to sam-
ple trees in proportion to their probabilities.
Trees that are more probable will be repre-
sented more often in the sample of trees than
will those that are poor descriptions of the
data. The most probable tree, known as the
maximum posterior probability (MAP) esti-
mate, may not even �nd its way into the sam-
ple if the probabilities of the best trees are
very similar. Previously, Penny et al. (1995)
used a heuristic search method to explore
tree space for the data from Vigilant et al.
(1991). Speci�cally, they used the Great Del-
uge algorithm to explore the landscape of
trees developed using the parsimony crite-
rion. The advantage of the Penny et al. (1995)
method, shared by our own, is that infer-
ences are not based on any single tree. How-
ever, the Penny et al. (1995) approach has
two problems. First, the optimality criterion,
parsimony, is known to fail under certain
branch length conditions, and the criterion’s
statistical basis is poor. Second, the Great
Deluge strategy is not guaranteed to meet
any particular sampling strategy for trees.
The MCMC approach, on the other hand,
can sample trees according to their posterior
probabilities.

We analyzed the dataset of s D 140 mi-
tochondrial sequences of c D 1,139 sites
used in the study by Maddison et al. (1992).
This study included 135 modern human se-
quences, 78 of which were from individu-
als with origins in Africa. The dataset also
includes �ve chimpanzee sequences, which
were used to root the trees. We ran two
MCMC analyses for 2,000,000 generations
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FIGURE 1. The log probability of the observed DNA
sequences, X, through time for both of the chains run
in this study. Each chain started from different random
trees and reached apparent stationarity by 100,000 gen-
erations. The samples taken from the �rst 500,000 gen-
erations were discarded as the burn-in for the chain,
and inferences are based on samples from the remaining
parts of the chain.

each. Each chain consisted of one cold
and three heated chains and the Markov
chains were started from independent ran-
dom trees. Figure 1 shows the log probability
of the data through time. Note that the chains
initially started with trees that poorly ex-
plained the data but quickly found more rea-
sonable trees. More importantly, both chains
plateaued to the same log probability, sug-
gesting that the chains have converged. This
conclusion is supported by the fact that the
inferences that would be drawn from the two
chains are very similar. Figure 2, showing
the posterior probability of individual clades
found in both chains, illustrates that the
posterior probabilities for the same clades are
highly correlated.

The Markov chains were sampled every
100 generations, resulting in a total of 20,000
sampled trees from each chain. The �rst
5,000 trees were discarded from each as the
“burn-in” (the portion of the chain that was
sampled before stationarity was reached).

FIGURE 2. Correlation between the posterior prob-
abilities of individual clades, f (¿ (i ) j X), obtained from
the separate Markov chains.

Inferences, then, were based on the 30,000
trees sampled from both chains. The MCMC
strategy, when successfully completed, en-
sures that the trees were sampled in propor-
tion to their posterior probability. Figure 3
shows the 50% majority rule consensus tree
for the data of Maddison et al. (1992). The
numbers at the interior branches of the
tree represent the posterior probability that
the clade is correct. Note that large portions
of the tree are poorly supported, with poste-
rior probabilities of <50% (the regions of the
tree that contain large polytomies). Table 1
provides the estimates of the substitution pa-
rameters. The low support for many of the
branches suggests that inferring the ancestral
continental region for the sequences may be
dif�cult. However, such is not the case. Al-
though many different trees were sampled
in the MCMC approach, some proportion of
these trees will be consistent with a MRCA
from Africa. We counted the number of the
trees that were consistent with an African
origin of the mtDNA by using the program
PAUP¤ (Swofford, 1998). We rooted all of
the trees, using the chimpanzees as the out-
group, and examined the parsimony recon-
struction for the node that represented the
MRCA of the modern human sequences. All
equally parsimonious reconstructions at the
ancestor of modern humans were calculated
by using the Fitch (1971) algorithm. Of the
30,000 sampled trees, 27,601 were consistent
with an African origin (i.e., the MRCA of the
mtDNA was unambiguously reconstructed
as residing in Africa), 1,154 were consis-
tent with the alternative hypothesis, and
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FIGURE 3. The 50% majority rule consensus tree of the 30,000 trees sampled in the MCMC analyses. Individuals
from Africa are indicated by the vertical bars.

1,245 trees were ambiguous (i.e., reconstruc-
tions with two or more geographic areas
were equally parsimonious). When the state
assigned to the MRCA was ambiguous, we
assigned equal weight to each of the possi-
ble reconstructions, which yielded the fol-
lowing posterior probabilities of the �ve
hypotheses:

f (M1 j X ) D 0:94

f (M2 j X ) D 0:01

f (M3 j X ) D 0:00

f (M4 j X ) D 0:03

f (M5 j X ) D 0:02

This appears to be strong support for
an African origin for human mtDNA be-
cause f (M1 j X ) is so much larger than
the other possible root positions of the
trees.
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MODEL COMPARISON

What the above calculation fails to take
into consideration is the prior probabilities
of the �ve hypotheses. The posterior proba-
bility of the African origin hypothesis con-
siders the probability of the hypothesis af-
ter the mtDNA sequences were observed.
However, before consideration of the data,
the decision to sample 78 African sequences
and 57 non-African sequences induced a
prior probability for an African origin of the
mitochondrial sequences. We calculated the
prior probability of the i th hypotheses as

f (Mi ) D
B(s)X

jD1

I (¿ j ) f (¿ j )

Each of the B(s) trees is considered to be a
priori equally probable. Hence, we were able
to approximate the prior probability of each
hypothesis by generating a sample of 10,000
random trees. We evaluated whether each of
these random trees was consistent with an
origin for the MRCA on continent i . The prior
probabilities of the hypotheses were found to
be as follows:

f (M1) D 0:80

f (M2) D 0:05

f (M3) D 0:00

f (M4 ) D 0:08

f (M5) D 0:07

Hence, even before analysis of the mtDNA
sequence data, an African origin for the se-
quences was nearly four times as likely as
a hypothesis that has human mtDNA orig-
inating elsewhere. The mitochondrial data
changed our opinion about the merit of an
African origin hypothesis. Before observing
the data, the probability of this hypothesis is
0.80, whereas after the analysis, the proba-
bility is 0.94. In other words, the mtDNA se-
quences cause us to change our opinion to be
more in favor of an African origin for modern
human mtDNA.

The amount by which our opinion is
changed canbe measured as thechange in the
odds of the hypotheses. The posterior odds
of the African origin hypothesis and its con-

verse is

f (M1 j X )
1 ¡ f (M1 j X )| {z }
Posterior odds

D
f (X j M1)
f (X j MC

I )| {z }
Bayes factor

£
f (M1)

1 ¡ f (M1)| {z }
Prior odds

The Bayes factor, then, is the ratio of the
posterior odds to the prior odds and mea-
sures “the change in the odds in favor of
the hypothesis when going from the prior
to the posterior” (Lavine and Schervisch,
1999:120). For the human mtDNA data,
then,

f (X j M1)
f (X j MC

I )
D

0:94=0:06
0:80=0:20

D 3:9

which means that the Vigilant et al. (1991)
data should cause us to change our opinion
by a factor of 4 in favor of an African origin
for the mtDNA. The original Vigilant et al.
(1991) data are consistent with the out-of-
Africa hypothesis.

However, a Bayes factor (or likelihood
ratio) of 3 or 4 is not typically considered
overwhelming support for one hypothesis
over another. Jeffreys (1935, 1961) argued that
competing models be compared by using the
Bayes factor and provided a table for inter-
preting Bayes factors, which was modi�ed
by Raftery (1995) as follows:

B12 2 loge B12 Evidence for M1

<1 <0 Support for M2

1–3 0–2 Barely worth mentioning
3–12 2–5 Positive

12–150 5–10 Strong
>150 >10 Very strong

where B12 is the Bayes factor of a comparison
of models 1 and 2. Twice the log of the Bayes
factor is on roughly the same scale as the
more familiar likelihood-ratio test statistic.
The Bayes factor of 3.9 for this analysis counts
only as “positive” support for an African ori-
gin of the mtDNA.

COMBINING DATA ACROSS STUDIES

Since the Vigilant et al. (1991) study,
many other studies have been performed
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to infer the geographic area of the MRCA
of modern humans. By and large, these
studies have supported the idea that mod-
ern human mtDNA originated in Africa.
How should new studies in�uence our belief
about an African origin for modern human
mtDNA?

In a Bayesian analysis, the posterior prob-
abilities of hypotheses from a previous study
can serve as the prior for the next study. For
instance, the Vigilant et al. (1991) study, if
done in a state of ignorance about the phylo-
genetic relationships of the sequences, would
assign a probability of 0.80 to the idea that the
origin of the sample was in Africa. This prior
probability, as described above, considers all
trees to be equally probable. The fact that 78
of the 135 human sequences were from peo-
ple with origins in Africa implies that 0.8 of
the trees will be reconstructed as having the
MRCA in Africa.

The posterior probability of an origin in
Africa for the modern human mtDNA, calcu-
lated in the previous section, describes how
a person who started in a state of ignorance
about the trees should change his or her opin-
ion about an African origin for the sequences
after observing the Vigilant et al. (1991) mi-
tochondrial sequences. Subsequent studies
can use the posterior probabilities from the
Vigilant et al. (1991) data as the prior. This
seems reasonable to do with phylogenetic
trees, even though the root of one tree
may not correspond to anything in another
tree derived from another dataset because
of nonoverlapping sample membership. We
are interested in the geographic region of
the root of the tree, not the root position
per se.

To demonstrate this point, we analyzed
200 sequences, each 428 sites long, from
the hypervariable region I (HVRI) of the
mitochondrial control region from modern
humans. We collected the sequences from
the HvrBase database (Handt et al., 1998).
We used the neandertal mitochondrial se-
quence as the outgroup (Krings et al., 1997).
Sequences were sampled in such a way that
40 sequences came from each geographic
region (Africa, Europe, the Americas, Asia,
or Australia/Oceania). We performed a
Bayesian analysis of the data under the GTR
model with gamma-distributed rate varia-
tion. As before, the posterior probabilities of
trees were approximated by using MCMC.

We ran two chains (each with three heated
and one cold chain) for 5 £ 106 generations.
The �rst 106 generations of the chains were
discarded as the burn-in. The larger data set
was more dif�cult to analyze than the orig-
inal Vigilant et al. (1991) data, requiring a
longer number of cycles to reach apparent
stationarity. Hence, we ran the chain longer
and discarded more of the initial cycles
as the burn-in. We reconstructed the ances-
tral area of the MRCA of modern humans
using the parsimony criterion. Because we
had the same number of sequences from each
geographic region of interest, the prior prob-
ability that the MRCA originated on con-
tinent i was simply 1 in 5. We con�rmed
this by generating a large sample of ran-
dom trees and performing the parsimony re-
construction for the ancestral area on each.
The prior and posterior probabilities of the
MRCA of the sequences being in area i
were

Area (i ) f (Mi ) f (Mi j X )

1 (Africa) 0.20 0.82
2 (Europe) 0.20 0.00
3 (Americas) 0.20 0.03
4 (Asia) 0.20 0.14
5 Australia/Oceania 0.20 0.01

These data, like the data of Vigilant et al.
(1991), are consistent with an African origin
for the modern human mitochondrion.

The initial analysis of the 201 mitochon-
drial sequences was performed under a uni-
form prior (on trees and on areas). What
would the posterior probabilities of the �ve
hypotheses be if the posterior probabilities
from the Vigilant et al. (1991) data were
used as the prior probabilities for the new
data? The posterior probability of hypothesis
Mi is

f 0(Mi j X ) D
f (Mi j X ) £ f 0(Mi )

f (Mi )P5
jD1 f (M j j X ) £ f 0(Mj )

f (Mj )

where f (Mi ) and f (Mi j X) are the prior
and posterior probabilities of the ith hy-
pothesis used in the MCMC calculation, re-
spectively, and f 0(Mi ) is the prior probabil-
ity of the i th hypothesis from the Vigilant
et al. (1991) data. f 0(Mi j X) is the poste-
rior probability of a geographic origin on
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continent i for the mitochondrial sequences,
given the new data from the Vigilant et al.
(1991) prior. The posterior probability of
a geographic origin in Africa for the new
sequences from the Vigilant et al. (1991) prior
is

f 0(M1 j X ) D
0:82 £ 0:94

0:20

0:82 £ 0:94
0:20 C 0:00 £ 0:01

0:20 C 0:03 £ 0:00
0:20 C 0:14 £ 0:03

0:20 C 0:01 £ 0:02
0:20

D 0:99

The prior and posterior probabilities for a ge-
ographic origin in area i become

Area (i) f 0(Mi ) f 0(Mi j X )

1 (Africa) 0.94 0.99
2 (Europe) 0.01 0.00
3 (Americas) 0.00 0.00
4 (Asia) 0.03 0.01
5 Australia/Oceania 0.02 0.00

(Because of Monte Carlo error in the MCMC
procedure, the small probabilities become
zero when no trees are sampled that were
consistent with the hypothesis.)

CONCLUSIONS

In a Bayesian analysis, parameters of a sta-
tistical model are treated as random variables
with prior probability distributions. The gen-
eral approach is to calculate the joint poste-
rior probability for all the parameters. Infer-
ences for any single parameter are then based
on its marginal posterior probability. The
posterior probability of a parameter is calcu-
lated by using Bayes’s rule. In this study, we
pointout how Bayesian inference can be used
to accommodate phylogenetic uncertainty
when comparing �ve differentmodels for the
origin of modern human mtDNA. The analy-
sis accommodates phylogenetic uncertainty
by summing inferences over all possible
phylogenetic trees, weighting each tree by its
posterior probability. Moreover, the analysis
allows the models to be compared through a
comparison of the prior and posterior prob-
abilities of the hypotheses. The original mi-
tochondrial data collected by Vigilant et al.
(1991) should cause a scientist who started
off with a belief that all phylogenetic trees
were equally probable to modify his or her
belief about an African origin for the mtDNA
from 0.80 to 0.94 after observing the data. The

Bayes factor, or ratio of the marginal likeli-
hoods, was 3.9, meaning that a person’s be-
lief in an African origin for the MRCA of the
sequences changed by a factor of about 4 in
favor of the hypothesis. A Bayes factor of 3
or 4 is typically considered positive,

but not overwhelming, support for a
hypothesis.

The same conclusion about the original
Vigilant et al. (1991) study was made by
Maddison et al. (1992), who pointed out that
(1) among the large number of equally parsi-
monious trees, a large proportion were con-
sistent with an origin of the mtDNA that
was not in Africa, and (2) the root posi-
tion of the tree was uncertain when the
chimpanzee sequences were used as an out-
group. Their conclusion was that the Vigilant
et al. (Maddison et al. 1992:122) data “do not
unambiguously support an African origin
of human mtDNA.” Similarly, Penny et al.
(1995) performed an extensive analysis of
the landscape of phylogenetic trees for the
Vigilant et al. (1991) data based on the par-
simony criterion. They, too, found support
for an African origin for the modern hu-
man mitochondrion. Their analysis involved
performing many (>1,000) heuristic searches
starting from different random trees. This
procedure allowed them to �nd local optima
in the landscape of phylogenetic trees. Im-
portantly, these optima are consistent with
an African origin for the sequences. The
main disadvantage of the earlier studies
was reliance on the parsimony method as
an optimality criterion. The method out-
lined in this paper takes advantage of the
strengths of likelihood-based optimality cri-
teria and provides a basis for comparing
different hypotheses about the trees. Im-
portantly, the results of this study do not
depend on any single tree being correctly
estimated.

What has largely gone unappreciated is
that the very decision to collect a certain
number of DNA sequences from people
with origins in Africa automatically induces
a prior probability on the out-of-Africa
hypothesis. It is useful, then, to compare the
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prior probability of the hypothesis (before
any sequences have been collected, but after
the sample membership has been deter-
mined) with the probability of the hypothesis
after collection of the data. We can certainly
imagine situations in which the posterior
probability of the hypothesis is high but in-
dicates that the data support the alternative.
For example, imagine that the posterior prob-
ability of an African origin of the sequences
was 0.94, as it was in this study, but that the
prior probability of the same hypothesis was
0.98. In this case, the data would actually
support the hypothesis that the MRCA of the
human mtDNA was not in Africa (in fact,
the Bayes factor would be 0.32 in favor of
the alternative hypothesis). This perspective
suggests that the sampling strategy can de-
termine how well a hypothesis can be tested.
Although it is not clear what the optimal sam-
pling strategy should be, it seems intuitive
that it is easier to test a hypothesis that has
a low prior probability than one with a high
prior.

The analyses described in this paper can
be modi�ed in several ways. For one, this
study used a uniform prior on all possi-
ble trees. However, this prior does not re-
�ect the probability distribution of trees ex-
pected under a coalescence or birth–death
process in which every labeled history has
equal probability. Hence, one simple mod-
i�cation would be to perform the analyses
with a coalescence prior. Another modi�ca-
tion to the analyses would be to use a dif-
ferent method for reconstructing the ances-
tral geographic area of the human mtDNA.
This study used parsimony, but one can
imagine using a stochastic two-state model
(Schluter, 1995; Schluter et al., 1997; Pagel,
1999; Schultz and Churchill, 1999) or even
using a coalescence process with different
populations connected by variable levels of
migration (e.g., Beerli and Felsenstein, 1999).
Finally, the trees could be reconstructed un-
der a molecular clock constraint, which ob-
viates the need for an outgroup because
the molecular clock forces a root to the
tree. These modi�cations could be incorpo-
rated into a Bayesian or maximum likeli-
hood framework, with MCMC used to in-
tegrate over uncertainty in the nuisance
parameters.

This paper examined only the data from
one of the earliest molecular studies of

the origin of modern humans and a new
dataset collated from the HvrBase. Since
the pioneering studies of Cann et al. (1987)
and Vigilant et al. (1991), however, addi-
tional loci have been examined from much
larger samples (Underhill et al., 2000). More-
over, fossil DNA sequences from neander-
tals and Australian aborigines have been col-
lected (Krings et al., 1997; Adcock et al.,
2001). These new datasets may provide a
much more powerful test of the out-of-
Africa hypothesis. Regardless of the data col-
lected, careful consideration must be paid
to how the data will modify beliefs about
the out-of-Africa hypothesis. We hope that
the framework discussed in this paper will
clarify thinking about how molecular se-
quence data can be used to test biogeographic
hypotheses when faced with phylogenetic
uncertainty.
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