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Molecular Phylogeny of Western Atlantic Representatives of the
Genus Hexapanopeus (Decapoda: Brachyura: Panopeidae)

BRENT P. THOMA!, CHRISTOPH D. SCHUBART? & DARRYL L. FELDER!

Y University of Louisiana at Lafayette, Department of Biology and Laboratory for Crustacean Research, PO Box 42451,
Lafayette, Louisiana 70504-2451, U.S.A.

2 Universitiit Regensburg, Biologie I, 93040 Regensburg, Germany

ABSTRACT

Species of the brachyuran crab genus Hexapanopeus Rathbun, 1898, are common benthic inhabi-
tants in coastal and nearshore waters of the Americas. Despite the frequency with which they are
encountered, they are taxonomically problematic and commonly misidentified by non-experts. Lit-
tle previous work has been undertaken to explain relationships among the 13 nominal species of
Hexapanopeus or their relationship to other phenotypically similar genera of the family Panopei-
dae. In the present study we examine partial sequences for 16S and 12S mitochondrial rDNA for
71 individuals representing 46 species of Panopeidae and related families of the Brachyura. Phylo-
genies inferred from both of these datasets are largely congruent and show, with one exception, the
included genera and species of the Panopeidae to represent a monophyletic grouping. Within this
group, Hexapanopeus is polyphyletic, being distributed among several separate major clades and
clearly warranting taxonomic subdivision.

1 INTRODUCTION

As part of ongoing studies of the superfamily Xanthoidea sensu Martin & Davis (2001), we have
undertaken a reexamination of phylogenetic relationships among genera assigned to the family
Panopeidae Ortmann, 1893, on molecular and morphological bases. Early in the course of our
morphological studies, we saw reason to conclude that the genus Hexapanopeus Rathbun, 1898,
as currently defined, was polyphyletic. Differences in the characters of the carapace, chelipeds, and
male first pleopod (gonopod) served to obscure what, if any, relationship existed among the species
in the genus. The present study serves as the first step towards restricting species composition of the
genus Hexapanopeus s.s. (sensu stricto) and defining its phylogenetic relationships.

Presently, the genus Hexapanopeus consists of 13 species distributed on both coasts of the Amer-
icas; six species are known from the western Atlantic ranging from Massachusetts to Uruguay, while
seven more range in the eastern Pacific from Mexico to Ecuador (Table 1). Representatives of Hexa-
panopeus are commonly encountered in environmental studies and inhabit a variety of nearshore
environments ranging from sand-shell bottoms to rubble and surface fouling accumulations, where
they often reside amongst sponges and ascidians (Rathbun 1930; Felder 1973; Williams 1984;
Sankarankutty & Manning 1997). Even so, available illustrations and morphological descriptions
are of limited detail and quality for many species, and little can be deduced from present literature
to clarify their phylogenetic relationships.

Herein, we provide evidence for polyphyly in the genus Hexapanopeus on the basis of two
mitochondrial genes (16S rDNA and 12S rDNA). We also examine relationships among species
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Table 1. Known species presently assigned to Hexapanopeus with authority and known distribution. Those
preceded by an asterisk (*) are included in the present phylogenetic analyses, along with one putative new

species of the genus from the western Gulf of Mexico, yet to be described.

Taxon Name

Distribution

*Hexapanopeus angustifrons (Benedict &
Rathbun, 1891) '

Hexapanopeus beebei Garth, 1961

*Hexapanopeus caribbaeus (Stimpson, 1871)

Hexapanopeus cartagoensis Garth, 1939

Hexapanopeus costaricensis Garth, 1940

*Hexapanopeus lobipes (A. Milne-Edwards,
1880)

*Hexapanopeus manningi Sankarankutty &
Ferreira, 2000

Hexapanopeus nicaraguensis (Rathbun, 1904)

Hexapanopeus orcutti Rathbun, 1930

*Hexapanopeus paulensis Rathbun, 1930

Hexapanopeus quinguedentatus Rathbun,

1901
Hexapanopeus rubicundus Rathbun, 1933
Hexapanopeus sinaloensis Rathbun, 1930

Western Atlantic; from Massachusetts to Brazil

Eastern Pacific; Nicaragua

Western Atlantic; southeast Florida to Brazil
Eastern Pacific; Galapagos Islands, Ecuador
Eastern Pacific; Costa Rica

Western Atlantic; Gulf of Mexico

Western Atlantic; Rio Grande do Norte, Brazil

Eastern Pacific; Nicaragua

Eastern Pacific; Mexico

Western Atlantic; South Carolina to Uruguay
Western Atlantic; Puerto Rico

Eastern Pacific; Gulf of California
Eastern Pacific; Mexico

currently assigned to Hexapanopeus and relationships of this genus to other genera and species en-
compassed within the family Panopeidae. This serves to further clarify the species composition of
Hexapanopeus s.s., and to confirm its phylogenetic proximity to other taxa constituting a putative
panopeid lineage.

2 MATERIALS AND METHODS
2.1 Taxon sampling

Seventy-one individuals representing 46 species, 30 genera, and 10 families were subjected to
molecular analyses. Of the 142 sequences used in this study, 132 were generated for this project,
while the remaining 10 were obtained from GenBank (Table 2). Since the identity of the sister group
" to the family Panopeidae remains debatable (see Martin & Davis 2001, Karasawa & Schweitzer
2006, and Ng et al. 2008 for discussion), we included 22 taxa that represent the families Xanthidae
MacLeay, 1838, Pseudorhombilidae Alcock, 1900, Pilumnidae Samouel/le, 1819, Chasmocarcinidae
Sereéne, 1964, Euryplacidae Stimpson, 1871, Goneplacidae MacLeay, 1838, Carpiliidac Ortmann,
1893, Eriphiidae MacLeay, 1838, and Portunidae Rafinesque, 1815.

Specimens used in this study were collected during research cruises and field expeditions and
either directly preserved in 80% ethyl alcohol (EtOH) or first frozen in either seawater or glycerol
at —80°C before later being transferred to 80% EtOH. Additional materials were obtained on loan
from the National Museum of Natural History—Smithsonian Institution (USNM). When possible,
identifications of specimens were confirmed by two or more of the investigators to limit the chance
of misidentifications.
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Table 3. Primers used in this study.

Gene Primer Sequence 5’—3’ Ref.
16S 16Sar CGC CTG TTT ATC AAA AAC AT 1))
16S 16Sbr  CCG GTC TGA ACT CAG ATC ACGT (1)
16S 1612 TGC CTG TTT ATC AAA AAC AT (2)
16S 1472 AGA TAG AAA CCA ACC TGG 3)
128 12sf GAA ACC AGG ATT AGA TAC CC (4)
128 12s1r AGC GAC GGG CGA TAT GTA C 4)

References: (1) Palumbi et al. 1991, (2) Schubart et al. 2002, (3) Crandall
& Fitzpatrick 1996, (4) Buhay et al. 2007.

2.2 DNA extraction, PCR, and sequencing

Genomic DNA was extracted from muscle tissue of the pereopods of a total of 66 specimens of the
family Panopeidae and related taxa of the Xanthoidea sensu Martin & Davis (2001) utilizing one of
the following extraction protocols: Genomic DNA Extraction Kit for Arthropod Samples (Cartagen
Molecular Systems, Cat. No. 20810-050), Qiagen DNeasy® Blood and Tissue Kit (Qiagen, Cat.
No. 69504), or isopropanol precipitation following Robles et al. (2007).

Two mitochondrial markers were selectively amplified using polymerase chain reaction (PCR).
A fragment of the 16S large subunit IDNA approximately 550 basepairs (bp) in length was am-
plified using the primers 1472 or 16Sbr in combination with 16L2 and 16Sar and a fragment of
the 12S small subunit rDNA approximately 310 bp in length was amplified using the primers
12sf and 12s1r (see Table 3 for complete primer information). PCR reactions were performed in
25-p1 volumes containing: 0.5 uM forward and reverse primer, 200 uM each dNTP, 2.5 pl 10x
PCR buffer, 3 mM MgCly, 1 M betaine, | unit NEB Standard Taq polymerase (New England
Biolabs, Cat. No. M0273S), and 30-50 ng of genomic DNA. Reactions were carried out using the
following cycling parameters: initial denaturation at 94°C for 2 min; 40 cycles at 94°C for 25 sec,
40°C (16S) or 52°C (12S) for 1 min, 72°C for 1 min; final extension at 72°C for
5 min. PCR products were purified using EPOCH GenCatch PCR Clean-up Kit (EPOCH BioLabs,
Cat. No. 13-60250) and sequenced in both directions using ABI BigDye® Terminator v3.1 Cy-
cle Sequencing Kit (Applied Biosystems, Foster City, CA, USA). Cycle sequencing products were
purified using Sephadex G-50 columns (Sigma-Aldrich Chemicals, Cat. No. S6022). Sequencing
products were run on an ABI PRISM® 3100 Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA). '

2.3 Phylogenetic analyses

Sequences were assembled using Sequencher 4.7 (GeneCodes, Ann Arbor, M1, USA). Once assem-
bled, sequences were aligned using MUSCLE (MUltiple Sequence Comparison by Log-Expectation),
a computer program found to be more accurate and faster than other alignment algorithms (Edgar
2004). Alignments were further refined using GBlocks v0.91b (Castresana 2000) to omit poorly
aligned or ambiguous positions. Default parameters were used for GBlocks except: 1) minimum
length of a block = 4, 2) allowed gap positions = half. We conducted a partition heterogeneity test
or incongruence length difference test (ILD) (Bull et al. 1993), as implemented in PAUP* v4b10
(Swofford 2003), to determine if the two gene regions could be combined. '

The model of evolution that best fit each of the datasets was determined by likelihood tests
as implemented in Modeltest version 3.6 (Posada & Crandall 1998) under the Akaike Information
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Criterion (AIC). The maximum likelihood (ML) analyses were conducted using PhyML Online
(Guindon et al. 2005) using the model parameters selected with free parameters estimated by
PhyML. Confidence in the resulting topology was assessed using non-parametric bootstrap esti-
mates (Felsenstein 1985) with 500 replicates.

The Bayesian (BAY) analyses were conducted in MrBayes (Huelsenbeck & Ronquist 2001)
with computations performed on the computer cluster of the CyberInfrastructure for Phylogenetic
RESearch project (CIPRES) at the San Diego Supercomputer Center, using parameters selected
by Modeltest. A Markov Chain Monte Carlo (MCMC) algorithm with 4 chains and a tempera-
ture of 0.2 ran for 4,000,000 generations, sampling 1 tree every 1,000 generations. Preliminary
analyses and observation of the log likelihood (L) values allowed us to determine burn-ins and
stationary distributions for the data. Once the values reached a plateau, a 50% majority rule con-
sensu$ tree was obtained from the remaining trees. Clade support was assessed with posterior
probabilities (pP).

3 RESULTS

The initial sequence alignment of the 16S dataset, including gaps and primer regions, was 606 bp
in length, while that of the 12S dataset was 384 bp in length. GBlocks was used to further refine
the alignment, removing ambiguously aligned regions resulting in final alignments of 521 bp (86%)
and 284 bp (74%) for 16S and 128, respectively. Despite recent studies combining multiple loci
into a single alignment (Ahyong & O’Meally 2004, Porter et al. 2005), we chose in this instance
not to combine the datasets. The partition heterogeneity test or incongruence length difference test,
as implemented in PAUP*, indicated that the combination of the two gene regions was significantly
rejected (P = 0.0240). Furthermore, preliminary analysis of the combined dataset resulted in lower
support for some of the tip branches than was the case in the single gene trees. This is due to different
branching patterns (16S vs. 12S) at this level of the tree, which will be discussed later in this paper.
This information would be lost in a combined tree.

Application of the likelihood tests as implemented in Modeltest revealed that the selected model
of DNA substitution by AIC for the 16S dataset was HKY+I+G (Hasegawa et al. 1985) with an
assumed proportion of invariable sites of 0.3957 and a gamma distribution shape parameter of
0.4975. The selected model for the 128 dataset was GTR+I+G (Rodriguez et al. 1990) with an
assumed proportion of invariable sites of 0.3228 and a gamma distribution shape parameter of
0.6191.

Phylogenetic relationships among 71 individuals representing 46 species of the Xanthoidea
sensu Martin & Davis (2001) were determined using Bayesian and ML approaches for both the
16S and 128 datasets. For the Bayesian analyses, the first 1,000 trees were discarded as burn-in
and the consensus tree was estimated using the remaining 3,000 trees (= 3 million generations).
Topologies resulting from the Bayesian analyses of both the 16S and 12S datasets were largely
congruent (Figs. 1 and 2). A number of monophyletic clades are supported by both datasets, as
follow: 1) Acantholobulus bermudensis, Acantholobulus schmitti, and Hexapanopeus caribbaeus
with pP (16S/128) of 99/77, 2) Hexapanopeus angustifrons and Hexapanopeus paulensis with pP of
100/99, 3) Eurypanopeus depressus, Eurypanopeus dissimilis, Dyspanopeus sayi, Neopanope
packardii, and Rhithropanopeus harrisii with pP of 97/99, 4) Eurypanopeus abbreviatus and Eu-
rypanopeus planissimus with pP of 99/87. In general, Bayesian posterior probabilities have been
shown to be higher than the corresponding bootstrap values, but, in many cases, posterior proba-
bilities tend to overrate confidence in a topology while bootstrap values based on neighbor joining,
maximum parsimony, or MLL methods tend to slightly underestimate support (Huelsenbeck et al.
2001, Huelsenbeck et al. 2002, Suzuki et al. 2002). With this in mind, it is not surprising to find that
ML bootstrap supports for the same four clades are lower than the pP. The bootstrap values of the
above clades are as follows: 1) <50/<50, 2) 72/51, 3) <50/<50, and 4) < 50/<50.
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Figure 1. Phylogenetic relationships among panopeid crab species and selected representatives of the super-
family Xanthoidea sensu Martin & Davis (2001), inferred by Bayesian analysis from 521 basepairs of the 168
rDNA gene. Confidence intervals are from 500 bootstrap maximum likelihood analysis followed by Bayesian
posterior probabilities. Genus shown as “C.” = Chasmocarcinus. Values below 50 are indicated by “-”
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Figure 2. Phylogenetic relationships among panopeid crab species and selected representatives of the super-
family Xanthoidea sensu Martin & Davis (2001), inferred by Bayesian analysis from 284 basepairs of the 125
rDNA gene. Confidence intervals are from 500 bootstrap maximum likelihood analysis followed by Bayesian
posterior probabilities. Values below 50 are indicated by “-”.-
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4 DISCUSSION

Here we report two molecular phylogenies of the genus Hexapanopeus and related genera of the
family Panopeidae. These phylogenies, which are based on partial sequences of the 16S and 12S
rDNA, contain five of the 13 nominal species in Hexapanopeus and a single undescribed species that
appears to be assignable to the genus. In addition, we have included representatives of 18 species
of the family Panopeidae in order to better address both the monophyly of Hexapanopeus and the
relationships of species currently assigned to Hexapanopeus to other panopeid taxa. Although only
five species of Hexapanbpeus are included in the dataset, these five species represent five of the six
nominal species known from the western Atlantic. It is clear from our analyses that the genus Hexa-
panopeus is markedly polyphyletic and that further study of all its putative members is warranted,
by both morphological and molecular methods.

4.1 Hexapanopeus angustifrons and Hexapanopeus paulensis

The phylogenies presented here lend support to a narrowed definition of Hexapanopeus that in-
cludes only the type-species of the genus Hexapanopeus angustifrons (Benedict & Rathbun, 1891)
and Hexapanopeus paulensis Rathbun, 1930, pending results of morphological and molecular anal-
yses for the remaining eight present congeners. It is interesting to note that in all analyses these
taxa form a monophyletic clade and that within both species there is further evidence for genetic
structure. It is unclear if the genetic divergence seen in these clades is the result of cryptic speciation
or population differentiation, but the current analyses suggest some combination of the two might
occur in each complex.

4.2 Hexapanopeus nov. sp.

In the analyses of the 16S dataset, the sister group to the H. angustifrons/H. paulensis clade is
an undescribed species from intertidal waters of south Texas in the western Gulf of Mexico. This
undescribed species resembles H. paulensis in general morphology, but it has a very distinctive
gonopod, which most resembles that of Acantholobulus schmitti (Rathbun, 1930). In contrast to the
results of the 16S dataset, the 128 dataset lends support to a clade that is composed of the unde-
scribed species and Glyptoplax smithii A. Milne-Edwards, 1880, as the sister group to the H. angus-
tifrons/H. paulensis clade. Unfortunately, suitable material of Glyptoplax pugnax Smith, 1870, the
type species of the genus, has not to date been available for molecular analysis; therefore, it remains
unclear whether this undescribed species is most appropriately treated as a member of the genus
Hexapanopeus, the genus Glyptoplax, or a new monospecific genus.

4.3 Hexapanopeus lobipes

The species Hexapanopeus lobipes (A. Milne-Edwards, 1880) has had a very unsettled taxonomic
history. After being described as a species of Neopanope A. Milne-Edwards, 1880, it was later
transferred to the genus Lophopanopeus Rathbun, 1898, by Rathbun in 1898. In his 1948 revision
of the genus Lophopanopeus, Menzies pointed out that H. lobipes does not fit the diagnosis of the
genus Lophopanopeus. Upon transferring the species to the genus Hexapanopeus, he noted that
“it seems to fit the diagnosis of that genus better than that of any other American genus.” Only
isolated records of Hexapanopeus lobipes have been reported since Menzies’ 1948 work (Wicksten
2005, Felder et al. in press), and there has been no reassessment of its placement within the genus
Hexapanopeus. The gonopod of H. lobipes is distinctive and has little resemblance to those in other
members of the genus Hexapanopeus. Furthermore, unlike the carapaces of H. angustifrons and
H. paulensis, which have five distinct anterolateral teeth, the 1st and 2nd antero-lateral teeth of
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H. lobipes are generally fused, giving the appearance of four anterolateral teeth. On the basis of
these and other morphological features, it is unclear whether H. lobipes is justifiably assignable
to the genus Hexapanopeus. Whatever the case to be made on the basis of morphology alone, we
cannot concur with Ng et al. (2008) in reassigning this species to Lophopanopeus.

Our analyses support removal of H. lobipes from the genus Hexapanopeus and appear to jus-
tify establishment of a new monospecific genus for H. lobipes. In both topologies, H. lobipes falls
outside the clade formed by H. angustifrons and H. paulensis. In the phylogeny inferred from the
168 dataset, H. lobipes is the sister group to Panopeus americanus Saussure, 1857, with ML boot-
strap and pP values of <50/90, respectively. The phylogeny inferred from the 12S dataset presents
H. lobipes as a sister group to Panopeus s.s. H. Milne Edwards, 1834, with ML bootstrap and pP
values of <<50/51, respectively. Despite low support values, both topologies lend support to the re-
moval of H. lobipes from the genus Hexapanopeus and the erection of a new genus for the species,
as is currently in progress.

4.4 Hexapanopeus manningi

Hexapanopeus manningi Sankarankutty and Ferreira, 2000, was described on the basis of material
from Rio Grande do Norte, Brazil. This species was distinguished from Hexapanopeus caribbaeus
(Stimpson, 1871) by characters of the frontal margin, the 3rd anterolateral tooth of the carapace,
and the apical process of the gonopod; however, upon the basis of synoptic comparisons of the male
paratype (USNM 260923) to material of H. caribbaeus from eastern Florida, it appears that there
is considerable morphological overlap between these two taxa, raising the question as to whether
H. manningi might be a junior synonym of H. caribbaeus. The topology inferred from the 16S
dataset places H. manningi in very close proximity to H. caribbaeus; distance between these taxa is
very short and comparable to that within other accepted single-species clades in our tree. The clade
containing both H. manningi and H. caribbaeus has high support values, with ML bootstrap and
pP values of 100/100, respectively. The strongest support for a synonymy of the two taxa comes
from the topology-inferred from the 125 dataset, with H. manningi positioned within the clade of
H. caribbaeus. Our molecular phylogenies support synonymy of H. manningi with H. caribbaeus,
and we herewith recommend that taxonomic revision, regardless of the eventual generic assignment
to be accorded (see*below).

4.5 Hexapanopeus caribbaeus

Hexapanopeus caribbaeus was originally described as a representative of the genus Micropanope;
however, upon erection of the genus Hexapanopeus, Rathbun (1898) transferred this species to the
genus Hexapanopeus apparently on the basis of carapace shape. It wasn’t until the 1997 work by
Sankarankutty and Manning that distinct differences between the gonopod of H. caribbaeus and
that of the type-species H. angustifrons were noted. In the present analysis, this species is clearly
separated from Hexapanopeus s.s., and shown to be more closely allied to the genus Acantholobulus.

4.6 Genus Acantholobulus

Felder and Martin (2003) erected the genus Acantholobulus to accommodate a number of species
from the genera Panopeus and Hexapanopeus, which included: 1) the type-species Acantholobu-
lus bermudensis (Benedict & Rathbun, 1898), formerly Panopeus bermudensis; 2) Acantholobulus
miraflorensis (Abele & Kim, 1989), formerly Panopeus miraflorensis;, 3) Acantholobulus pacifi-
cus (Edmondson, 1931), formerly Panopeus pacificus;, and 4) Acantholobulus schmitti (Rathbun,
1930), formerly Hexapanopeus schmitti. Despite similarities between H. caribbaeus and A. schmitti
in both carapace and gonopod morphology, the possible relationship between H. caribbaeus and
newly assigned members of the genus Acantholobulus was not addressed. The phylogenies inferred



562 Thoma et al.

from both our datasets strongly support inclusion of H. caribbaeus within the genus Acantholob-
ulus. While the phylogeny inferred from the 16S dataset shows H. caribbaeus nested with Acan-
tholobulus, the topology inferred by analysis of the 12S datasets supports a sister group relationship
between H. caribbaeus and both A. bermudensis and A. schmitti. Although both of these relation-
ships are supported by pP >75, the 16S dataset shows considerably higher pP (99/77 for 165/128S,
respectively). As additional species of Acantholobulus become available for inclusion in our analy-
sis, the relationship between Acantholobulus and its closest relatives should be more definitively re-
solved. Even so, it is by present findings established that H. caribbaeus is well separated from Hexa-
panopeus s.s., and we apply the new combination Acantholobulus caribbaeus (Stimpson, 1871).

4.7 Panopeus americanus

In a study of mud crabs from the northwestern Atlantic, Schubart et al. (2000) clearly showed poly-
phyly in the genus Panopeus, with both Acantholobulus bermudensis (as Panopeus bermudensis,
see discussion above) and Panopeus americanus falling well outside Panopeus s.s. (Schubart et al.
2000, Fig. 1). In the present study, we find additional support for these findings with the topologies
inferred from both datasets positioning P. americanus outside Panopeus s.s.; however, the topolo-
gies differ in where P. americanus is placed relative to species of other genera. In the topology
inferred from the 16S dataset, P. americanus is a sister group to H. lobipes, while in the topology
inferred from the 128 dataset, P. americanus is the sister group to the clade containing E. depressus,
E. dissimilis, N. packardii, D. sayi, and R. harrisii. However, this arrangement is poorly supported
with ML bootstra{p and pP values less than 50. Despite the differences in the topologies inferred
from these two datasets, both provide evidence for the removal of P. americanus from Panopeus.
Pending a thorough analysis of adult and larval morphology, data presented here support the estab-
lishment of a new genus for P. americanus.

4.8 Genus Eurypanopeus

Schubart et al. (2000, Fig. 1) also provided evidence for polyphyly among species presently as-
signed to the genus Eurypanopeus A. Milne-Edwards, 1880, with species of Eurypanopeus falling
into three separate clades. In the present study, topologies inferred from both datasets support the
polyphyletic nature of Eurypanopeus, with representatives found in three clades for 16S (Fig. 1)
and two clades for 128 (Fig. 2). It is unclear what effect the addition of sequence data from other
species of Eurypanopeus would have on the analyses; however, on the basis of evidence presented
here and by Schubart et al. (2000), comprehensive study and taxonomic revision of the genus are
needed.

4.9 Panoplax depressa

Despite a gonopod that shares little in common with that of the typical panopeid, Panoplax de-
pressa Stimpson, 1871, has long been considered a member of the subfamily Eucratopsinae within
the family Panopeidae (Martin & Abele 1986, McLaughlin et al. 2005, Ng et al. 2008). The analyses
presented here provide no support for the inclusion of Panoplax within the family Panopeidae. In
topologies inferred from both datasets, Panoplax depressa is well separated from remaining rep-
resentatives of the family Panopeidae. In the phylogeny inferred from the 16S dataset, Panoplax
depressa is found nested within a poorly supported clade containing representatives of the families
Xanthidae and Pseudorhombilidae (ML/pP <50/99). In the phylogeny inferred from the 128 dataset,
Panoplax depressa is also excluded from the remaining representatives of the family Panopeidae,
nested within a poorly supported clade containing representatives of the family Xanthidae (ML/pP
<50/90). Despite the low support values for the clades currently containing Panoplax depressa,
there is little evidence to support the inclusion of Panoplax within the family Panopeidae.
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4.10 Garthiope barbadensis

The genus Garthiope Guinot, 1990, was described to accommodate three small species formerly at-
tributed to the genus Micropanope. Upon its erection, similarities between Garthiope and the family
Trapeziidae were noted; however, in their recent review Ng et al. (2008) considered the genus to be
a part of the family Xanthidae. In the present analyses the complex relationship of Garthiope to the
remaining taxa of the Xanthoidea sensu Martin & Davis (2001) is shown in the conflict between
the 168 dataset and 128 dataset in regards to the placement of Garthiope. In the phylogeny inferred
from the 16S dataset, Garthiope barbadensis (Rathbun, 1921) is found within the family Panopei-
dae, where it is located within a clade containing representatives of the subfamily Eucratopsinae.
However, this clade has support values with ML and pP values of <50/98. To further confound
our understanding, in the analyses of the 12S dataset, Garthiope barbadensis falls well outside the
family Panopeidae in a clade containing representatives of the Eriphioidea, Carpilioidea, Gonepla-
coidea, and Portunoidea. As this arrangement also has poor support values (<50), the relationship
of Garthiope to these groups remains unclear. The type-species of the genus Garthiope spinipes
(A. Milne-Edwards, 1880) was not included in these analyses; as a result, it is unclear what effect
its inclusion may have on the analyses. Further study of the group is needed to clarify how this
genus is related to other representatives of the Xanthoidea sensu Martin & Davis (2001).

411 Outéroup taxa

Composition of the superfamily Xanthoidea sensu Martin & Davis (2001) is a subject of ongoing
debate (Guinot 1978; Jamieson 1993; Coelho & Coelho Filho 1993; Schubart et al. 2000; Wet-
zer et al. 2003; Karasawa & Schweitzer 2006; Ng et al. 2008). In all of our analyses, the family
Xanthidae is clearly shown to be polyphyletic. Analysis of the 16S dataset reveals a single clade
containing representatives of Panopeidae, Pseudorhombilidae; and three subfamilies of Xanthidae;
however, this clade is poorly supported with ML bootstrap values and pP of <50/99 (Fig. 1). Fur-
thermore, a second clade contains a single representative of the family Xanthidae as well as repre-
-sentatives of Eriphioidea, Pilumnoidea, Carpilioidea, Goneplacoidea, and Portunoidea. This clade
is well supported with ML bootstrap values and pP of 97/100. Within this clade we also find rep-
resentatives of three families of Goneplacoidea, with two species of Chasmocarcinus representing
Chasmocarcinidae, Frevillea barbata and Sotoplax robertsi representing Euryplacidae, and Bathy-
plax typhlus representing Goneplacidae. While Chasmocarcinidae and Euryplacidae form a poorly
supported monophyletic clade, Goneplacidae is found in another clade with representatives of Por-
tunoidea and Carpilioidea. Although neither of these clades is well supported (ML/pP <50/58 &
<50/98), they provide evidence for a polyphyletic Goneplacoidea. While the topology inferred from
the 128 dataset (Fig. 2) still presents evidence for a polyphyletic Xanthidae and Goneplacoidea, the
evidence differs from that inferred by the 16S dataset (Fig. 1). However, support values for the out-
group topology inferred by the 12S dataset are very low, making any conclusions drawn from this
topology questionable. Regardless of differences between these two topologies, it is apparent that
both Goneplacoidea and Xanthidae are polyphyletic and in need of revision.
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