CRUSTACEAN ISSUES 18

Decapod Crustacean Phylogenetics

edited by

Joel W. Martin, Keith A. Crandall, and Darryl L. Felder

Decapod Crustacean Phylogenetics

Edited by
Joel W. Martin
Natural History Museum of L. A. County
Los Angeles, California, U. S. A.

Keith A. Crandall
Brigham Young University
Provo, Utah, U. S. A.

Darryl L. Felder
University of Louisiana
Lafayette, Louisiana, U. S. A.

CRC Press is an imprint of the
Faylor \& Francis Group, an informa business

CRC Press
Taytor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FI, 33487-2742
(c) 2009 by Taylor \& Francis Group, I.LC

CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-13: 978-1-4200-9258-5 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materiats or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy ing, microfilming, and recording, or in any information storage or retrieval system, without writuen permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Decapod crustacear phylogenetics / editors, Joel W. Martin, Keith A. Crandall, Darryl I.. Felder. p. cm. - (Crustacean issues)

Includes bibliographical references and index.
1SBN 978-1-4200-9258-5 (hardcover: alk. paper)

1. Decapoda (Crustacea) 2. Phylogeny. I. Martin, Joel W. II. Crandall, Keith A. III. Felder, Darryl I. IV. 'Iitle. V. Series.

QI.4.4.4.M33D44 2009
595.3'8138--dc22

Visit the Taylor \& Francis Web site at
 http://www.taylorandfrancis.com
 and the CRC Press Web site at
 http://www.crepress.com

Contents

Preface ixJOFL W. MARTIN, KEITH A. CRANDALL \& DARRYL L. FELDER
I Overviews of Decapod Phylogeny
On the Origin of Decapoda 3
FREDERICK R. SCHRAM
Decapod Phylogenetics and Molecular Evolution 15
ALICIA TOON. MAEGAN FINLEY, JEFFREY STAPLES \& KEITH A. CRANDALL
Development, Genes, and Decapod Evolution 31
GERHARD SCHOLTZ. ARKHAT ABZHANOV. FREDERIKE ALWES. CATERINA BIFFIS \& JULIA PINT
Mitochondrial DNA and Decapod Phylogenies: The Importance of 47
Pseudogenes and Primer Optimization CHRISTOPH D. SCHUBART
Phylogenetic Inference Using Molecular Data 67
FERRAN PALERO \& KEITH A. CRANDALL
Decapod Phylogeny: What Can Protein-Coding Genes Tell Us"? 89
K.H. CHU, L.M. TSANG. K.Y. MA. T.Y. CHAN \& P.K.L. NG
Spermatozoal Morphology and Its Bearing on Decapod Phylogeny 101 CHRISTOPHER TUDGE
The Evolution of Mating Systems in Decapod Crustaceans 121
AKIRA ASAKURA
A Shrimp's Eye View of Evolution: How Useful Are Visual Characters in 183 Decapod Phylogenetics? MEGAN L. PORTER \& THOMAS W. CRONIN
Crustacean Parasites as Phylogenetic Indicators in Decapod Evolution 197
CHRISTOPHER B. BOYKO \& JASON D. WILLIAMS
The Bearing of Larval Morphology on Brachyuran Phylogeny 221
PAUL F. CLARK

II Advances in Our Knowledge of Shrimp-Like Decapods

Evolution and Radiation of Shrimp-Like Decapods: An Overview 24.5
CHARLES H.I.M. HRANSEN \& SAMMY DE GRAVL
A Preliminary Phylogenetic Analysis of the Dendrobranchiata Based on 261 Morphological Characters
CAROLINA TAVARES. CRISTIANA SFREIO \& JOEL W. MARTIN
Phylogeny of the Infraorder Caridea Based on Mitochondrial and Nuclear 281
Genes (Crustacea: Decapoda)
HEATHER D. BRACKEN. SAMMY DE GRAVE \& DARRYL I.. FFLDER
III Advances in Our Knowledge of the Thalassinidean and Lobster-Like Groups
Molecular Phylogeny of the Thalassinidea Based on Nuclear and 309 Mitochondrial Genes RAFAEL ROBLES. CHRISTOPHER C. TUDGE, PETER C. DWORSCHAK, GARY C.B. POORE \& DARRYL L. FELDER
Molecular Phylogeny of the Family Callianassidae Based on Preliminary 327 Analyses of Two Mitochondrial Genes
DARRYL L. FELDER \& RAFAEL ROBLES
The Timing of the Diversification of the Freshwater Crayfishes 343 JESSE BREINHOLT. MARCOS PÉREZ-LOSADA \& KEITH A. CRANDALLPhylogeny of Marine Clawed Lobster Families Nephropidae Dana, 1852.357and Thaumastochelidae Bate, 1888 , Based on Mitochondrial GenesDALE TSHUDY. RAFAFL ROBLES. TIN YAM CHAN. KA CHAI HO. KA HOU CHU,SIIANE T. AHYONG \& DARRYL L. FELDER
The Polychelidan Lobsters: Phylogeny and Systematics (Polychelida: 369
Polychelidae)
SHANE T. AHYONG
IV Advances in Our Knowledge of the Anomura399SHANE T. AHYONG, KAREENE. SCHNABEL \& ELIZABETH W. MAAS
V Advances in Our Knowledge of the Brachyura
Is the Brachyura Podotremata a Monophyletic Group? 417
GERHARD SCHOLTZ \& COLIN L. MCLAY

```
Assessing the Contribution of Molecular and Larval Morphological437
Characters in a Combined Phylogenetic Analysis of the Superfamily
Majoidea
KRISTIN M. HUITGREN, GUILLERMO GUERAO, FERNANDO P.L. MARQUIES &
FHRRAN P PALERO
```

Molecular Genetic Re-Examination of Subfamilies and Polyphyly in the 457

Family Pinnotheridae (Crustacea: Decapoda)

EMMA PALACIOS-THEIL, JOSÉ A. CUESTA. ERNESTO CAMPOS \& DARRYL L.

FELDER
Evolutionary Origin of the Gall Crabs (Family Cryptochiridae) Based on
16 S rDNA Sequence Data
REGINA WETZER. JOEL W. MARTIN \& SARAH L. BOYCESystematics, Evolution, and Biogeography of Freshwater Crabs491NEIL CUMBERLIDGE \& PETER K.L. NG
Phylogeny and Biogeography of Asian Freshwater Crabs of the Family 509
Gecarcinucidae (Brachyura: Potamoidea)
SEBASTIAN KLAUS. DIRK BRANDIS. PETER K.L. NG. DARREN C.J. YEO \& CHRISTOPH D. SCHUBART
A Proposal for a New Classification of Portunoidea and Cancroidea 533
(Brachyura: Heterotremata) Based on Two Independent Molecular Phylogenies
CHRISTOPH D. SCHUBART \& SILKE REUSCHEL
Molecular Phylogeny of Western Atlantic Representatives of the Genus 551
Hexapanopeus (Decapoda: Brachyura: Panopeidae)
BRENT P. THOMA. CHRISTOPH D. SCHUBART \& DARRYL L. FELDER
Molecular Phylogeny of the Genus Cronius Stimpson, 1860, with 567
Reassignment of C. tumidulus and Several American Species of Portumus to the Genus Achelous De Haan, 1833 (Brachyura: Portunidae) FERNANDO L. MANTELATTO. RAFAEL ROBLES. CHRISTOPH D. SCHUBART \& DARRYL L. FELDER
Index 581
Color Insert

Molecular Phylogeny of Western Atlantic Representatives of the Genus Hexapanopeus (Decapoda: Brachyura: Panopeidae)

BRENT P. THOMA ${ }^{1}$, CHRISTOPH D. SCHUBART ${ }^{2}$ \& DARRYL L. FELDER ${ }^{1}$
${ }^{1}$ University of Louisiana at Lafayette, Department of Biology and Laboratory for Crustacean Research, PO Box 42451, Lafayette, Louisiana 70504-2451, U.S.A.
${ }^{2}$ Universität Regensburg, Biologie I, 93040 Regensburg, Germany

Abstract

Species of the brachyuran crab genus Hexapanopeus Rathbun, 1898, are common benthic inhabitants in coastal and nearshore waters of the Americas. Despite the frequency with which they are encountered, they are taxonomically problematic and commonly misidentified by non-experts. Little previous work has been undertaken to explain relationships among the 13 nominal species of Hexapanopeus or their relationship to other phenotypically similar genera of the family Panopeidae. In the present study we examine partial sequences for 16 S and 12 S mitochondrial rDNA for 71 individuals representing 46 species of Panopeidae and related families of the Brachyura. Phylogenies inferred from both of these datasets are largely congruent and show, with one exception, the included genera and species of the Panopeidae to represent a monophyletic grouping. Within this group, Hexapanopeus is polyphyletic, being distributed among several separate major clades and clearly warranting taxonomic subdivision.

1 INTRODUCTION

As part of ongoing studies of the superfamily Xanthoidea sensu Martin \& Davis (2001), we have undertaken a reexamination of phylogenetic relationships among genera assigned to the family Panopeidae Ortmann, 1893, on molecular and morphological bases. Early in the course of our morphological studies, we saw reason to conclude that the genus Hexapanopeus Rathbun, 1898, as currently defined, was polyphyletic. Differences in the characters of the carapace, chelipeds, and male first pleopod (gonopod) served to obscure what, if any, relationship existed among the species in the genus. The present study serves as the first step towards restricting species composition of the genus Hexapanopeus s.s. (sensu stricto) and defining its phylogenetic relationships.

Presently, the genus Hexapanopeus consists of 13 species distributed on both coasts of the Americas; six species are known from the western Atlantic ranging from Massachusetts to Uruguay, while seven more range in the eastern Pacific from Mexico to Ecuador (Table 1). Representatives of Hexapanopeus are commonly encountered in environmental studies and inhabit a variety of nearshore environments ranging from sand-shell bottoms to rubble and surface fouling accumulations, where they often reside amongst sponges and ascidians (Rathbun 1930; Felder 1973; Williams 1984; Sankarankutty \& Manning 1997). Even so, available illustrations and morphological descriptions are of limited detail and quality for many species, and little can be deduced from present literature to clarify their phylogenetic relationships.

Herein, we provide evidence for polyphyly in the genus Hexapanopeus on the basis of two mitochondrial genes (16 S rDNA and 12 S rDNA). We also examine relationships among species

Table 1. Known species presently assigned to Hexapanopeus with authority and known distribution. Those preceded by an asterisk (*) are included in the present phylogenetic analyses, along with one putative new species of the genus from the western Gulf of Mexico, yet to be described.

Taxon Name
 Distribution

*Hexapanopeus angustifrons (Benedict \& Rathbun, 1891)
Hexapanopeus beebei Garth, 1961
*Hexapanopeus caribbaeus (Stimpson, 1871)
Hexapanopeus cartagoensis Garth, 1939
Hexapanopeus costaricensis Garth, 1940
*Hexapanopeus lobipes (A. Milne-Edwards, 1880)
*Hexapanopeus manningi Sankarankutty \& Ferreira, 2000
Hexapanopeus nicaraguensis (Rathbun, 1904)
Hexapanopeus orcutti Rathbun, 1930
*Hexapanopeus paulensis Rathbun, 1930
Hexapanopeus quinquedentatus Rathbun, 1901
Hexapanopeus rubicundus Rathbun, 1933
Hexapanopeus sinaloensis Rathbun, 1930
Western Atlantic; from Massachusetts to Brazil
Eastern Pacific; Nicaragua
Western Atlantic; southeast Florida to Brazil
Eastern Pacific; Galapagos Islands, Ecuador
Eastern Pacific; Costa Rica
Western Atlantic; Gulf of Mexico
Western Atlantic; Rio Grande do Norte, Brazil
Eastern Pacific; Nicaragua
Eastern Pacific; Mexico
Western Atlantic; South Carolina to Uruguay
Western Atlantic; Puerto Rico
Eastern Pacific; Gulf of California
Eastern Pacific; Mexico
currently assigned to Hexapanopeus and relationships of this genus to other genera and species encompassed within the family Panopeidae. This serves to further clarify the species composition of Hexapanopeus s.s., and to confirm its phylogenetic proximity to other taxa constituting a putative panopeid lineage.

2 MATERIALS AND METHODS

2.1 Taxon sampling

Seventy-one individuals representing 46 species, 30 genera, and 10 families were subjected to molecular analyses. Of the 142 sequences used in this study, 132 were generated for this project, while the remaining 10 were obtained from GenBank (Table 2). Since the identity of the sister group to the family Panopeidae remains debatable (see Martin \& Davis 2001, Karasawa \& Schweitzer 2006, and Ng et al. 2008 for discussion), we included 22 taxa that represent the families Xanthidae MacLeay, 1838, Pseudorhombilidae Alcock, 1900, Pilumnidae Samoueĺle, 1819, Chasmocarcinidae Serène, 1964, Euryplacidae Stimpson, 1871, Goneplacidae MacLeay, 1838, Carpiliidae Ortmann, 1893, Eriphiidae MacLeay, 1838, and Portunidae Rafinesque, 1815.

Specimens used in this study were collected during research cruises and field expeditions and either directly preserved in 80% ethyl alcohol (EtOH) or first frozen in either seawater or glycerol at $-80^{\circ} \mathrm{C}$ before later being transferred to $80 \% \mathrm{EtOH}$. Additional materials were obtained on loan from the National Museum of Natural History-Smithsonian Institution (USNM). When possible, identifications of specimens were confirmed by two or more of the investigators to limit the chance of misidentifications.
Table 2. Crab species used for phylogeny reconstruction, showing catalog number, collection locality, and GenBank accession numbers for partial sequences of 16 S and 12 S , respectively (ULLZ $=$ University of Louisiana at Lafayette Zoological Collection, Lafayette, Louisiana; USNM $=$ United States National Museum of Natural History, Smithsonian Institution, Washington D.C.).

Taxon	Catalog. No.	Collection Locality	16S	12S
Carpilidae Ortmann, 1893				
Carpilius maculatus (Linnaeus, 1758)	GenBank		AF501732	AF501705
Chasmocarcinidae Serène, 1964				
Chasmocarcinus chacei Felder \& Rabalais, 1986	ULLZ 8018	Northern Gulf of Mexico; 2006	EU863401	EU863335
Chasmocarcinus mississippiensis Rathbun, 1931	ULLZ 7346	Southwestern Gulf of Mexico; 2005	EU863406	EU863340
Eriphiidae MacLeay, 1838				
Eriphia verrucosa (Forskål, 1775)	ULLZ 4275	Eastern Atlantic; Spain; Cadiz, 1998	EU863398	EU863332
Euryplacidae Stimpson, 1871				
Frevillea barbata A. Milne-Edwards, 1880	ULLZ 8369	Southeastern Gulf of Mexico; 2004	EU863399	EU863333
Sotoplax robertsi Guinot, 1984	ULLZ 7857	Northern Gulf of Mexico; 2006	EU863400	EU863334
Goneplacidae MacLeay, 1838				
Bathyplax typhlus A. Milne-Edwards, 1880	ULLZ 8032	Northwestern Gulf of Mexico; 2006	EU863397	EU863331
Panopeidae Ortmann, 1893				
A cantholobulus bermudensis (Benedict \& Rathbun, 1891)	ULLZ 5843	Gulf of Mexico; Mexico; Campeche, 2002	EU863355	EU863289
Acantholobulus bermudensis (Benedict \& Rathbun, 1891)	ULLZ 6558	Western Atlantic; Florida, Ft. Pierce, 2005	EU863354	EU863288
Acantholobulus bermudensis (Benedict \& Rathbun, 1891)	ULLZ 6924	Western Atlantic; Florida, Ft. Pierce, 2006	EU863372	EU863306
Acantholobulus schmitti (Rathbun, 1930)	ULLZ 6613	Western Atlantic; Brazil; Sao Paulo, 1999	EU863364	EU863298
Acantholobulus schmitti (Rathbun, 1930)	ULLZ 8367	Western Atlantic; Brazil; Sao Paulo, 1999	EU863357	EU863291
Cyrtoplax nr. spinidentata (Benedict, 1892)	ULLZ 8423	Western Atlantic; Florida, Ft. Pierce, 2001	EU863369	EU863303
Dyspanopeus sayi (Smith, 1869)	ULLZ 7227	Western Atlantic; Florida, Ft. Pierce, 2006	EU863395	EU863329
Eucratopsis crassimanus (Dana, 1851)	ULLZ 6427	Western Atlantic; Florida, Ft. Pierce, 2006	EU863392	EU863326
Eurypanopeus abbreviatus (Stimpson, 1860)	ULLZ 3753	Western Atlantic; Florida, Ft. Pierce, 1998	EU863388	EU863322
Eurypanopeus depressus (Smith, 1869)	ULLZ 3976	Northern Gulf of Mexico; Mississippi, 1998	EU863391	EU863325
Eurypanopeus depressus (Smith, 1869)	ULLZ 6077	Eastern Gulf of Mexico; Tampa Bay, 2005	EU863390	EU863324
Eurypanopeus dissimilis (Benedict \& Rathbun, 1891)	ULLZ 5878	Western Atlantic; Florida, Ft. Pierce, 1997	EU863396	EU863330
Eurypanopeus dissimilis (Benedict \& Rathbun, 1891)	ULLZ 8424	Western Atlantic; Florida, Ft. Pierce, 1997	EU863387	EU863321
Eurypanopeus planissimus (Stimpson, 1860)	ULLZ 4140	Eastern Pacific; Mexico; Baja California, 1999	EU863386	EU863320
Glyptoplax smithii A. Milne-Edwards, 1880	ULLZ 6793	Southwestern Gulf of Mexico; 2005	EU863342	EU863276
Glyptoplax smithii A. Milne-Edwards, 1880	ULLZ 7686	Northern Gulf of Mexico; 2006	EU863379	EU863313
Glyptoplax smithii A. Milne-Edwards, 1880	ULLZ 8142	Northern Gulf of Mexico; 2006	EU863350	EU863284
Glyptoplax smithii A. Milne-Edwards, 1880	ULLZ 8335	Northern Gulf of Mexico; 2006	EU863371	EU863305
Glyptoplax smithii A. Milne-Edwards, 1880	ULLZ 9020	Western Atlantic; Florida, Ft. Pierce, 2003	EU863384	EU863318

Table 2. continued.

Taxon	Catalog . No.	Collection Locality	16S	12S
Hexapanopeus angustifrons (Benedict \& Rathbun, 1891)	ULLZ 6943	Western Atlantic; Florida; Ft. Pierce, 2006	EU863343	EU863277
Hexapanopeus angustifrons (Benedict \& Rathbun, 1891)	ULLZ 7174	Western Atlantic; Florida, Ft. Pierce, 2003	EU863368	EU863302
Hexapanopeus angustifrons (Benedict \& Rathbun, 1891)	ULLZ 7757	Western Atlantic; Florida, Ft. Pierce, 2006	EU863351	EU863285
Hexapanopeus angustifrons (Benedict \& Rathbun, 1891)	ULLZ 8368	Eastern Gulf of Mexico; Florida, 2004	EU863380	EU863314
Hexapanopeus angustifrons (Benedict \& Rathbun, 1891)	ULLZ 9019	Western Atlantic; Florida, Ft. Pierce, 2003	EU863385	EU863319
Hexapanopeus caribbaeus (Stimpson, 1871)	ULLZ 6859	Western Atlantic; Florida, Ft. Pierce, 2006	EU863381	EU863315
Hexapanopeus caribbaeus (Stimpson, 1871)	ULLZ 6859	Western Atlantic; Florida, Ft. Pierce, 2006	EU863348	EU863282
Hexapanopeus caribbaeus (Stimpson, 1871)	ULLZ 7743	Western Atlantic; Florida, Ft. Pierce, 2006	EU863353	EU863287
Hexapanopeus lobipes (A. Milne-Edwards, 1880)	ULLZ 4731	Northern Gulf of Mexico; Louisiana, 2001	EU863356	EU863290
Hexapanopeus lobipes (A. Milne-Edwards, 1880)	ULLZ 6909	Southeastern Gulf of Mexico; 2004	EU863365	EU863299
Hexapanopeus lobipes (A. Milne-Edwards, 1880)	ULLZ 7828	Northern Gulf of Mexico; 2006	EU863352	EU863286
Hexapanopeus manningi Sankarankutty \& Ferreira, 2000	USNM 260923	Western Atlantic; Brazil; Rio Grande do Norte, 1996	EU863383	EU863317
Hexapanopeus nov. sp.	ULLZ 8646	Northern Gulf of Mexico; Texas, 1998	EU863361	EU863295
Hexapanopeus paulensis Rathbun, 1930	ULLZ 3891	Northern Gulf of Mexico; Texas, 1998	EU863360	EU863294
Hexapanopeus paulensis Rathbun, 1930	ULLZ 6608	Western Atlantic; Brazil; Sao Paulo, 1996	EU863373	EU863307
Hexapanopeus paulensis Rathbun, 1930	ULLZ 6862	Northern Gulf of Mexico; Texas, 2006	EU863358	EU863292
Hexapanopeus paulensis Rathbun, 1930	ULLZ 6870	Northern Gulf of Mexico; Texas, 2006	EU863374	EU863308
Hexapanopeus paulensis Rathbun, 1930	ULLZ 6875	Northern Gulf of Mexico; Texas, 2006	EU863376	EU863310
Hexapanopeus paulensis Rathbun, 1930	ULLZ 6882	Northern Gulf of Mexico; Texas, 2006	EU863375	EU863309
Hexapanopeus paulensis Rathbun, 1930	ULLZ 8645	Northern Gulf of Mexico; Panama City, 2007	EU863377	EU863311
Neopanope packardii Kingsley, 1879	ULLZ 3772	United States; Florida, Ft. Pierce, 1998	EU863349	EU863283
Panopeus africanus A. Milne-Edwards, 1867	ULLZ 4273	Eastern Atlantic; Spain; Cadiz, 1999	EU863370	EU863304
Panopeus americanus Saussure, 1857	ULLZ 8456	Western Atlantic; Florida, Ft. Pierce, 1996	EU863345	EU863279
Panopeus herbstii H. Milne Edwards, 1834	ULLZ 8457	Western Atlantic; South Carolina, 1997	EU863362	EU863296
Panopeus lacustris Desbonne, 1867.	ULLZ 3818	Western Atlantic; Florida, Ft. Pierce, 1997	EU863363	EU863297
Panopeus occidentalis Saussure, 1857	ULLZ 8640	Northern Gulf of Mexico; Panama City, 2007	EU863393	EU863327
Panopeus occidentalis Saussure, 1857	ULLZ 8643	Northern Gulf of Mexico; Panama City, 2007	EU863394	EU863328
Panoplax depressa Stimpson, 1871	ULLZ 8056	Northern Gulf of Mexico; 2006	EU863347	EU863281
Rhithropanopeus harrisii (Gould, 1841)	ULLZ 3995	Northern Gulf of Mexico; Texas, 1998	EU863346	EU863280
Pilumnidae Samouelle, 1819				
Lobopilumnus agassizii (Stimpson, 1871)	ULLZ 7121	Southwestern Gulf of Mexico; 2005	EU863402	EU863336
Pilumnus fioridanus Stimpson, 1871	ULLZ 7343	Southern Gulf of Mexico; 2005	EU863403	EU863337

Table 2. continued

Taxon	Catalog . No.	Collection Locality	16S	12S
Portunidae Rafinesque, 1815				
Ovalipes punctatus (De Haan, 1833)	GenBank		DQ062733	DQ060652
Pseudorhombilidae Alcock, 1900				
Trapezioplax tridentata (A. Milne-Edwards, 1880)	ULLZ 8054	Northern Gulf of Mexico; 2006	EU863344	EU863278
Xanthidae MacLeay, 1838				
Atergatis reticulatus (De Haan, 1835)	GenBank		DQ062726	DQ060646
Batodaeus urinator (A. Milne-Edwards, 1881)	ULLZ 8131	Southern Gulf of Mexico; 2005	EU863405	EU863339
Eucratodes agassizii A. Milne-Edwards, 1880	ULLZ 8400	Northern Gulf of Mexico; Louisiana, 1996	EU863389	EU863323
Garthiope barbadensis (Rathbun, 1921)	ULLZ 8170	Northern Gulf of Mexico; 2006	EU863367	EU863301
Garthiope barbadensis (Rathbun, 1921)	ULLZ 8183	Northern Gulf of Mexico; 2006	EU863366	EU863300
Liomera cinctimana (White, 1847)	GenBank		AF501736	AF501708
Macromedaeus distinguendus (De Haan, 1835)	GenBank		DQ062731	DQ060654
Micropanope sculptipes Stimpson, 1871	ULLZ 6603	Southeastern Gulf of Mexico; 2004	EU863404	EU863338
Micropanope sculptipes Stimpson, 1871	ULLZ 8025	Northern Gulf of Mexico; 2006	EU863378	EU863312
Speocarcinus lobatus Guinot, 1969	ULLZ 7820	Northern Gulf of Mexico; 2006	EU863407	EU863341
Speocarcinus monotuberculatus Felder \& Rabalais, 1986	ULLZ 7562	Southwestern Gulf of Mexico; 2005	EU863359	EU863293
Xanthias canaliculatus Rathbun, 1906	ULLZ 4381	Indian Ocean; South Africa; Sodwana Bay, 2001	EU863382	EU863316

Table 3. Primers used in this study.

Gene	Primer	Sequence $\mathbf{5}^{\prime} \rightarrow \mathbf{3}$,	Ref.
16 S	16 Sar	CGC CTG TTT ATC AAA AAC AT	(1)
16 S	16 Sbr	CCG GTC TGA ACT CAG ATC ACG T	(1)
16 S	16 L 2	TGC CTG TTT ATC AAA AAC AT	(2)
16 S	1472	AGA TAG AAA CCA ACC TGG	(3)
12 S	12 sf	GAA ACC AGG ATT AGA TAC CC	(4)
12 S	12 slr	AGC GAC GGG CGA TAT GTA C	(4)

References: (1) Palumbi et al. 1991, (2) Schubart et al. 2002, (3) Crandall \& Fitzpatrick 1996, (4) Buhay et al. 2007.

2.2 DNA extraction, $P C R$, and sequencing

Genomic DNA was extracted from muscle tissue of the pereopods of a total of 66 specimens of the family Panopeidae and related taxa of the Xanthoidea sensu Martin \& Davis (2001) utilizing one of the following extraction protocols: Genomic DNA Extraction Kit for Arthropod Samples (Cartagen Molecular Systems, Cat. No. 20810-050), Qiagen DNeasy ${ }^{\circledR}$ Blood and Tissue Kit (Qiagen, Cat. No. 69504), or isopropanol precipitation following Robles et al. (2007).

Two mitochondrial markers were selectively amplified using polymerase chain reaction (PCR). A fragment of the $16 S$ large subunit rDNA approximately 550 basepairs (bp) in length was amplified using the primers 1472 or 16 Sbr in combination with 16 L 2 and 16 Sar and a fragment of the 12 S small subunit rDNA approximately 310 bp in length was amplified using the primers 12 sf and 12 s 1 r (see Table 3 for complete primer information). PCR reactions were performed in $25-\mu \mathrm{l}$ volumes containing: $0.5 \mu \mathrm{M}$ forward and reverse primer, $200 \mu \mathrm{M}$ each dNTP, $2.5 \mu \mathrm{l} 10 \mathrm{x}$ PCR buffer, 3 mM MgCl 2 , 1 M betaine, 1 unit NEB Standard Taq polymerase (New England Biolabs, Cat. No. M0273S), and 30-50 ng of genomic DNA. Reactions were carried out using the following cycling parameters: initial denaturation at $94^{\circ} \mathrm{C}$ for 2 min ; 40 cycles at $94^{\circ} \mathrm{C}$ for 25 sec , $40^{\circ} \mathrm{C}(16 \mathrm{~S})$ or $52^{\circ} \mathrm{C}(12 \mathrm{~S})$ for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 1 min ; final extension at $72^{\circ} \mathrm{C}$ for 5 min . PCR products were purified using EPOCH GenCatch PCR Clean-up Kit (EPOCH BioLabs, Cat. No. 13-60250) and sequenced in both directions using ABI BigDye ${ }^{\circledR}$ Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA). Cycle sequencing products were purified using Sephadex G-50 columns (Sigma-Aldrich Chemicals, Cat. No. S6022). Sequencing products were run on an ABI PRISM ${ }^{(\mathbb{})} 3100$ Genetic Analyzer (Applied Biosystems, Foster City, CA, USA).

2.3 Phylogenetic analyses

Sequences were assembled using Sequencher 4.7 (GeneCodes, Ann Arbor, MI, USA). Once assembled, sequences were aligned using MUSCLE (MUltiple Sequence Comparison by Log-Expectation), a computer program found to be more accurate and faster than other alignment algorithms (Edgar 2004). Alignments were further refined using GBlocks v0.91b (Castresana 2000) to omit poorly aligned or ambiguous positions. Default parameters were used for GBlocks except: 1) minimum length of a block $=4,2$) allowed gap positions $=$ half. We conducted a partition heterogeneity test or incongruence length difference test (ILD) (Bull et al. 1993), as implemented in PAUP* v4b10 (Swofford 2003), to determine if the two gene regions could be combined.

The model of evolution that best fit each of the datasets was determined by likelihood tests as implemented in Modeltest version 3.6 (Posada \& Crandall 1998) under the Akaike Information

Criterion (AIC). The maximum likelihood (ML) analyses were conducted using PhyML Online (Guindon et al. 2005) using the model parameters selected with free parameters estimated by PhyML. Confidence in the resulting topology was assessed using non-parametric bootstrap estimates (Felsenstein 1985) with 500 replicates.

The Bayesian (BAY) analyses were conducted in MrBayes (Huelsenbeck \& Ronquist 2001) with computations performed on the computer cluster of the CyberInfrastructure for Phylogenetic RESearch project (CIPRES) at the San Diego Supercomputer Center, using parameters selected by Modeltest. A Markov Chain Monte Carlo (MCMC) algorithm with 4 chains and a temperature of 0.2 ran for $4,000,000$ generations, sampling 1 tree every 1,000 generations. Preliminary analyses and observation of the log likelihood (L) values allowed us to determine burn-ins and stationary distributions for the data. Once the values reached a plateau, a 50% majority rule consensus tree was obtained from the remaining trees. Clade support was assessed with posterior probabilities ($\mathrm{p} P$).

3 RESULTS

The initial sequence alignment of the 16 S dataset, including gaps and primer regions, was 606 bp in length, while that of the 12 S dataset was 384 bp in length. GBlocks was used to further refine the alignment, removing ambiguously aligned regions resulting in final alignments of 521 bp (86%) and $284 \mathrm{bp}(74 \%)$ for 16 S and 12 S , respectively. Despite recent studies combining multiple loci into a single alignment (Ahyong \& O'Meally 2004, Porter et al. 2005), we chose in this instance not to combine the datasets. The partition heterogeneity test or incongruence length difference test, as implemented in PAUP*, indicated that the combination of the two gene regions was significantly rejected ($\mathrm{P}=0.0240$). Furthermore, preliminary analysis of the combined dataset resulted in lower support for some of the tip branches than was the case in the single gene trees. This is due to different branching patterns (16 S vs. 12 S) at this level of the tree, which will be discussed later in this paper. This information would be lost in a combined tree.

Application of the likelihood tests as implemented in Modeltest revealed that the selected model of DNA substitution by AIC for the 16 S dataset was HKY $+\mathrm{I}+\mathrm{G}$ (Hasegawa et al. 1985) with an assumed proportion of invariable sites of 0.3957 and a gamma distribution shape parameter of 0.4975 . The selected model for the $12 S$ dataset was $G T R+I+G$ (Rodríguez et al. 1990) with an assumed proportion of invariable sites of 0.3228 and a gamma distribution shape parameter of 0.6191 .

Phylogenetic relationships among 71 individuals representing 46 species of the Xanthoidea sensu Martin \& Davis (2001) were determined using Bayesian and ML approaches for both the 16 S and 12 S datasets. For the Bayesian analyses, the first 1,000 trees were discarded as burn-in and the consensus tree was estimated using the remaining 3,000 trees ($=3$ million generations). Topologies resulting from the Bayesian analyses of both the 16 S and 12 S datasets were largely congruent (Figs. 1 and 2). A number of monophyletic clades are supported by both datasets, as follow: 1) Acantholobulus bermudensis, Acantholobulus schmitti, and Hexapanopeus caribbaeus with $\mathrm{p} P(16 \mathrm{~S} / 12 \mathrm{~S})$ of $99 / 77,2)$ Hexapanopeus angustifrons and Hexapanopeus paulensis with $\mathrm{p} P$ of 100/99, 3) Eurypanopeus depressus, Eurypanopeus dissimilis, Dyspanopeus sayi, Neopanope packardii, and Rhithropanopeus harrisii with $\mathrm{p} P$ of $97 / 99,4)$ Eurypanopeus abbreviatus and $E u$ rypanopeus planissimus with $\mathrm{p} P$ of 99/87. In general, Bayesian posterior probabilities have been shown to be higher than the corresponding bootstrap values, but; in many cases, posterior probabilities tend to overrate confidence in a topology while bootstrap values based on neighbor joining, maximum parsimony, or ML methods tend to slightly underestimate support (Huelsenbeck et al. 2001, Huelsenbeck et al. 2002, Suzuki et al. 2002). With this in mind, it is not surprising to find that ML bootstrap supports for the same four clades are lower than the $\mathrm{p} P$. The bootstrap values of the above clades are as follows: 1) $<50 /<50,2) 72 / 51,3$) $<50 /<50$, and 4) $<50 /<50$.

Figure 1. Phylogenetic relationships among panopeid crab species and selected representatives of the superfamily Xanthoidea sensu Martin \& Davis (2001), inferred by Bayesian analysis from 521 basepairs of the 16 S rDNA gene. Confidence intervals are from 500 bootstrap maximum likelihood analysis followed by Bayesian posterior probabilities. Genus shown as "C." = Chasmocarcinus. Values below 50 are indicated by "-".

Figure 2. Phylogenetic relationships among panopeid crab species and selected representatives of the superfamily Xanthoidea sensu Martin \& Davis (2001), inferred by Bayesian analysis from 284 basepairs of the $12 S$ rDNA gene. Confidence intervals are from 500 bootstrap maximum likelihood analysis followed by Bayesian posterior probabilities. Values below 50 are indicated by "-".

4 DISCUSSION

Here we report two molecular phylogenies of the genus Hexapanopeus and related genera of the family Panopeidae. These phylogenies, which are based on partial sequences of the 16 S and 12 S rDNA, contain five of the 13 nominal species in Hexapanopeus and a single undescribed species that appears to be assignable to the genus. In addition, we have included representatives of 18 species of the family Panopeidae in order to better address both the monophyly of Hexapanopeus and the relationships of species currently assigned to Hexapanopeus to other panopeid taxa. Although only five species of Hexapanopeus are included in the dataset, these five species represent five of the six nominal species known from the western Atlantic. It is clear from our analyses that the genus Hexapanopeus is markedly polyphyletic and that further study of all its putative members is warranted, by both morphological and molecular methods.

4.1 Hexapanopeus angustifrons and Hexapanopeus paulensis

The phylogenies presented here lend support to a narrowed definition of Hexapanopeus that includes only the type-species of the genus Hexapanopeus angustifrons (Benedict \& Rathbun, 1891) and Hexapanopeus paulensis Rathbun, 1930, pending results of morphological and molecular analyses for the remaining eight present congeners. It is interesting to note that in all analyses these taxa form a monophyletic clade and that within both species there is further evidence for genetic structure. It is unclear if the genetic divergence seen in these clades is the result of cryptic speciation or population differentiation, but the current analyses suggest some combination of the two might occur in each complex.

4.2 Hexapanopeus nov. $s p$.

In the analyses of the 16 S dataset, the sister group to the H. angustifrons/H. paulensis clade is an undescribed species from intertidal waters of south Texas in the western Gulf of Mexico. This undescribed species resembles H. paulensis in general morphology, but it has a very distinctive gonopod, which most resembles that of Acantholobulus schmitti (Rathbun, 1930). In contrast to the results of the $16 S$ dataset, the 12 S dataset lends support to a clade that is composed of the undescribed species and Glyptoplax smithii A. Milne-Edwards, 1880, as the sister group to the H. angustifrons/H. paulensis clade. Unfortunately, suitable material of Glyptoplax pugnax Smith, 1870, the type species of the genus, has not to date been available for molecular analysis; therefore, it remains unclear whether this undescribed species is most appropriately treated as a member of the genus Hexapanopeus, the genus Glyptoplax, or a new monospecific genus.

4.3 Hexapanopeus lobipes

The species Hexapanopeus lobipes (A. Milne-Edwards, 1880) has had a very unsettled taxonomic history. After being described as a species of Neopanope A. Milne-Edwards, 1880, it was later transferred to the genus Lophopanopeus Rathbun, 1898, by Rathbun in 1898. In his 1948 revision of the genus Lophopanopeus, Menzies pointed out that H. lobipes does not fit the diagnosis of the genus Lophopanopeus. Upon transferring the species to the genus Hexapanopeus, he noted that "it seems to fit the diagnosis of that genus better than that of any other American genus." Only isolated records of Hexapanopeus lobipes have been reported since Menzies' 1948 work (Wicksten 2005 , Felder et al. in press), and there has been no reassessment of its placement within the genus Hexapanopeus. The gonopod of H . lobipes is distinctive and has little resemblance to those in other members of the genus Hexapanopeus. Furthermore, unlike the carapaces of H. angustifrons and H. paulensis, which have five distinct anterolateral teeth, the 1st and 2 nd antero-lateral teeth of
H. lobipes are generally fused, giving the appearance of four anterolateral teeth. On the basis of these and other morphological features, it is unclear whether H. lobipes is justifiably assignable to the genus Hexapanopeus. Whatever the case to be made on the basis of morphology alone, we cannot concur with Ng et al. (2008) in reassigning this species to Lophopanopeus.

Our analyses support removal of H. lobipes from the genus Hexapanopeus and appear to justify establishment of a new monospecific genus for H. lobipes. In both topologies, H. lobipes falls outside the clade formed by H. angustifrons and H. paulensis. In the phylogeny inferred from the 16S dataset, H. lobipes is the sister group to Panopeus americanus Saussure, 1857, with ML bootstrap and $\mathrm{p} P$ values of $<50 / 90$, respectively. The phylogeny inferred from the $12 S$ dataset presents H. lobipes as a sister group to Panopeus s.s. H. Milne Edwards, 1834, with ML bootstrap and pP values of $<50 / 51$, respectively. Despite low support values, both topologies lend support to the removal of H . lobipes from the genus Hexapanopeus and the erection of a new genus for the species, as is currently in progress.

4.4 Hexapanopeus manningi

Hexapanopeus manningi Sankarankutty and Ferreira, 2000, was described on the basis of material from Rio Grande do Norte, Brazil. This species was distinguished from Hexapanopeus caribbaeus (Stimpson, 1871) by characters of the frontal margin, the 3rd anterolateral tooth of the carapace, and the apical process of the gonopod; however, upon the basis of synoptic comparisons of the male paratype (USNM 260923) to material of H. caribbaeus from eastern Florida, it appears that there is considerable morphological overlap between these two taxa, raising the question as to whether H. manningi might be a junior synonym of H. caribbaeus. The topology inferred from the 16 S dataset places H. manningi in very close proximity to H. caribbaeus; distance between these taxa is very short and comparable to that within other accepted single-species clades in our tree. The clade containing both H. manningi and H. caribbaeus has high support values, with ML bootstrap and $\mathrm{p} P$ values of $100 / 100$, respectively. The strongest support for a synonymy of the two taxa comes from the topology inferred from the 12 S dataset, with H. manningi positioned within the clade of H. caribbaeus. Our molecular phylogenies support synonymy of H. manningi with H. caribbaeus, and we herewith recommend that taxonomic revision, regardless of the eventual generic assignment to be accorded (see below).

4.5 Hexapanopeus caribbaeus

Hexapanopeus caribbaeus was originally described as a representative of the genus Micropanope; however, upon erection of the genus Hexapanopeus, Rathbun (1898) transferred this species to the genus Hexapanopeus apparently on the basis of carapace shape. It wasn't until the 1997 work by Sankarankutty and Manning that distinct differences between the gonopod of H. caribbaeus and that of the type-species H. angustifrons were noted. In the present analysis, this species is clearly separated from Hexapanopeus s.s., and shown to be more closely allied to the genus Acantholobulus.

4.6 Genus Acantholobulus

Felder and Martin (2003) erected the genus Acantholobulus to accommodate a number of species from the genera Panopeus and Hexapanopeus, which included: 1) the type-species Acantholobulus bermudensis (Benedict \& Rathbun, 1898), formerly Panopeus bermudensis; 2) Acantholobulus miraflorensis (Abele \& Kim, 1989), formerly Panopeus miraflorensis; 3) Acantholobulus pacificus (Edmondson, 1931), formerly Panopeus pacificus; and 4) Acantholobulus schmitti (Rathbun, 1930), formerly Hexapanopeus schmitti. Despite similarities between H. caribbaeus and A. schmitti in both carapace and gonopod morphology, the possible relationship between H. caribbaeus and newly assigned members of the genus Acantholobulus was not addressed. The phylogenies inferred
from both our datasets strongly support inclusion of H. caribbaeus within the genus Acantholobulus. While the phylogeny inferred from the 16 S dataset shows H. caribbaeus nested with Acantholobulus, the topology inferred by analysis of the 12 S datasets supports a sister group relationship between H. caribbaeus and both A. bermudensis and A. schmitti. Although both of these relationships are supported by $\mathrm{p} P>75$, the 16 S dataset shows considerably higher $\mathrm{p} P(99 / 77$ for $16 \mathrm{~S} / 12 \mathrm{~S}$, respectively). As additional species of Acantholobulus become available for inclusion in our analysis, the relationship between Acantholobulus and its closest relatives should be more definitively resolved. Even so, it is by present findings established that H. caribbaeus is well separated from Hexapanopeus s.s., and we apply the new combination Acantholobulus caribbaeus (Stimpson, 1871).

4.7 Panopeus americanus

In a study of mud crabs from the northwestern Atlantic, Schubart et al. (2000) clearly showed polyphyly in the genus Panopeus, with both Acantholobulus bermudensis (as Panopeus bermudensis, see discussion above) and Panopeus americanus falling well outside Panopeus s.s. (Schubart et al. 2000, Fig. 1). In the present study, we find additional support for these findings with the topologies inferred from both datasets positioning P. americanus outside Panopeus s.s.; however, the topologies differ in where P. americanus is placed relative to species of other genera. In the topology inferred from the 16 S dataset, P. americanus is a sister group to H. lobipes, while in the topology inferred from the 12 S dataset, P. americanus is the sister group to the clade containing E. depressus, E. dissimilis, N. packardii, D. sayi, and R. harrisii. However, this arrangement is poorly supported with ML bootstrap and $\mathrm{p} P$ values less than 50 . Despite the differences in the topologies inferred from these two datasets, both provide evidence for the removal of P. americanus from Panopeus. Pending a thorough analysis of adult and larval morphology, data presented here support the establishment of a new genus for P. americanus.

4.8 Genus Eurypanopeus

Schubart et al. (2000, Fig. 1) also provided evidence for polyphyly among species presently assigned to the genus Eurypanopeus A. Milne-Edwards, 1880, with species of Eurypanopeus falling into three separate clades. In the present study, topologies inferred from both datasets support the polyphyletic nature of Eurypanopeus, with representatives found in three clades for 16 S (Fig. 1) and two clades for 12S (Fig. 2). It is unclear what effect the addition of sequence data from other species of Eurypanopeus would have on the analyses; however, on the basis of evidence presented here and by Schubart et al. (2000), comprehensive study and taxonomic revision of the genus are needed.

4.9 Panoplax depressa

Despite a gonopod that shares little in common with that of the typical panopeid, Panoplax depressa Stimpson, 1871, has long been considered a member of the subfamily Eucratopsinae within the family Panopeidae (Martin \& Abele 1986, McLaughlin et al. 2005, Ng et al. 2008). The analyses presented here provide no support for the inclusion of Panoplax within the family Panopeidae. In topologies inferred from both datasets, Panoplax depress a is well separated from remaining representatives of the family Panopeidae. In the phylogeny inferred from the 16S dataset, Panoplax depressa is found nested within a poorly supported clade containing representatives of the families Xanthidae and Pseudorhombilidae ($\mathrm{ML} / \mathrm{p} P<50 / 99$). In the phylogeny inferred from the 12 S dataset, Panoplax depressa is also excluded from the remaining representatives of the family Panopeidae, nested within a poorly supported clade containing representatives of the family Xanthidae ($\mathrm{ML} / \mathrm{p} P$ $<50 / 90$). Despite the low support values for the clades currently containing Panoplax depressa, there is little evidence to support the inclusion of Panoplax within the family Panopeidae.

4.10 Garthiope barbadensis

The genus Garthiope Guinot, 1990, was described to accommodate three small species formerly attributed to the genus Micropanope. Upon its erection, similarities between Garthiope and the family Trapeziidae were noted; however, in their recent review Ng et al. (2008) considered the genus to be a part of the family Xanthidae. In the present analyses the complex relationship of Garthiope to the remaining taxa of the Xanthoidea sensu Martin \& Davis (2001) is shown in the conflict between the 16 S dataset and $12 S$ dataset in regards to the placement of Garthiope. In the phylogeny inferred from the 16 S dataset, Garthiope barbadensis (Rathbun, 1921) is found within the family Panopeidae, where it is located within a clade containing representatives of the subfamily Eucratopsinae. However, this clade has support values with ML and $\mathrm{p} P$ values of $<50 / 98$. To further confound our understanding, in the analyses of the 12 S dataset, Garthiope barbadensis falls well outside the family Panopeidae in a clade containing representatives of the Eriphioidea, Carpilioidea, Goneplacoidea, and Portunoidea. As this arrangement also has poor support values (<50), the relationship of Garthiope to these groups remains unclear. The type-species of the genus Garthiope spinipes (A. Milne-Edwards, 1880) was not included in these analyses; as a result, it is unclear what effect its inclusion may have on the analyses. Further study of the group is needed to clarify how this genus is related to other representatives of the Xanthoidea sensu Martin \& Davis (2001).

4.11 Outgroup taxa

Composition of the superfamily Xanthoidea sensu Martin \& Davis (2001) is a subject of ongoing debate (Guinot 1978; Jamieson 1993; Coelho \& Coelho Filho 1993; Schubart et al. 2000; Wetzer et al. 2003; Karasawa \& Schweitzer 2006; Ng et al. 2008). In all of our analyses, the family Xanthidae is clearly shown to be polyphyletic. Analysis of the 16 S dataset reveals a single clade containing representatives of Panopeidae, Pseudorhombilidae, and three subfamilies of Xanthidae; however, this clade is poorly supported with ML bootstrap values and $\mathrm{p} P$ of $<50 / 99$ (Fig. 1). Furthermore, a second clade contains a single representative of the family Xanthidae as well as representatives of Eriphioidea, Pilumnoidea, Carpilioidea, Goneplacoidea, and Portunoidea. This clade is well supported with ML bootstrap values and $\mathrm{p} P$ of $97 / 100$. Within this clade we also find representatives of three families of Goneplacoidea, with two species of Chasmocarcinus representing Chasmocarcinidae, Frevillea barbata and Sotoplax robertsi representing Euryplacidae, and Bathyplax typhlus representing Goneplacidae. While Chasmocarcinidae and Euryplacidae form a poorly supported monophyletic clade, Goneplacidae is found in another clade with representatives of Portunoidea and Carpilioidea. Although neither of these clades is well supported (ML/p $P<50 / 58$ \& $<50 / 98$), they provide evidence for a polyphyletic Goneplacoidea. While the topology inferred from the 12 S dataset (Fig. 2) still presents evidence for a polyphyletic Xanthidae and Goneplacoidea, the evidence differs from that inferred by the 16S dataset (Fig. 1). However, support values for the outgroup topology inferred by the 12 S dataset are very low, making any conclusions drawn from this topology questionable. Regardless of differences between these two topologies, it is apparent that both Goneplacoidea and Xanthidae are polyphyletic and in need of revision.

ACKNOWLEDGEMENTS

We thank H. Bracken, M. Brugler, J. Felder, S. France, E. Palacios-Theil, E. Pante, V. Paul, R. Robles, J. Thoma, and A. Windsor for assisting in obtaining specimens or with various aspects of data collection, analysis, and manuscript preparation. We are grateful to J. Martin and G. Davis for providing loans of materials from the Natural History Museum of Los Angeles County, R. Lemaitre for access to specimens at the National Museum of Natural History-Smithsonian Institution, and F. Mantelatto for loans of specimens from Brazil. This study was supported in part by U.S. National

Science Foundation grants NSF/BS\&I DEB-0315995 and NSF/AToL EF-0531603 to D. Felder, as well as several small travel grants from the Smithsonian Marine Station, Ft. Pierce, Florida. Additional support to B. Thoma was provided under a Louisiana Board of Regents doctoral fellowship. This is University of Louisiana Laboratory for Crustacean Research contribution no. 128 and Smithsonian Marine Station contribution no. 737.

REFERENCES

Ahyong, S.T. \& O'Meally, D. 2004. Phylogeny of the Decapoda'Reptantia: resolution using three molecular loci and morphology. Raff. Bull. Zool. 52: 673-693.
Buhay, J.E., Moni G., Mann, N. \& Crandall, K.A. 2007. Molecular taxonomy in the dark: evolutionary history, phylogeography, and diversity of cave crayfish in the subgenus Aviticambarus, genus Cambarus. Mol. Phylogenet. Evol. 42: 435-448.
Bull, J.J., Huelsenbeck, J.P., Cunningham, C.W., Swofford, D.L. \& Waddell, P.J. 1993. Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42: 384-397.
Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540-552.
Coelho P.A. \& Coelho Filho, P.A. 1993. Proposta de classificação da família Xanthidae (Crustacea, Decapoda, Brachyura) através da taxonomia numérica. Rev. Bras. Zool. 10: 559-580.
Crandall, K.A. \& Fitzpatrick Jr., J.F. 1996. Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Syst. Biol. 45: 1-26.
Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797.
Felder, D.L. 1973. An annotated key to crabs and lobsters (Decapoda, Reptantia) from coastal waters of the northwestern Gulf of Mexico. Center for Wetland Resources. Baton Rouge: Louisiana State University. Pp. 1-103.
Felder, D.L., Alvarez, F., Goy, J.W. \& Lemaitre, R. (In press). Chapter 59, Decapod (Crustacea) of the Gulf of Mexico, with comments on the Amphionidacea. In: Felder, D.L. \& Camp, D.K. (eds.), Gulf of Mexico Origin, Waters, and Biota. Volume I, Biodiversity: 1019-1104. College Station: Texas A\&M University Press.
Felder, D.L. \& Martin, J.W. 2003. Establishment of a new genus for Panopeus bermudensis Benedict and Rathbun, 1891 and several other xanthoid crabs from the Atlantic and Pacific oceans (Crustacea: Decapoda: Xanthoidea). Proc. Biol. Soc. Wash. 116: 438-452.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
Guindon S., Lethiec, F., Duroux, P. \& Gascuel, O. 2005. PHYML Online-a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33: 557-559.
Guinot, D. 1978. Principes d'une classification évolutive des Crustacés Décapodes Brachyoures. Bull. Biol. Fr. Belg. 112: 209-292.
Hasegawa, M., Kishino, H. \& Yano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 21: 160-174.
Huelsenbeck, J.P. \& Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754-755.
Huelsenbeck, J.P., Ronquist, F., Nielsen, R. \& Bollback, J.P. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310-2314.
Huelsenbeck, J.P., Larget, B., Miller, R.E. \& Ronquist, F. 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Syst. Biol. 51: 673-688.
Jamieson, B.G.M. 1993. Spermatological evidence for the taxonomic status of Trapezia (Crustacea: Brachyura: Heterotremata). Mem. Qld. Mus. 33: 225-234.

Karasawa, H. \& Schweitzer, C.E. 2006. A new classification of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato. Contr. Zool. 75: 23-72.
Martin, J.W. \& Abele, L.G. 1986. Notes on male pleopod morphology in the brachyuran crab family Panopeidae Ortmann, 1893, sensu Guinot (1978) (Decapoda). Crustaceana. 50: 182-198.
Martin, J.W. \& Davis, G.E. 2001. An updated classification of the Recent Crustacea. Natural History Museum of Los Angeles County, Science Series 39: 1-124.
McLaughlin, P.A., Camp, D.K., Eldredge, L.G., Felder, D.L., Goy, J.W., Hobbs, III, H.H., Kensley, B., Lemaitre, R. \& Martin, J.W. 2005. Order Decapoda. In: Turgeon, D. (ed.), Common and Scientific Names of Aquatic Invertebrates of the United States and Canada. Names of Crustaceans Special Publications. Vol. 31. Bethesda, Maryland: American Fisheries Society Special Publication. Pp. 209-326.
Menzies, R. J. 1948. A revision of the brachyuran genus Lophopanopeus. Allan Hancock Occas. Pap. 4: 1-27, figs. 1-3, pls. 1-6.
Ng, P.K.L., Guinot, D. \& Davie, P.J.F. 2008. Systema Brachyurorum: Part I. An annotated checklist of extant brachyuran crabs of the world. Raff. Bull. Zool. 17: 1-286.
Palumbi, S., Martin, A., Romano, S., McMillan, W.O., Stice, L. \& Grabowski, G. 1991. The Simple Fool's Guide to PCR. Honolulu, Department of Zoology and Kewalo Marine Laboratory.
Porter, M.L., Pérez-Losada, M. \& Crandall, K.A. 2005. Model-based multi-locus estimation of decapod phylogeny and divergence times. Mol. Phylogenet. Evol. 37: 355-369.
Posada, D. \& Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818.
Rathbun, M.J. 1898. The Brachyura of the biological expedition to the Florida Keys and the Bahamas in 1893. Bull. Lab. Nat. Hist. Iowa 4: 250-294.
Rathbun, M.J. 1930. The cancroid crabs of America of the families Euryalidae, Portunidae, Atelecyclidae, Cancridae, and Xanthidae. Bull. U.S. Natl. Mus. 152: 1-609.
Robles R., Schubart, C.D., Conde, J.E., Carmona-Suárez, C., Alvarez, F., Villalobos, J.L. \& Felder, D.L. 2007. Molecular phylogeny of the American Callinectes Stimpson, 1860 (Brachyura: Portunidae), based on two partial mitochondrial genes. Mar. Biol. 150: 1265-1274.
Rodríguez, F., Oliver, J.L., Marin, A. \& Medina, J.R. 1990. The general stochastic model of nucleotide substitution. J. Theor. Biol. 142: 485-501.
Sankarankutty, C. \& Manning, R.B. 1997. Observations on Hexapanopeus schmitti Rathbun from Brazil (Crustacea: Decapoda: Xanthidae). Proc. Biol. Soc. Wash. 110: 249-255.
Schubart, C.D., Neigel, J.E. \& Felder, D.L. 2000. A molecular phylogeny of mud crabs (Brachyura: Panopeidae) from the northwestern Atlantic and the role of morphological stasis and convergence. Mar. Biol. 137: 1167-1174.
Schubart, C.D., Cuesta, J.A. \& Felder, D.L. 2002. Glyptograpsidae, a new brachyuran family from Central America: larval and adult morphology, and a molecular phylogeny of the Grapsoidea. J. Crustac. Biol. 22: 28-44.

Swofford, D. 2003. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, MA: Sinauer Assoc.

Suzuki, Y., Glazko, G.V. \& Nei, M. 2002. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc. Natl. Acad. Sci. U.S.A. 99: 16138-16143.
Wetzer, R., Martin, J.W. \& Trautwein, S.E. 2003. Phylogenetic relationships within the coral crab genus Carpilius (Brachyura, Xanthoidea, Carpiliidae) and of the Carpiliidae to other xanthoid crab families based on molecular sequence data. Mol. Phylogenet. Evol. 27: 410-421.
Wicksten, M. 2005. Decapod crustaceans of the Flower Garden Banks National Marine Sanctuary. Gulf Mex. Sci. 23: 30-37.
Williams, A.B. 1984. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida. Washington, D.C.: Smithsonian Institution Press. 550 pp.

