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ABSTRACT 

Phylogenetic relationships of extant marine clawed lobsters of the families Nephropidae and Thau­
mastochelidae were analyzed based on partial sequences of the 12S and 16S mitochondrial rRNA 
genes. The ingroup sample consisted of 17 species and ten genera of the Nephropidae as well as 
two species and two genera of the Thaumastochelidae. The family Enoplometopidae was used as an 
outgroup. A. total of 875 base pairs, with 241 parsimony informative sites, was analyzed. Bayesian 
(MRBAYES) and maximum likelihood (PAUP) analyses produced similar topologies. The ML tree 
was well supported at most nodes. Generic monophyly was confirmed for all five genera repre­
sented by two or more species. Acanthacaris is the least derived among genera included in the 
analysis. It was resolved as a sister taxon to all other nephropids (including thaumastochelids). The 
thaumastochelids are monophyletic but nested within Nephropidae; thus, family-level status for 
thaumastochelids was not supported. Some nephropid genera, previously regarded as close relatives 
on a morphological basis (e.g., Homarus and Homarinus, or Nephrops and Metanephrops), instead 
appear to be cases of morphological convergence. 

1 INTRODUCTION 

1.1 General 

Marine clawed lobsters include the families Erymidae van Straelen, 1924 (Lower Triassic-Upper 
Cretaceous), Chimerastacidae Amatie et al., 2004 (Middle Triassic), Chilenophoberidae Tshudy & 
Babcock, 1997 (Middle Jurassic-Lower Cretaceous), Nephropidae Dana, 1852 (Lower Cretaceous-
Recent), Thaumastochelidae Bate, 1888 (Upper Cretaceous-Recent), and Enoplometopidae de Saint 
Laurent, 1988 (Recent). The family Nephropidae is the most diverse, consisting of 14 genera (11 ex­
tant [Acanthacaris Bate, 1888; Eunephrops Smith, 1885; Homarinus Kornfield et al., 1995; Homarus 
Weber, 1795; Metanephrops Jenkins, 1972; Nephropides Manning, 1969'; Nephrops Leach, 1814; 
Nephropsis l^ood-Mason, 1873; Thymopides Burukovsky & Averin, 1976; Thymops Holthuis, 1974; 
Thymopsis Holthuis, 1974] and three extinct [Hoploparia McCoy, 1849; Jagtia Tshudy & 
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Sorhannus, 2000; Palaeonephrops Mertin, 1941]). The present study investigates phylogenetic re­
lationships of the clawed lobster genera of the families Nephropidae and Thaumastochelidae. 

Phylogeny of the clawed lobsters is of interest for more than their intrinsic generic relationships. 
It potentially provides insights into questions of general biological and paleontological interest such 
as rates of morphological and molecular evolution, or the frequency and distribution of molecular 
or morphologic homoplasy. Likewise, of general interest is the comparison of phylogenies pro­
duced by different methods, including traditional intuitive schemes versus cladistic analyses, and 
morphology- versus DNA-based cladistic analyses. Clawed lobsters, by virtue of their complex 
morphology, long range in the fossil record, wide geographic range, and ecological diversity, are a 
group well suited for such investigations. 

1.2 Previous work, morphological and molecular 

A number of workers have conducted morphology-based cladistic analyses on clawed lobsters 
(Tshudy 1993 [20 genera]; Williams 1995 [four genera]; Tshudy & Babcock 1997 [22 genera]; 
Tshudy & Sorhannus 2000a [19 genera], 2000b [13 genera]; Dixon et al. 2003 [four genera]; Rode 
& Babcock 2003 [nine genera]; Ahyong & O'Meally 2004 [five genera]; Amati et al. 2004 [seven 
genera]; Ahyong 2006 [26 genera]. Ahyong (2006) included all (14) nephropid and (three) thaumas-
tochelid genera, fossil and extant, in the largest matrix published to date. Ahyong's (2006) character 
matrix is similar to earlier matrices of Tshudy (1993) and Tshudy & Babcock (1997), and thus does 
not constitute a robust test of those trees. Nonetheless, Ahyong (2006) added additional characters 
and included for the first time taxa such as Neoglyphea Forest & de Saint Laurent, 1975, Enoplome-
topus A. Milne-Edwards, 1862, and the Uncinidae Beurlen, 1928. 

Few workers have conducted DNA-based cladistic analyses on the clawed lobsters. Tarn & Korn-
field (1998), using 16S mtDNA, produced a tree including five nephropid genera (Homarus, Homar-
inus, Metanephrops, Nephrops, Nephropsis). Ahyong & O'Meally (2004) used 16S mtDNA along 
with 18S and 28S nuclear DNA data (2,500 bp total) to evaluate reptant decapod phylogeny, in­
cluding six lobster genera (Enoplometopus, Homarus, Metanephrops, Neoglyphea, Nephropsis, and 
Thaumastochelopsis Bruce, 1988). Porter et al. (2005) used 16S mtDNA along with 18S and 28S 
nuclear DNA data and the histone H3 gene (3,601 bp total) to evaluate decapod phylogeny (43 gen­
era), including four lobster genera (Acanthacaris, Homarus, Nephrops, and Nephropsis). Chu et al. 
(2006) produced a 12S mtDNA-based tree for ten clawed lobster genera using Neoglyphea as an 
outgroup. The present study concerns the phylogenetic relationships of the Recent clawed lobster 
genera of the Nephropidae and Thaumastochelidae. Our analysis is based on partial sequences of 
mitochondrial 12S and 16S genes and includes 12 ingroup genera (adding Homarinus, Thaumas­
tochelopsis, and Thy mops to those analyzed by Chu et al. 2006). 

2 MATERIALS AND METHODS 

2.1 Taxon sampling 

The ingroup (Table 1) consists of 21 terminals representing 17 species and ten genera of the Nephrop­
idae as well as two species and two genera of the Thaumastochelidae. The family Thaumastoche­
lidae was included in the analysis because family-level status has been debated and remains equiv­
ocal. In some studies, members of this family have been suggested to constitute their own family 
(Holthuis 1974; Tshudy & Sorhannus 2000a, b; Dixon et al. 2003; Schram & Dixon 2004; Ahy­
ong & O'Meally 2004; Ahyong 2006), whereas other studies include them as part of Nephropidae 
(Tshudy & Babcock 1997; Chu et al. 2006). 

The outgroup used in our study was the family Enoplometopidae, recently found to be the sis­
ter group to the Nephropidae + Thaumastochelidae in morphological (Ahyong & O'Meally 2004; 
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Table 1. List of specimens for which 16S mtDNA and 12S mtDNA were sequenced. CBM = Natural History 
Museum and Institute, Chiba; CNCR = Coleccion Nacional de Crustceos, Instituto de Biologa, UNAM; 
EUPG = Edinboro University of Pennsylvania; MNHN = Museum National d'Histoire Naturelle, Paris; 
NTM = Museum of Art Gallery of the Northern Territory, Darwin; NTOU,= National Taiwan Ocean Univer­
sity; USNM = National Museum of Natural History, Smithsonian Institution, Washington, D.C.; 1 = Aquar­
ium shop, origin unknown; 2 = Supermarket, origin unknown. 

Species 

Acanthacaris tenuimana 
Enoplometopus crosnieri 
Enoplometopus daumi 
Enoplometopus debelius 
Enoplometopus occidentalis 
Eunephrops cadenasi 
Eunephrops manningi 
Homarinus capensis 
Homarinus capensis 
Homarus americanus 
Homarus gammarus 
Metanephrops japonicus 
Metanephrops rubellus 
Metanephrops thomsoni 
Nephropides caribaeus 
Nephrops norvegicus 
Nephropsis aculeata 
Nephropsis aculeata 
Nephropsis rosea 
Nephropsis^ serrata 
Nephropsis steward 
Thaumastocheles japonicus 
Thaumastochelopsis wardi 
Thymopides grobovi 
Thymops birsteni 

Catalog No. 

MNHN-As639 
NTOU-M00602 
NTOU-M00171 
NTOU-00173 
NTOU-M00152 
MNHN-As640 
MNHN-As641 
USNM251453 
USNM251454 
EUPGEO4001 
NTOU-M00819 
NTOU-M00521 
NTOU-M00074 
NTOU-M00504 
MNHN-As642 
CBM-ZC7438 
CNCR21650 
CNCR21660 
CNCR21631 
NTOU-M00157 
NTOU-M00505 
NTOU-M00168 
NTM-Cr.004231 
MNHN-Asl81 
USNM291290 

Locality 

Solomon Islands 
Taiwan 
Singapore1 

Singapore1 

Taiwan 
Guadeloupe 
Guadeloupe 
S. Africa 
S. Africa 
U.S.A. 
France2 

Japan 
Brazil 
Taiwan 
Guadeloupe 
France2 

Mexico 
Mexico 
Mexico 
Taiwan 
Taiwan 
Taiwan 
Australia 
Kerguelen Island 
Chile 

GenBank 
Accession 
No. 12S 

DQ298420 
DQ298423 
DQ298421 
DQ298422 
DQ298424 
DQ298425 
DQ298426 
EU882895 
EU882896 
DQ298427 
DQ298428 
EU882897 
DQ298429 
DQ298430 
DQ298432 
DQ298433 
EU882892 
EU882893 
EU882894 
DQ298434 
DQ298435 
DQ298438 
EU882891 
DQ298436 
EU882898 

GenBank 
Accession 
No. 16S . 

EU882871 
EU882870 
EU882868 
EU882869 
EU882871 
EU882873 
EU882874 
EU882887 
EU882888 
EU882875 
EU882876 
EU882889 
EU882877 
EU8828#8 
EU882819 
EU8828»1 
EU882884 
EU882885 
EU882886 
EU882881 
EU882882 
EU882866 
EU882867 
EU882883 
EU882890 

Ahyong 20O6) and molecular analyses (Ahyong & O'Meally 2004; Tsang et al. 2008; Chu et al. 
this volume). The monogeneric Enoplometopidae is represented in the analysis by four species: 
Enoplometopus crosnieri Chan & Yu, 1998, E. daumi Holthuis, 1983, E. debelius Holthuis, 1983, 
and E. occidentalis (Randall, 1840). v 

2.2 Tissue sampling 

Tissue samples used in this study were derived from freshly collected specimens or, more often, 
from preserved museum collections (Table 1). On collection, specimens were either frozen on site 
and later transferred to 70% ethyl alcohol (ETOH) or directly preserved in 70% ETOH. Species 
identification was based on morphology (Holthuis 1974, 1991; Tshudy 1993). 
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2.3 DNA extraction 

DNA extraction, amplification, and sequencing were conducted at both the University of Louisiana 
Lafayette and the Chinese University of Hong Kong. Total genomic DNA was extracted from fresh 
or ethanol-fixed tissue samples collected from the abdomen (ventral side) or pereiopods. Muscle 
was ground and then incubated for 1—12 h in 600 /il of lysis buffer (100 mM EDTA, 10 mM tris pH 
7.5, 1% SDS) at 65°C; protein was separated by addition of 200 /xl 7.5 M of ammonium acetate and 
subsequent centrifugation. DNA was precipitated by addition of 600 /xl of cold isopropanol followed 
by centrifugation; the resulting pellet was rinsed in 70% ETOH, dried in a speed vacuum system 
(DNA110 Speed Vac), and resuspended in 10-20 /xl of TE buffer (10 mM TRIS, 1 mM EDTA). For 
samples extracted at the Chinese University of Hong Kong, total DNA was obtained from pleopod 
muscles (10-15 mg) with the QIAamp DNA Mini Kit (QIAGEN) following manufacturer's instruc­
tions. DNA was eluted in 200 /xl of distilled water. 

2.4 DNA amplification and sequencing 

Two mitochondrial ribosomal genes, the 12S and 16S rRNA, were selected because of their proven 
utility in resolving generic relationships for other decapods (Kornfield et al. 1995; Schubart et al. 
2000; Robles et al. 2007; Chan et al. 2008). Standard PCR amplification and automated sequencing 
protocols were used to sequence a fragment of approximately 400 bp of the 12S mtDNA and 550 
bp of the 16S mtDNA. Both strands were sequenced for each gene. In all cases, the 12S and 16S 
sequences were derived from the same specimen. When possible, more than one species of each 
genus was included in our analysis. 

Primers used for the 12S fragment were 12Sai (5'-AAA CTA GCA TTA GAT ACC CCT ATT 
AT-3') (Palumbi et al. 1991) and 12H2 (5'-ATG CAC TTT CCA GTA CAT CTA C-3') (Colbourne 
& Hebert 1996). Primers used for the 16S fragment were 16ar (5'-CGC CTG TTT ATC AAA AAC 
AT-3'), 16br (5'- CCG GTC TGA ACT CAG ATC ACG T-3') (Palumbi et al. 1991), 1472 (5'-AGA 
TAG AAA CCA ACC TGG-3') (Crandall & Fitzpatrick 1996), and 16L2 (5'-TGC CTG TTT ATC 
AAA AAC AT-3') (Schubart et al. 2002). Reactions were performed in 25 /xl volumes (200 M each 
dntp, IX buffer, 0.5 /xM each primer, 1 unit Taq polymerase, 1 /xl extracted DNA). Thermal cycling 
was performed as follows: initial denaturation for 10 min at 94-95°C followed by 40-42 cycles of 
1 min at 94-95°C, 1-1:30 min at 48°C and 1:30-2 min at 72°C, with a final extension of 10 min 
at 72°C. PCR products were purified using 100,000 MW filters (Microcon-100® Millipore Corp.) 
and sequenced with the ABI BigDye® terminator mix (Applied Biosystems). Both PCR and cycle 
sequence reactions were conducted on a Robocycler® 96 cycler. Sequencing products were run on 
either a 310 or 3100 Applied Biosystems® automated sequencer. 

2.5 Sequence alignment and nucleotide composition 

Consensus of complementary sequences of the gene was obtained with the Sequencher® soft­
ware program (ver 4.1, Genecodes, Ann Arbor, MI). Alignment of consensus sequences was per­
formed with Clustal W, as implemented in Bioedit (Hall 1999) with the following settings: 6-2/6-2 
penalty (opening-gap extension, pairwise/multiple alignment respectively). Base composition, pat­
tern of substitution for pairwise comparison, and analysis of variability along both fragments of the 
12S and the 16S mtDNA were analyzed in PAUP 4.0 beta 10 (Swofford 1993). Homogeneity of 
nucleotide frequency among taxa was also assessed for each gene with a \2 test as implemented in 
PAUP. The 12S and 16S data sets were combined for analysis. Partition homogeneity was assessed 
by the incongruence length difference (ILD) test as implemented in PAUP (Swofford 1993). 
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2.6 Phylogenetic analysis 

Phylogenetic analyses were conducted using MRBAYES v.3.17 software for Bayesian analysis 
(BAY) and PAUP 4.0 beta 10 (Swofford 1993) for maximum likelihood (ML) analysis. Prior to 
conducting the BAY or ML analyses, the model of evolution that best fit the data was determined 
using MODELTEST v.3.7 (Posada & Crandall 1998). The Bayesian analysis was performed by 
sampling one tree every 100 generations for 1,000,000 generations, starting with a random tree, 
thus generating 10,001 trees. A preliminary analysis showed that stasis was reached at approxi­
mately 10,000 generations. Thus, we discarded 101 trees corresponding to those generations and 
obtained 50% majority rule consensus trees from the remaining 9,900 saved trees using PAUP. ML 
analysis was carried out with a distance correction set with the parameters obtained from MODEL-
TEST (Posada & Crandall 1998). Analysis was performed as a heuristic search with gaps treated 
as missing data, multistate characters interpreted as uncertain, and all characters unordered. The 
search was conducted with a random sequence addition of taxa and tree bisection and reconnection 
as branch swapping option. Relative stability of clades under ML was determined from 100 boot­
strap pseudoreplicates based on the same parameters as above. Bootstrap proportions >50% (for 
ML) and posterior probabilities (for BAY) are indicated in Figure 1. 

3 RESULTS 

3.1 Nucleotide composition 

We produced 12S and 16S sequence data for 23 species (25 specimens) resulting in an alignment of 
50 sequences. Sequences and alignments were submitted to GenBank as a PopSet. Our 12S align­
ment included a total of 407 bp of which 246 bp were constant, 33 were variable but not parsimony 
informative^ and 128 characters were parsimony informative. The nucleotide composition of the 
database can be considered homogeneous (x2 = 27.293, df = 72, P = 0.999) with a larger percentage 
of A-T (36.7%-37.0% respectively). Our 16S alignment included a total of 537 bp, of which 305 bp 
were constant, 65 were variable but parsimony uninformative, and 167 were parsimony informative. 
The nucleotide composition of the database can be considered homogeneous (x2 = 31.636, df = 72, 
P = 0.999) with a larger percentage of A-T (32.8%-34.8% respectively). The combined alignment 
included 944 bp. We also excluded 69 saturated characters, 21 from the 12S fragment and 48 from 
the 16S fragment. From the remaining 875 characters, 544 were constant, 90 were variable but not 
parsimony informative, and 241 were parsimony informative. The ILD test showed no significant 
incongruence among gene segments (P = 0.462). Thus, all phylogenetic analyses were performed 
with a single data set including both genes. 

3.2 Phylogenetic analyses 

The best-fit model of nucleotide substitution, selected with the Akaike information criterion (AIC; 
Akaike 1974) as implemented in MODELTEST (Posada & Crandall 1998), was the HKY model 
(Hasegawa et al. 1985), with proportion of invariable sites (Y) and a gamma distribution (8), with 
the following parameters: assumed nucleotide frequencies: A = 0.3518, C = 0.0890, G = 0.1804, 
T = 0.3788; with transition/transversion ratio = 3.967; proportion of invariable sites T = 0.315; 
variable sites followed a gamma distribution with shape parameter 8 = 0.498. These values were 
used for both ML and BAY analyses, which produced the same topology. We thus present a single 
tree obtained with ML analysis (ML score = 4986.170) that includes both ML bootstrap as well as 
Bayesian posterior probabilities (Fig. 1). In both analyses, monophyly of all five genera represented 
by two or more species received strong support values. 

The ML tree based on the 12S and 16S genes is generally well supported at most, though not 
all, nodes (Fig. 1). Representative species of the putative family Thaumastochelidae were found 
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Figure 1. ML tree based on combined 16S and 12S sequences. ML bootstrap proportions (>50%) and Bayesian 
posterior probabilities indicated at nodes (ML/BAY). 

to be monophyletic but nested within the Nephropidae (Fig. 1). Acanthacaris is the sister taxon to 
the remaining nephropids sensu lato. Among the latter, three clades were recovered. Relationships 
among these three clades cannot be considered resolved since they were not well supported by either 
bootstrap or Bayesian posterior probabilities. One clade included Homarus, Nephrops, Thaumas-
tocheles, and Thaumastochelopsis. A second clade included the genera Eunephrops, Nephropides, 
Thymopides, Homarinus, and Thymops, although it was supported only by BAY. Metanephrops and 
Nephropsis formed a third clade, though it too was supported only by BAY. 

4 DISCUSSION 

To more fully understand relationships of the marine clawed lobsters, it is optimal to have a tax-
onomically comprehensive (all extant genera) molecular phylogenetic analysis based on multiple 
genes along with an equally comprehensive morphological study (all extant and extinct genera) 
based on a large data matrix. The present study analyzes two mitochondrial genes (12S and 16S) as 
a step toward this objective. While it would be ideal to root both the morphological and molecular 
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trees to the same outgroup, that is so far impractical. The most appropriate outgroup for the present 
DNA analysis, Enoplometopidae, has no fossil record, although potentially Uncinidae may be an 
enoplometopid (Ahyong 2006). Fortunately, in the case of the marine clawed lobsters, our unpub­
lished DNA data indicate that ingroup topology is insensitive to a range of potential outgroups such 
as freshwater crayfish (Astacus, Par astacus, Cambarus), glypheoids (Neoglyphea), or Enoplome­
topidae. 

4.1 Comparison with previous works 

Our results for Acanthacaris corroborate those of Porter et al. (2005), who found good support 
for Acanthacaris as a sister taxon to the three remaining nephropid genera in their 43-genus anal­
ysis of decapod phylogeny. Topology of the Nephropsis + Nephrops -K Homarus clade in Porter 
et al. (2005) is also consistent with our results. Topology of the present 12S-16S tree (12 genera) 
is nearly identical to the 12S tree (ten genera) of Chu et al. (2006), despite their using Neoglyphea 
as the outgroup. The topology of our 12S-16S tree differs somewhat from that of the 16S-18S-
28S tree of Ahyong & O'Meally (2004), who included five genera of clawed lobsters (Enoplome-
topus, Homarus, Metanephrops, Nephropsis, Thaumastochelopsis) in their analysis of 45 decapod 
genera. The disagreement in topologies is in the arrangement of three nephropid genera: Homar-
inus, Metanephrops, and Nephropsis. Ahyong & O'Meally (2004), analyzing three nephropid 
genera, found Nephropsis to be the sister to Metanephops + Homarus. Our analysis shows 
Metanephrops and Nephropsis are closer to each other than either is to Homarus. However, in 
addition to their analysis encompassing a taxonomically broader group of decapod genera, they 
used a species of Stenopus Latreille, 1819, representing the Stenopodidae Glaus, 1872 (consis­
tently identified as sister group to reptantian decapods by Ahyong & O'Meally 2004), as their 
outgroup. Tarn & Kornfield (1998) analyzed five nephropid genera using mitochondrial 16S rRNA 
and produced trees that, while not well resolved, show either Nephropsis (via maximum parsi­
mony) or Metanephrops (via neighbor joining) as sister to the remaining nephropid genera 
analyzed. 

4.2 Acanthacaris 

Acanthacaris is determined here (Fig. 1), as in the multi-locus analysis of Porter et al. (2005) and 
the 12S analysis by Chu et al. (2006), to be the sister taxon to the remaining nephropoids. Most 
previous morphological studies (Tshudy & Babcock 1997; Tshudy & Sorhannus 2000a, b; Ahyong 
2006) found Acanthacaris to be deeply nested within Nephropidae rather than the sister taxon to the 
remaining genera. This disagreement between morphological and molecular topologies is marked 
and is largely due to the many autapomorphies of Acanthacaris and unstable rooting of the mor­
phological trees. In comparison to other nephropoid genera, Acanthacaris has many distinctive au­
tapomorphies including: 1) a laterally compressed rostrum; 2) a single row of dorsal rostral spines; 
3) parallel submedian carinae on the telson; 4) an extremely large scaphocerite extending almost 
to the end of the antennal peduncle; and 5) delicately constructed, symmetrical claws, each with 
a narrow, cylindrical palm and fingers bearing acicular denticles. However, these features, being 
unique, are eladistically uninformative. Thus, very few character states remain to robustly position 
Acanthacaris (irrespective of whether they are convergent). In addition, the position of the root, 
and thus Acanthacaris, in the morphological analysis is sensitive to outgroup choice (Tshudy et 
al., unpublished data). Significantly, however, morphological analyses, using an identical group of 
taxa, recover an identical position for Acanthacaris as sister to the remaining nephropids (Tshudy 
et al., unpublished data). In terms of branch support, the molecular data provide strongest support 
for the "basal" position of Acanthacaris, using a range of outgroups, so we may be justified in fa­
voring the molecular results. Future morphological studies should closely reconsider the apparently 
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autapomorphous character states of Acanthacaris to determine whether, on closer inspection, they 
might be related to states in other taxa. 

Acanthacaris is a blind, deep-sea (229-2161 m) lobster with no known close extant relatives 
and no known fossil relatives. Palaeophoberus Glaessner, 1932, previously thought to be related to 
Acanthacaris (Glaessner 1932, 1969; Mertin 1941; Burukovsky & Ckreko 1986), is now regarded 
as a chilenophoberid. At present, we cannot reliably infer whether the blind Acanthacaris evolved 
in the deep sea or, like the Oncopareia-Thaumastocheles lineage, lost its eyes through a migration 
from shallow, shelf depths into deeper, aphotic habitats. 

4.3 Status of Thaumastochelidae 

The family Thaumastochelidae is represented in this analysis by both of its Recent genera, Thaumas-
tocheles and Thaumastochelopsis. These genera, along with the fossil (Late Cretaceous-Miocene) 
genus Oncopareia Bosquet, 1854, form a morphologically distinctive and cladistically cohesive 
group. The monophyly of the thaumastochelids has been supported by previous morphological 
studies (Tshudy & Babcock 1997; Tshudy & Sorhannus 2000a, b). Tshudy et al. (unpublished 
data), analyzing a 90-character morphology matrix, found the thaumastochelids united by three 
unambiguous synapomorphies: first pereiopod palm bulbous; telson wider than long; and uropodal 
endopod much smaller than exopod. Aside from these synapomorphies, all thaumastochelids have 
very distinctive abdominal pleura that are wider than long and quadrate, and even more distinctive 
first pereiopods with very long, slender fingers armed with acicular denticles. The close relationship 
among these three genera is undisputed, but their family-level status has been debated and has re­
mained equivocal. Holthuis (1974) recognized the family, as did morphological cladistic analyses of 
Tshudy & Sorhannus (2000a, b), Dixon et al. (2003), Schram & Dixon (2004), Ahyong & O'Meally 
(2004), and Ahyong (2006). Molecular phylogenetic analyses support (Ahyong & O'Meally 2004) 
or dispute (Chu et al. 2006; Tsang et al. 2008) family level status for the thaumastochelids. In the 
DNA tree of Ahyong & O'Meally (2004), which did not include Acanthacaris, Thaumastoche­
lopsis is the sister taxon to the three nephropid genera analyzed. Our molecular analysis supports 
monophyly of thaumastochelids, similar to all previous morphological studies. However, it does 
not support family level status for thaumastochelids because they are nested within Nephropidae 
sensu stricto. The paraphyly of this taxon is also evident in the decapod tree based on nuclear pro­
tein coding genes (Tsang et al. 2008; Chu et al. this volume). We thus regard thaumastochelids as 
members of the Nephropidae. As with the putative Thaumastochelidae, the nephropid subfamilies 
Nephropinae {Eunephrops, Homarus, Metanephrops, Nephrops) and Thymopinae {Nephropides, 
Nephropsis, Thymops, Thymopsis) of Holthuis (1974) are not recovered by present results. 

4.4 Morphological convergence 

The present and recently published DNA studies facilitate detailed comparison with morphology-
based phylogenies of nephropid genera. These agree in some aspects, for example, the placement of 
Acanthacaris (as discussed above) and Eunephrops and Nephropides forming a clade in some mor­
phological studies (Tshudy & Babcock 1997; not Ahyong 2006) and in DNA studies (this study; 
Chu et al. 2006 [Eunephrops is a sister taxon to Nephropides + Thymopides]). However, morpho­
logical and DNA studies disagree in other aspects of nephropid phylogeny (discussed below), and 
these differences seem largely attributable to morphological convergence. 

4.4.1 Homarus and Homarinus 
A previous study based on 16S sequence data (Tarn & Kornfield 1998; five nephropid genera) and 
also the present 12S-16S study position Homarus as the sister taxon to Nephrops, instead of Homar­
inus, as is common in morphological analyses (Tshudy & Babcock 1997; Ahyong 2006; Tshudy 



Phytogeny of Nephropidae and Thaumastochelidae 365 

et al. unpublished data). If these molecular results are interpreted to be more phylogenetically accu­
rate than existing morphological studies (alpha-taxonomic and phylogenetic), then morphological 
similarities between Homarus and Homarinus are most parsimoniously explained as morphological 
convergence. Homarus and Homarinus are "plain-looking" nephropids that lack many of the distin­
guishing external features of other nephropid genera, features such as cephalothoracic carinae and 
spines, sculptured abdominal terga, and carinate claws. Ahyong (2006) found Homarus and Homar­
inus'to be the most plesiomorphic of nephropids. Until recently, these two genera were consid­
ered congeneric. Kornfield et al. (1995) examined what were at that time three species of Homarus 
(H americanus, H. gammarus, H. capensis) and removed H. capensis to a new genus, Homarinus, 
on the basis of DNA sequence comparisons and morphology. They reported 16S sequence (380 bp) 
divergence between H. americanus and H. gammarus at 1.3%, compared to average divergence be­
tween these and the "cape lobster" at 9.7% (Kornfield et al. 1995). Recent and present molecular 
analyses strongly support Homarus and Homarinus as having evolved in separate lineages, and both 
genera are "safely" nested in ornamented clades. Therefore, their morphologic similarities are in­
terpreted as morphologic convergence. 

4.4.2 Nephrops and Metanephrops 
Similar to the Homarus—Homarinus example, Nephrops and Metanephrops are sister taxa in mor­
phological analyses (Tshudy & Sorhannus 2000b; Tshudy et al., unpublished data) and are widely 
disparate in DNA-based trees (Chu et al. 2006; this study). In a morphological study parallel 
to this one (Tshudy et al., unpublished data), Metanephrops and Nephrops are the most derived 
nephropids and are sister taxa united by one unambiguous synapomorphy: the male pleopod 1 distal 
end is a posteriorly curving/terminating hook. There are several other obvious external similar­
ities between these genera (ambiguous synapomorphies), which are apparently convergent. These 
similarities include their intermediate and lateral thoracic carinae, the complexly sculptured 
abdominal tergites, and their carinate and spiny claws. DNA analyses (Tarn & Kornfield 1998 
[16S]; present study [12S, 16S]) find Nephrops and Metanephrops well separated on the clado-
gram, indicating that the morphological similarities between these genera are the result of 
convergence. 

5 CONCLUSIONS AND FUTURE WORK 

This DNA analysis of clawed lobster genera facilitates detailed comparison with similarly compre­
hensive morphology-based topologies. There are major differences between the DNA and 
morphological results to date. Eunephrops and Nephropides form a sister group in some morpho­
logical studies and in DNA studies. Aside from that, there are conflicts at the level of family and 
genus. 

Acanthacaris is determined to be the least derived of the genera in this analysis and is the sister 
group to all the nephropids, including the putative Thaumastochelidae. Published morphological 
studies have determined Acanthacaris to be more highly derived within the nephropids, and notably 
more so than the thaumastochelids. 

Our molecular analysis supports monophyly of thaumastochelids, similar to all previous mor­
phological studies. However, it does not support family level status for thaumastochelids, on the 
basis of their phylogenetic placement within Nephropidae. Thaumastochelidae should therefore be 
synonymized with Nephropidae. 

Homarus and Homarinus form a clade in the morphological analyses, but our DNA analyses 
suggest they belong to different lineages, indicating that their similarities are the result of conver­
gence. Nephrops and Metanephrops, likewise, form a clade in morphological analyses but are not 
closely related according to DNA analyses. Our molecular data suggest that Homarus and Nephrops 
are sister taxa, despite their being well separated in morphology-based trees. 
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Given the sensitivity of morphological analyses to taxon and character selection, which we in­
terpret mainly to convergence, we should work toward further testing of DNA trees as guides to 
the phylogeny of extant and, ultimately, extinct lobsters. Thus far, sequences from four gene regions 
have been applied (12S, 16S, 18S, 28S), with as many as three in one analysis (Ahyong & O'Meally 
[2004] used 16S, 18S, and 28S). If the addition of new data (e.g., protein coding genes; see Tsang 
et al. 2008) stabilizes these trees, we could, through reverse extrapolation, infer which morphologi­
cal characters are most phylogenetically reliable for analysis of extinct genera. Future work should 
also combine morphological and molecular data in a total evidence analysis. 
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