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A Shrimp's Eye View of Evolution: How Useful Are Visual 
Characters in Decapod Phylogenetics? 

MEGAN L. PORTER & THOMAS W. CRONIN 

Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, U.S.A. 

ABSTRACT 

The decapods contain the largest diversity of eye designs and optical types of any group within the 
Crustacea. This variation has led to debate about the usefulness of visual system characters in the 
construction of decapod phylogenetic relationships. This debate, however, has not been revisited 
recently and has never considered the use of molecular aspects of vision. In this paper we review 
the current understanding of decapod eye anatomy, optics, visual pigments, and evolution. We find 
that there are many visual system components, including overall optical design and fine structural 
details, that are potentially useful for reconstructing decapod phylogenetics. 

1 INTRODUCTION 

Within crustaceans, the decapods are unrivalled in species number, morphological diversity, and 
ecological distribution. Correspondingly, the decapods also exhibit extraordinary variation in the 
optical design and morphology of their visual systems. This leads to the simple question: 'Does 
the observed variation in visual systems contain useful information concerning the evolution of the 
decapods?' The use of visual system characteristics has been debated throughout the history of de­
capod taxonomic studies, with just as many decapod researchers arguing for the importance of eye 
characters as cautioning against their use. In this review we will revisit the debate regarding decapod 
optical design and phylogenetics. Our goal is to move the debate forward by revising the general 
question posed above to: 'Does the observed variation in visual systems, both morphological and 
molecular, have anything useful to tell us about decapod phylogenetics?' In order to investigate this 
question, we will present the current knowledge regarding the taxonomic and phylogenetic distribu­
tion of optical designs and the emerging field of molecular studies on visual system evolution within 
the decapods. 

2 OVERVIEW OF DECAPOD VISUAL SYSTEMS 

2.1 Morphology 

Most Crustacea have compound eyes composed of individual receptive units called ommatidia 
(Fig. 1). Each ommatidium consists of optical structures (e.g., cornea, lens, crystalline cones) stacked 
on top of a set of fused retinular cells, which form the photoreceptive rhabdom (Fig. 2). Decapod 
rhabdoms are formed by eight retinular cells, with seven of these (Rl-7) forming the main prox­
imal part of the rhabdom and the eighth (R8), if present, contributing a small distal rhabdomere 
(Shaw & Stowe 1982). Based on results from a range of methodologies aimed at characterizing vi­
sual pigment absorbance and photoreceptor sensitivity (e.g., microspectrophotometry, electrophys-
iology, intracellular recordings), the spectral characteristics of the Rl-7 versus the R8 retinular 
cells differ. Within the Decapoda, the Rl-7 cells of the main rhabdom are sensitive to middle 
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Figure 1. Examples of decapod compound eyes demonstrating different facet shapes. Note that some defor­
mation of the shape of the compound eyes has occurred due to the SEM fixation process. (A, B) Procambarus 
sp., illustrating the square facets characteristic of reflecting superposition optics (scale bars: A = 500 μπ\, Β = 
200 μιτι). (C, D) Stenopus hispidus, which also contains reflecting superposition optics (scale bars = 500 μιτι). 
(Ε, F) Clibanarius sp. (scale bars = 100 μχή). Although the underlying optics of this genus have not been inves­
tigated specifically, the hexagonal facets imply that this species does not contain reflecting superposition eyes. 
Other species within the same family (e.g., Dardanus sp., Diogenidae) have refracting superposition optics. 
(Photos by M.L. Porter.) 

Figure 2. Schematics of the two basic compound eye optical designs found in decapod crustaceans: (A) appo­
sition optics, (B) superposition optics. Dashed grey lines represent typical light paths through the crystalline 
cones to the rhabdoms. Abbreviations: cc = crystalline cone; R = rhabdom; cz = clear zone. 
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(blue-green) to long (red) wavelengths of light (447-570 nm), while the R8 cells are typically sen­
sitive to violet or UV light (360-440 nm, Fig. 3, Johnson et al. 2002; Porter 2005). 

As early as the late 1800s (Exner 1891), it was recognized that the compound eye ground plan 
can be organized into two optical types: apposition and superposition eyes (Fig. 2). Typically op­
timized for resolution, apposition eyes contain ommatidia that function as individual units, with 
screening pigments shielding each individual ommatidium from receiving light from neighboring 
optical components. In contrast, superposition eyes are commonly optimized for sensitivity, with the 
optical elements of multiple ommatidia focusing light onto a single rhabdom. Within the Crustacea 
as a whole, most of the visual systems investigated contain apposition optics, with superposition 
eyes found only in the Eumalacostraca (Nilsson 1983). In comparison, the decapods contain ex­
traordinary variation in eye design within a single order, exhibiting four fundamentally different 
optical designs that can be observed among species and different life stages. While all decapod 
larvae use apposition optics, only a few adult decapods retain apposition eyes, including brachyu-
ran, anomalan, and stenopodidean species (Meyer-Rochow & Reid 1994; Eguchi et al. 1997; Gaten 
1998, 2007). Within superposition optics, decapods have evolved three mechanisms for focusing 
light from multiple ommatidial facets onto a single rhabdom: reflection, refraction, and parabolic 
optics. Refracting superposition eyes have been found in only two other crustacean groups in addi­
tion to the decapods, the Mysida and the Euphausiacea, while reflecting and parabolic superposition 
eyes are not found outside the Decapoda (Nilsson 1988, 1990). 

By far the most widespread design in decapod eyes is reflecting superposition optics, found in 
the adults of all of the major sub- and infraorders, with the possible exception of the Thalassinidea, 
where eye design has yet to be rigorously investigated (Table 1). First described in crayfish and deep 
sea shrimp (Land 1976; Vogt 1977), this optical design uses either mirror boxes lined with a reflec­
tive surface or complete internal reflection within the crystalline cone to reflect incoming light to a 
particular rhabdom. In contrast, the remaining two superposition optical variants are found in only 
a few decapod families. Refracting superposition optics function using refractive gradients in the 
crystalline cone and have been described in decapods only from species of deep sea shrimp within 
the Benthesicymidae and hermit crab species from the genus Dardanus, within the Diogenidae 
(Nilsson 1990, see Table 1). Parabolic superposition optics utilize a combination of structures in­
cluding lenses, parabolic mirrors, and light guides, and have been characterized only from brachyu-
ran and anomalan crabs (Nilsson 1988). 

Table 1. Taxonomic distribution of adult decapod compound eye optical designs. Taxonomic designations 
follow the scheme of Martin & Davis (2001). Question marks indicate uncertainty about eye type. AP = 
apposition, RFL = reflecting, RFR = refracting, PB = parabolic. 

AP Superposition Reference 
RFL RFR PB 

Dendrobranehiata 
Benthesicymidae 
Penaeidae 
Sergestidae 
Garidea 
Crangonidae 
Oplophoridae 

Palaemonidae 

Pandalidae 
Pasiphaeidae 

X 
X 

X 
X 

X 

X 
X 

X Nilsson 1990 
Colin Nicol & Yan 1982; Gaten 1998 
Welsh & Chace 1938; Ball et al. 1986 

Gaten 1998 
Welsh & Chace 1937; Land 1976; Gaten 

etal.1992 
Doughtie & Rao 1984; Fincham 1984; 

Meyer-Rochow et al. 1992 
Gaten 1998 
Gaten 1998 
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Table 1. continued. 

Stenopodidea 
Spongicolidae 
Stenopodidae 
Achelata 
Palinuridae 

Anomala 
Hippoidea 

Hippidae 
Galatheoidea 
Aeglidae 
Chirostylidae 
Galatheidae 
Porcellanidae 

Paguroidea 
Diogenidae 
Paguridae 

Astacidea 
Nephropidae 
Astacidae 
Cambaridae 
Parastacidae 
Brachyura 
DROMIACEA 

Dromiidae 
Homolidae 
Latreilliidae 

EUBRACHYURA 
Raninoida 
Raninidae 

Heterotremata 
Geryonidae 
Hymenosomatidae 
Majidae 
Portunidae 
Xanthidae 

Thoracotremata 
Grapsidae 

Thalassinidea 

AP 

X 

X 

X 

X? 
X 

X? 

X 

Superposition 
RFL 

X 

X 

X 
X 
X 

X 
X 
X 
X 

X 
X 
X 

X 

RFR 

X 

PB 

X 

X? 

X 
X 
X 

Reference 

Gaten 2007 
Richter 2002 

Eguchi & Waterman 1966; Meyer-Rochow 
1975 

Gaten 1998 

Gaten 1998 
Gaten 1998 
Kampa 1963; Gaten 1994 
Fincham 1988; Meyer-Rochow et al. 1990 

Nilsson 1990 
Nilsson 1988 

Shelton et al. 1981; Gaten 1988 
Vogt1975 
Tokarski & Hafner 1984 
Bryceson 1981 

Gaten 1998 
Gaten 1998 
Gaten 1998 

Gaten 1998 

Gaten 1998 
Meyer-Rochow & Reid 1994 
Nilsson 1988 
Leggett & Stavenga 1981, Nilsson 1988 
Nilsson 1988 

Arikawaetal. 1987 
(undescribed) 

On the surface of the eye, either reflecting or parabolic optics can have square ommatidial facets, 
while apposition, refracting, and parabolic superposition types can all have ommatidial facets rang­
ing from circular to hexagonal. Therefore, the optical design of a visual system cannot be determined 
without careful investigation of the internal retinal anatomy. As the internal eye structure of only 74 
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species, representing 32 of ^150 decapod families, has been investigated, the possibility for new 
discoveries in decapod optical designs still exists. 

2.2 Evolutionary enigma of eye design 

It has been argued that, once evolved, most compound eye designs would not be replaced by another 
design unless the change rendered a significant optical advantage (Land 1981; Gaten 1998). It is 
also difficult to conceive how a visual system can move from one eye type to another without 
going through a near-blind intermediate (Land 1981). This difficulty in moving between states lends 
support to the stability of eye structure as a phylogenetic character. However, it also makes the 
evolution of complex eye designs, particularly of superposition optics, an evolutionary enigma. 

In comparison with apposition eyes, superposition eyes are optically intricate and a rarity in 
animal vision (Land 1981). As most crustaceans appear to possess apposition eyes, including all 
decapod larvae, it is reasonable to postulate that the superposition optics found in adult decapods 
arose from apposition eyes (Richter 2002). Optically, it is possible to go from apposition to super­
position eyes as well, as most decapods make this transition developmentally when changing from 
larval to adult forms (Meyer-Rochow 1975). In fact, the transparent type of apposition eye found in 
decapod larvae designed for planktonic life is pre-adapted for superposition optics. Nilsson (1983) 
showed that the mechanism for superimposing rays is present, but not used, in decapod larval eyes. 

Based on taxonomic (Table 1) and phylogenetic distribution (Fig. 4), it is likely that reflecting 
superposition optics arose early in decapod evolution. Gaten (1998) suggested that reflecting su­
perposition optics are symplesiomorphic for the Decapoda, having evolved only once, probably in 
the Devonian; however, it has also been hypothesized that Galatheidae (Anomala) independently 
acquired reflecting superposition eyes based on the presence of a light guide and the formation of 
the clear zone via elongation of the distal rhabdom (Gaten 1994). The acquisitions of the remaining 
eye types in decapods, then, represent transitions between superposition types or the paedomorphic 
retention of apposition eyes (Gaten 2007). 

". Because reflecting and refracting superposition eyes have approximately similar qualities and 
brightnesses of the images they produce (Land 1981), it is difficult to imagine the advantage of 
switching between eye designs. No functional insight is gained from the ecology of the families 
where refracting optics have been described: the Benthesicymidae, a group of deep-sea shrimp 
within the Dendrobranchiatia, and some species of hermit crabs, e.g., Dardanus megistos, found 
in brightly lit, shallow marine habitats. However, close examination of the structures in these two 
reflecting eye types indicate different ancestral origins, with the eyes of the Benthesicymidae origi­
nating from reflecting optics and the eyes of Dardanus being derived from parabolic optics (Nilsson 
1990). Furthermore, it is theoretically possible to transform from a parabolic into a refracting su­
perposition eye, and various intermediates between the two types have been found (Nilsson 1990; 
Gaten 1998). Therefore within the anomalan Paguroidea, it is possible that the ancestral optical state 
is parabolic superposition, with the Dardanus refracting eye representing a derived optical state that 
was an easier transformation than returning to reflecting optics. Regardless of origin, the taxonomic 
and phylogenetic distributions of both refracting and parabolic superposition eye types imply that 
there have been multiple independent acquisitions of these eye designs within the Decapoda (Fig. 4). 

2.3 Molecular aspects of decapod vision 

A considerable amount of research has been devoted previously to decapod visual systems (see 
reviews by Johnson et al. 2002; Cronin 2005). However, most of this research has investigated the 
morphological structure (Table 1) and physiological function (Fig. 3) of the eye. Very few molecular 
studies of the decapod visual system have been undertaken, and none has evaluated the phylogenetic 
signal of the genes involved in vision. 

Sensitivity to light in all animal vision is based on visual pigments, which are composed 
of a chromophore (vitamin A derivative) bound to an integral membrane protein (opsin) and 
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Figure 3. Measurements of spectral maxima (Xmax) of visual pigment absorbance and photoreceptor spec­
tral sensitivities recorded from decapod species, separated by major group (suborder Dendrobranchiata, and 
infraorders Achelata, Anomala, Astacidea, Brachyura, and Caridea). Data were recorded using a variety of 
methods, including microspectrophotometry, electroretinography, intracellular recordings, and spectroscopy of 
pigment extracts (for original sources see Johnson et al. 2002; Porter 2005). 

characterized by the wavelength of maximal absorption (Amax). Although there are a number of 
morphological and physiological methods of controlling the spectral sensitivity of a photoreceptor, 
the underlying molecular mechanism is the interaction between the particular amino acid sequence 
of the opsin protein and the type of chromophore. Two different chromophores have been docu­
mented from decapod visual pigments, but one of these, the 3-dehydroretinal form, has been found 
only in crayfish (Suzuki et al. 1984, 1985; Suzuki & Eguchi 1987). All other decapod species stud­
ied utilize retinal as the visual pigment chromophore; therefore, the underlying variation in decapod 
photoreceptor sensitivity is largely determined by the specific amino acid sequence of the opsin 
protein. 

Currently the only available decapod opsin sequences are from two brachyuran crabs (Sakamoto 
et al. 1996; Kuballa et al. 2007), ten crayfish species (Hariyama et al. 1993; Crandall & Cronin 
1997; Crandall & Hillis 1997), one clawed lobster (Porter et al. 2007), and two penaeid shrimp 
(GenBank accession: DQ825437 and Lehnert et al. 1999). Opsin sequences are notoriously bad 
for inferring phylogenetic relationships among species due to the high potential for convergence 
among gene products of a given spectral sensitivity. Because decapods contain only one or two 
classes of photoreceptors, each tuned to a fairly narrow portion of the visible spectrum, the problem 
of convergence may be magnified (Fig. 3). However, even given these constraints there are a few im­
portant insights regarding the evolution of decapods that can be gleaned from investigating decapod 
opsin evolution. First, all of the characterized decapod opsin sequences, with the exception of the 
brachyurans, cluster with insect long- to middle-wavelength sensitive opsins (Fig. 5). However, the 
decapod sequences do not cluster together and are scattered throughout the crustacean clade. This, 
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Figure 4. Phylogenetic distribution of optical eye designs within the major decapod lineages. Topology of the 
decapod relationships drawn after Porter et al. (2005). 

in conjunction with the identification of three different sequences from a single species (Penaeus 
monodon), implies that opsin gene duplication within the Crustacea has been rampant. Second, the 
opsin sequences available for brachyuran crabs from Hemigrapsus sanguinensus (Sakamoto et al. 
1996) and Portunus pelagicus (Kuballa et al. 2007) exhibit a distinct phylogenetic placement away 
from the other decapod sequences. This suggests that in the evolutionary history of opsin gene du­
plication, diversification, and loss, the brachyuran crabs have co-opted a different copy of the opsin 
gene from the remaining decapod lineages. 

Apart from the admittedly limited information about opsin evolution, little else is known about 
the network of genes involved in decapod phototransduction. From studies of Drosophila, the gene 
network involved in arthropod phototransduction has been fairly well elucidated (Ranganathan et 
al. 1991; Zuker 1992, 1996). Few of these interacting genes have been specifically investigated in 
decapods, and none of the known sequences has been investigated with respect to visual function 
(Table 2). As opsin is likely to be the most variable gene in the visual signaling cascade due to 
environmental 'tuning' of the visual pigment spectral absorbance, the remaining genes in the pho­
totransduction network may be more conserved nuclear gene targets for future phylogenetic studies. 

3 VISUAL SYSTEM COMPONENTS AS PHYLOGENETIC CHARACTERS 

Different classification schemes of the decapods have been based on a wide range of characters 
including behavior (Boas 1880; Borradaile 1907), gill anatomy (Bate 1888; Burkenroad 1963); 
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Figure 5. Phylogeny of decapod and selected invertebrate opsins based on maximum likelihood analyses of 
amino acid residues. The phylogeny was reconstructed using PHYML (Guindon & Gaseuel 2003) and rooted 
(not shown) using bovine rhodopsin (NC_007320), chicken pinopsin (U15762), and human melatonin receptor 
1A (NM_005958) and GPCR52 (NM_005684). The numbers above each branch indicate the bootstrap propor­
tion from 100 replicates (values less than 70% not shown). The major clusters of opsin sequences are indicated 
by taxonomic group, and, where possible, the visual pigment spectral sensitivity of each cluster is indicated as 
middle, long, blue, or ultraviolet (UV) sensitive. Decapod sequences are indicated in bold. 
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Table 2. List of decapod genes known to be involved in phototransduction 
that are available in GenBank. 

Dendrobranchiata 
Penaeidae 
Penaeus monodon 

Phospholipase C (PLC): AI253804 
Marsupenaeus japonicus 

Calmodulin: AU175456 
Astacidea ' 

Cambaridae 
Procambarus clarkii 

Gq-alpha subunit protein: AAB28122 
Parastacidae 

Cherax quadricarinatus 
Calmodulin: DQ847760, DQ847613 

Nephropidae 
Homarus americanus 

Calmodulin: FD467399, EH116795, CN852450 
Inositol triphosphate: FD467309, EW702750 
Phospholipids phopholipase C beta isoform (PLC): AF128539 

Brachyura 
Portunidae 

Carcinus maenas 
Gq/11-alpha subunit protein: DV944278, DV642918 

features of the head, thorax, and carapace (Saint Laurent 1979; Scholtz & Richter 1995); posi­
tion of the genital openings (Guinot 1978); molecular sequence data (Ahyong & O'Meally 2004; 
Porter et al. 2005); as well as elements of eye design (Fincham 1980). The utility of visual system 
components, however; has been debated throughout the history of decapod taxonomic studies. As 
discussed above (see section 1.1.2), superposition eyes are intricately complex structures, making 
transitions between different optical types improbable. If this is true, eye structure is a stable char­
acter, and therefore the distribution of optical designs in decapods has phylogenetic significance 
(Fincham 1980; Land 1981; Fincham 1984). Following this line of thinking, elements of the visual 
system have been used as characters uniting the 'Natantia' or shrimp-like decapods (Fincham 1980) 
and the 'long bodied' decapods (e.g., shrimp, lobsters, and crayfish) (Land 1981), respectively. In 
contrast, Nilsson (1983) cautions against the use of visual elements as phylogenetic characters due 
to repeated, independent gains of similar optical designs. 

In fact, visual systems within the decapods exhibit both stable evolutionary characters and in­
dependent gains/losses of similar designs. The evolutionary distribution of eye designs within the 
decapods indicates that the stem lineage most likely contained reflecting superposition optics, at 
least in adults (Fig. 4, Richter 2002). As the decapods are the only group of crustaceans possessing 
this unique optical design, reflecting optics serve as a useful character for uniting the decapods. Lin­
eages containing different optical designs, which most assuredly have arisen independently multiple 
times, may still provide characters for uniting higher-level groups by detailed examination of the 
optical structures. For example, the refracting optics found in the Benthesicymidae differ from the 
Dardanus megistos refracting eye in fine structural details, including the power of the lens and the 
origin of the light guide crossing the clear zone (Nilsson 1990). With further detailed investigations 
of decapod eye structure, these types of details may provide additional visual characters containing 
strong phylogenetic signal. There are also a number of decapod species that live in light-limited 
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environments (e.g., deep sea, caves, burrows) where eyes are often reduced or lost, and here visual 
system components may provide little phylogenetic signal (Gaten et al. 1998a, 1998b; Mejia-Ortiz 
& Hartnoll 2005). 

Within decapods, the Anomala and Brachyura contain the greatest diversity of optical designs 
(Table 1, Fig. 4). This diversity of eye designs has led to multiple interpretations of relation­
ships within the crab infraorders, including removal of the Dromioidea and Homoloidea from the 
Brachyura based on eye type (Fincham 1980). The validity of the Anomala as a coherent taxon also 
has been questioned based on the diversity of eye design (Fincham 1980; Gaten 1994). The true 
evolutionary significance of this variation is still unclear. However, within a phylogenetic context, 
at least some of the diversity of eye designs found in the crab groups most certainly represents 
independent acquisitions within specific lineages. 

Finally, there are still areas of decapod vision that have not yet been thoroughly investigated, 
making evaluation of characters for phylogenetic reconstruction difficult. From a molecular per­
spective, not much is known about the decapod visual system and much work remains. However, 
the Brachyura appear to use a unique set of opsins not found in other decapods. In some deep sea 
carideans there is an accessory compound eye on the dorsal margin of the eye (Gaten et al. 1992) 
that, with further documentation, may provide a useful character within the carideans. Similarly, 
a number of decapod extraocular photoreceptors have been documented, including intracerebral 
and caudal photoreceptors (Wilkens & Larimer 1976; Sandeman et al. 1990); investigations of the 
morphological and molecular components of these extraocular structures also may provide further 
insight into decapod evolution. 

4 SUMMARY 

The structure and design of decapod compound eyes reveal their function and are influenced by 
the behavior, ecology, and evolutionary history of the species (Schiff & Hendrickx 1997; Meyer-
Rochow 2001). Here we have reviewed the components of the decapod visual system, both structural 
and molecular, in the hope of providing information that could lead towards a more synthetic phylo­
genetic reconstruction of decapod relationships. We also highlight some of the critical information 
still needed to understand visual system evolution within the decapods. Are the optical designs 
and molecular pathways involved in vision useful for decapod phylogenetic study? Our review of 
the current data suggests that there are many phylogenetically useful visual system components. 
However, much work is needed in decapod vision, including investigations of optical design in 
understudied groups (e.g., Achelata, Thalassinidea, and Stenopodidea) and studies of the photo-
transduction cascade in general. The overall optical eye designs may be useful characters within, 
but not among, major lineages, and the fine structural details of each visual system may provide 
further insights. 
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