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Decapod Phylogenetics and Molecular Evolution

ALICIA TOON, MAEGAN FINLEY, JEFFREY STAPLES & KEITH A. CRANDALL

Department of Biology, Brigham Yoﬂng University, Provo, Utah, U.S.A.

ABSTRACT

Decapoda is the most species-rich group of crustaceans, with numerous economically important
and morphologically diverse species leading to a large amount of research. Our research groups are
attempting to estimate a robust phylogeny of the Decapoda based on molecular and morphological
data to resolve the relationships among the major decapod lineages and then to test a variety of
hypotheses associated with the diversity of decapod morphological evolution. Thus, we have de-
veloped a database of molecular markers for use at different scales of the evolutionary spectrum in
decapod crustaceans. We present potential mitochondrial and nuclear markers with an'estimation
of variation at the genus level, family level, and among infraorders for Decapoda. We provide a
methodological framework for molecular studies of decapod crustaceans that is useful at different
taxonomic levels.

1 MOLECULAR TAXONOMY

There are several competing hypotheses concerning the relationships of the major lineages of De-
capoda based on morphological estimates of phylogeny. Early taxonomy of the decapods was largely
based on the mode of locomotion; taxa were divided into the swimming lineages (Natantia) and the
crawling lineages (Reptantia) (Boas 1880). Morphological and molecular studies suggest Natantia
is paraphyletic; it is presently classified based on gill structure (Burkenroad 1963, 1981) dividing
Decapoda into the suborders Dendrobranchiata (penaeoid and sergestoid shrimps) and Pleocyemata
(all other decapod crustaceans). Relationships within Pleocyemata are still controversial and remain
unresolved. As morphological data, both recent and fossil, and genetic data continue to accumulate,
we are moving towards phylogenetic resolution of these controversial relationships. Here we present
a progress report for the Decapoda Tree of Life effort and the tools with which we will continue our
analysis of decapod crustacean phylogenetic relationships.

Several recent hypotheses based on combined analysis of morphological and molecular data
or molecular data alone suggest that resolving the systematics of this group is a difficult task
(see Fig. 1). There is agreement among these studies that Dendrobranchiata represents a basal lin-
eage within the decapod crustaceans and that within Pleocyemata the Caridea and Stenopodidea
are basal infraorders (Porter et al. 2005; Tsang et al. 2008). Molecular research also supports the
removal of polychelids from Palinura following Scholtz and Richter (1995) and its establishment as
a separate infraorder (Polychelida) (Tsang et al. 2008; Ahyong this volume). Relationships among
reptant decapods remain unresolved by the addition of molecular data. Several recent phylogenetic
analyses incorporating mitochondrial and nuclear data (Robles et al. this volume) or nuclear data
alone (Tsang et al. 2008; Chu et al. this volume) suggest Thalassinidea are not monophyletic but
rather may represent several infraorders. The timeline of diversification among the reptant decapods
or specifically whether Astacidea (Porter et al. 2005) or the Anomura/Brachyura lineages (Ahyong
& O’Meally 2004; Tsang et al. 2008) are the most recently derived lineages remains a question of
interest.
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Figure 1. Hypotheses of decapod evolutionary relationships based on molecular data. R shows the position of
the reptant decapods.

2 DEVELOPING GENETIC MARKERS FOR MOLECULAR PHYLOGENY

The order Decapoda includes roughly 175 families (extant and extinct) and more than 15,000 de-
scribed species. Complicating things further are the estimated 437 million years since the origin of
the Decapoda with the major lineages estimated to have been established by 325 million years ago
(Porter et al. 2007). Constructing a molecular phylogeny across such breadth of taxa and depth of
timescale requires serious consideration of markers that have enough variation to reconstruct re-
lationships at the fine scale (at and within the family level) as well as being conservative enough
to be used across infraorders representing these deeper timescales. Our approach is to accumulate
molecular sequence data for different gene regions including both mitochondrial and nuclear genes,
coding and non-coding. In this way, we will be able to maximize data at deeper nodes where align-
ment of sequence data is most difficult while retaining information among families and between the
most recently diverged taxa.

There are two molecular approaches to amplifying sequence data for use in phylogenetic stud-
ies. (1) Isolation of RNA from tissues, coupled with reverse transcfiption—polymerase chain reaction
(RT-PCR) to amplify target genes or gene fragments, reduces problems associated with amplifica-
tion of pseudogenes (non-coding duplicated gene segments) and sequencing through large introns.
The main limitation of RNA work is that fresh tissues, or at least tissues collected in an RNA pre-
serving agent such as RNAlater, require rapid transfer to —80°C storage. (2) Phylogenetic work
using genomic tissue extractions and amplifications is still favored over RNA techniques due to
lower costs, ease of field sampling, and the ability to use previously collected specimens in ethanol.
To reduce the risk of sequencing multiple copy genes or pseudogenes, gene fragments are first
cloned to identify the number of copies that a primer set amplifies. Although this is not the focus of
this paper, in the course of looking for useful phylogenetic markers, we have sequenced a number
of multigene families such as hemocyanin, actin, and opsins. These markers may be phylogeneti-
cally useful if a single gene is isolated and amplified. They also have many uses when looking at
genome evolution and the expression of these genes in Decapoda (e.g., Porter et al. 2007; Scholtz
this volume). However, one must be certain that the same copy is being amplified across taxa for
useful phylogenetic results.
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Introns or highly variable regions need to be considered when sequencing as they can be large
(greater than 1000 base pairs in length) and include repeat regions in some taxa, making amplifi-
cation and sequencing difficult. Often there is too much variation in the intron among taxa to be
aligned and included in the analysis. Introns cah be avoided by first identifying their position and
then designing primer sets within the exon to remove the introns. Here we redesigned primers for
elongation factor 2 (EF-2) and transmembrane protein (TM9sf4) to exclude regions of high vari-
ability of approximately 300 base pairs in EF2 and 500-1000 base pairs in TM9sf4. Although this
reduced the total length of sequence amplified, the highly variable regions produce a greater noise-
to-signal ratio at the higher phylogenetic relationships, our principal focus. Of course, these more
variable introns might become very useful for population genetic and species level phylogenetic
work, and we continue to explore their utility at these lower levels of diversity.

3 THE GENES AND THEIR DIVERSITY

3.1  Mitochondrial genes: 128, 168, and COI

Mitochondrial ribosomal genes 128 and 16S and coding genes such as COI have been extremely
useful in population genetic and systematic studies. Mitochondrial markers have been favored in
studies for several reasons (see Schubart, this volume, for details and proposed primer sets for
decapod mtDNA amplification). The high copy number of mitochondria in tissues makes them
relatively easy to isolate. They are haploid and maternally inherited and consequently are one quarter
the effective population size of nuclear genes (Moritz et al. 1987), thus allowing population level
studies and systematic studies among recently diverged taxa. Possibly the most important reason
to use mitochondrial genes is the availability of universal mtDNA primer sets that have minimized
laboratory time in the initial setting up of a project. Finally, there is already an extensive sgt of
nucleotide sequences from these genes in GenBank, as they have been the staple for crustagean
molecular phylogenetic work since its inception.

To provide a comparison of gene utility, we have included uncorrected divergence estlmates be-
tween pairs of taxa: between species, between genera, between families, and between infraorders/
suborders for a number of genes. We also included COI on each graph as a.reference (see
Figs. 2-5). The ribosomal mitochondrial genes show similar levels of divergence to each other
across all comparisons. In 1285, divergence estimates range from 3.9% among Euastacus species,

0.3
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% Divergence
0.15

0.1

0.05

B Euastacus

128 rRNA
165 rRNA
188 rRNA

288 rRNA
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EF-2

TMOSF4
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Figure 2. Pairwise divergence estimates between species of Euastacus (Astacidea) for mitochondrial and nu-
clear genes. Species are A: E. eungella and E. spinichelatus, B: E. robertsi and E. eungella, C: E. robertsi and
E. spinichelatus.
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Figure 3. Pairwise divergence estimates between species of Parastacidae (Astacidea) for mitochondrial and
nuclear genes. For genes COI, 125, 16S, 18S, 28S, H3, EF-2, TM9SF4, EPRS the species are A: Euasta-
cus robertsi and Astacoides betsileoensis, B: E. robertsi and Parastacus defossus, C: A. betsileoensis and
P. defossus. Species for genes PEPCK and NaK are A: Homarus gammarus and Nephropides caribaeus,
B: H. gammarus and Nephropsis stewarti, C: N. caribaeus and N. stewarti.

18% among genera within Parastacidae, 18.6% among families of Astacidea, and up to 24.2%
among infraorders of Pleocyemata. Divergence of 16S ranges from 3.5% among species, 17.6%
among genera, 23.5% among families, and up to 26.2% among infraorders of Pleocyemata. The
coding mitochondrial gene COI is highly variable among species, thus making it a good candidate
at lower levels. High divergence estimates were found above and including the family level, suggest-
ing that this gene may have problems of nucleotide saturation above this level. This gene may still
be useful for phylogenetic inference for resolving deeper nodes; however, it is important to test for

02

% Divergence ¢ 45

0.1

0.05

7 C
B Astacidea
A

12S rRNA
168S IRNA
185 rRNA
28S rRNA
Histone3
EF-2
TMOSF4
EPRS
PEPCK
NaK

Figure 4. Pairwise divergence estimates among family representatives of Astacidea for mitochondrial and
nuclear genes. For genes COI, 128, 168, 188, 28S, H3, EF-2, TM9SF4, EPRS the species are A: E. robertsi
and Procambarus clarkii (TM9SF4: Orconectes virilis), B: E. robertsi and Nephropsis aculeata (COL: Homarus
americanus), C: P. clarkii (TM9SF4: Orconectes virilis) and N. aculeate (COl: Homarus americanus). Species
for genes PEPCK and NaK are A: H. gammarus and Cherax quadricarinatus, B: H. gammarus and P. clarkii,
C: C. quadricarinatus and P. clarkii.
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16S rRNA
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Figure 5. Pairwise divergence estimates among representatives of Decapoda for mitochondrial and nuclear
genes. For genes COI, 128, 168, 18S, 285, H3, EF-2, TM9SF4, EPRS the species are A: E. robertsi and
Calappa gallus (COL: Praebebalia longidactyla), B: C. gallus (COL: P. longidactyla) and Penaeus sp., C: E.
robertsi and Penaeus sp. Species for genes PEPCK and NaK are A: H. gammarus and Calappa philargius, B:
C. philargius and Penaeus monodon, C: H. gammarus and P. monodon.

saturation and consider this in the analysis (i.e., use a model of evolution that incorporates multiple
mutations at the same site — see Palero & Crandall this volume). A disadvantage of mitochondrial
markers is that they are effectively a single locus, and, when used alone, they may not represent the
true species tree.

Another problem of some mitochondrial genes such as COI is the presence of pseudogenes
(nuclear copies of mitochondrial geries) in some species of decapods (Song et al. 2008).

3.2 Nuclear genes

Use of nuclear genes in addition to mitochondrial genes adds to the number of independent markers
in a dataset, thus increasing the chances of reconstructing the true species phylogeny. In addition,
a larger effective population size, and, on average, a lower substitution rate (Moriyama & Powell
1997), results in nuclear genes evolving slower than mitochondrial genes. Consequently, they may
be better at resolving deeper phylogenetic nodes (see Chu et al. this volume). There are several con-
siderations when choosing nuclear markers. There are at least two copies of each gene, although this
is not usually a problem for phylogenetic studies as variation within an individual is less than be-
tween species. However, as mentioned previously, many genes belong to multigene families where
duplications have resulted in genes or domains with a similar nucleotide sequence. In order to es-
tablish a single copy or at least the amplification of one dominant copy for new primer sets (EF-2,
EPRS, TM9sf4) presented here, we analyzed 1624 clones in several taxa representing Pleocyemata
(Astacidea (Homarus americanus), Brachyura (Cancer sp.)) and Dendrobranchiata (Penaeus sp.).
Low variation among some of the clones was observed. This could be attributed to tag polymerase
error assuming an error rate of 1.6 x 1076 to 2.1 x 10~ per nucleotide per cycle (Hengen 1995)
or to very low variation of a diploid gene.

The ribosomal nuclear genes 18S rDNA and 28S rDNA have been extensively used in arthro-
pod systematics including several decapod studies (e.g., Ahyong & O’Meally 2004; Porter et al.
2005; Mitsuhashi et al. 2007; Ahyong et al. 2007). Rates of evolution vary among and within these
genes, making them valuable phylogenetic tools at different taxonomic levels (Hillis & Dixon 1991).
We found divergence rates for 18S were consistently moderate among species (5.8—7.2%) and
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among infraorders (5.6%) within Pleocyemata but were higher among the suborders Pleocyemata
and Dendrobranchiata (12.8% and 14.1%). Two hypervariable regions of 28S were identified and
removed to avoid inflated estimates of divergence among poorly aligned repeat regions. 28S diver-
gence estimates were higher than 18S among species (9.1-11.6%), within Pleocyemata (11.3%), and
among the suborders (20.8-21.8%). Levels of divergence were lower for the intermediate taxon lev-
els, among genera (3.4-8.0%), and among families (7.3-9.9%), and possibly represented a shorter
nucleotide alignment due to indels (insertions or deletions) that are absent among species (within a
genus).

Two nuclear protein coding genes that are currently used in arthropod systematics are histone 3
(H3) (e.g., Porter et al. 2005) and elongation factor 2 (EF-2) (e.g., Regier & Shultz 2001). Primer .
sets already developed for H3 (Colgan et al. 1998) amplify the target fragment across a range of
decapod crustaceans and show moderate levels of divergence among species (2.2-8.4%), suggest-
ing they are useful nuclear protein coding markers for relationships within a genus. It should be
noted that Euastacus is relatively older than some decapod genera (see Breinholt et al. this volume),
and consequently H3 may not be appropriate for phylogenetic analyses among recently diverged
species. Divergence within and among families is also moderate (8.9-12.4%), with a higher level of
divergence between Euastacus robertsi and Calappa gallus within Pleocyemata (17%).

Although we were able to amplify genomic fragments of the EF-2 gene with currently designed
primer sets (see Table 1), an intron was located at base pair position 860 relative to mRNA in
Libinia emarginata (GenBank accession AY305506). The intron may be useful for species/genera
level studies, although preliminary analysis suggests it is fewer than 300 base pairs in caridean
(Hippolytidae) and brachyuran (Calappidae, Leucosiidae, Goneplacidae, Majidae, Cyclodorippi-
dae) decapods. A new forward primer was designed to exclude the intron, and GenBank sequences
were downloaded and aligned to design reverse primers 400-500 base pairs downstream of the
forward primer. Using different primer sets, we were able to isolate two copies of EF-2. The two
copies were more similar within an individual than between species of Euastacus crayfish. Two
similar copies of EF-2 are present in Drosophila melanogaster (Lasko 2000). The divergence es-
timates for the longer fragment are presented in figure 2 and were low among species of Euasta-
cus (1.3%). Percent divergence within Parastacidae (6.7-9.3%) and between families of Astacidea
(13.6%) was moderate. High divergences were noted within Pleocyemata between E. robertsi and
C. gallus (18.7%). .

The EPRS locus is a potentially useful nuclear gene for reconstructing phylogenetic relation-
ships among the deeper nodes of decapod crustaceans. The EPRS locus encodes a multifunctional
aminoacyl tRNA synthetase, glutamyl-prolyl-tRNA synthetase (Cerini et al. 1991). The two pro-
teins are involved in the aminoacylation of glutamic acid and praline tRNA in Drosophila (Cerini
etal. 1991; Cerini et al. 1997). Few phylogenetic studies have used EPRS, although a recent study of
Paramysis (Crustacea: Mysida) demonstrates its usefulness in reconstructing relationships among
genera of mysids (Audzijonyte et al. 2008). We found divergence levels were low among species of
Euastacus (0.8—1.5%) but moderate for within the family Parastacidae (5.2-8.6%) and high between
some families of Astacidea (11.3-20.5%). This locus showed high divergences within Pleocyemata
between E. robertsi and C. gallus (33.9%) and between E. robertsi and Penaeus sp. (15.5-30.1%).
The different levels of divergence at different taxonmic levels suggest this marker may be useful
among genera up to order level for phylogenetic estimation.

Transmembrane 9 superfamily protein member 4, or TM9sf4, is a small molecule carrier or
transporter. Our study is the first to present divergence estimates and phylogenetic results using
this gene. Uncorrected pairwise divergence results suggest it has potential as a valuable gene for
reconstructing family to order level relationships. Divergence among species within Euastacus was
low (0.7-1.5%), suggesting this marker may be less informative than other nuclear protein coding
markers such as Histone 3 when reconstructing relationships among species. As with EPRS, this
marker shows greater divergences (18.8—23%) at the deeper level (among infraorders/suborders) -
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than Histone 3. High levels of divergence are often considered indicative of saturation; however, we
found increasing divergence with increasing evolutionary distance, suggesting saturation may not
have been reached even among the deeper nodes, indicating the utility of this gene to infer phylo-
genetic relationships at these higher levels of divergence.

4 PHYLOGENY BASED SYSTEMATICS

Reconstructing the evolutionary relationships among decapod crustaceans using molecular data has
taken two directions: using only protein coding genes, which are phylogenetically informative at
deeper nodes, or incorporating as much molecular information available including both ribosomal
RNA and protein coding genes in a family level supertree. We have taken the latter approach and
reconstructed Decapoda relationships using a total of eight genes and 46 taxa (see Table 2) including
representatives of seven infraorders of Pleocyemata and a representative of Dendrobranchiata (Pe-
naeus sp.) as an outgroup. Pleocyemata representatives include Astacidea, Achelata, Polychelida,
Thalassinidea, Brachyura, Anomura and Caridea. Non-decapod crustaceans, Lysiosquillina macu-
lata (Lysiosquillidae: Stomatopoda), were also included in the analysis as outgroups to all the de-
capods. Rather than focus on representing all lineages equally, we were interested in reconstructing
“relationships at many levels from among species within genera, among families, and among in-
fraorders within decapod crustaceans. Therefore, we focused on sampling the Astacidea to demon-
strate the usefulness of these genes for reconstructing phylogenies at these various taxonomic levels.

The genes included in our analyses were 125, 16S, 18S, 288, H3,‘EF-2, EPRS, and TM9sf4,
A second analysis was run on the four nuclear protein-coding genes. Use of nuclear rRNA 18S
and 28S data has been criticized for ambiguities noted in alignments (Tsang et al. 2008). The diffi-
culties in aligning highly variable data may be overcome by using sophisticated methods of align-
ment employed in recently developed programs such as DIALIGN-T (Subramanian et al. 2005)"nd
MAFFT (Katoh et al. 2002; Katoh et al. 2005). These programs produce more accurate alignments
than ClustalW with increasing evolutionary distance (e.g., MAFFT, Nuin et al. 2006) or when gaps
are present (indels) in the resulting alignment of sequence data (e.g., DIALIGN-T and MAFFT,
Golubchik et al. 2007). To further improve the alignment, GBlocks can be used to identify and ex-
clude ambiguous regions of sequence data (Castresana 2000; Talavera & Castresana 2007). We used
MAFFT to align all gene fragments and subsequently ran each dataset through GBlocks (retaining
half gap positions) to recover the most useful sequence data. As an example, this reduced the 28S
MAFFT alignment from 4489 to 1254 base pairs. Our resulting alignment for the eight-gene dataset
was 5104 nucleotides.

Maximum likelihood phylogenies were constructed with RAXML (Stamatakis 2006; Stamatakis
et al. 2008) at the CIPRES portal assuming a GTR+G+I model and estimation and optimization of
a-shape parameters, GTR-rates, and empirical base frequencies for each gene. We allowed the pro-
gram to choose the number of bootstrap replicates, and for the eight-gene dataset, 150 bootstrap
replicates were run before termination. For the smaller nuclear protein coding alignment, 250 boot-
strap replicates were run before the program terminated. The estimated parameters are presented in
Table 3. .

- The relationships within Astacidea were well resolved, with bootstrap supportin 11 of 14 nodes
supported by 95% or greater and all nodes supported greater than 80% (see Fig. 6). As a comparison,
the ML phylogeny based on the four-gene dataset (nuclear protein coding) constructed a similar
topology within Astacidea although the nodes were not as strongly supported. Only six nodes were
“supported greater than 95%, with an additional five nodes supported greater than 70%. This result
suggests that although the nuclear coding genes have the power to resolve relationships within an
infraorder, additional data from ribosomal genes adds to the information available for reconstructing
relationships across the whole of decapod diversity. Our group continues to add genes and taxa to
achieve our goal of reconstructing a robust phylogenetic estimate for the decapod erustaceans.
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Table 3. Empirical base frequencies for each gene region and associated model parameters estimated from
the sequence data in RAXML. '

A C ' G T alpha pinvar

12S rRNA 0.3670 0.0981 0.1726 0.3622 0.6030 0.1934
168 rRNA 0.3399 0.1116 0.2027 0.3458 0.6235 0.2879
18S rRNA 0.2502 0.2342 0.2780 0.2377 0.9231 0.4940
28S rRNA 0.2501 0.2357 0.3161 0.1981 = 0.7772 0.2735
H3 0.2152 0.3172 0.2654 0.2022 1.0618 0.5882
EF-2 0.2364 0.2469 0.2655 0.2512 1.4067 0.4872
EPRS 0.2857 0.2159 0.2523 0.2460 1.6197 0.3690
TMO9SF4 0.1587 0.2784 0.2455 0.3174 0.9592 0.4982
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Figure 6. Maximum likelihood phylogeny based on two mitochondrial and six nuclear genes constructed in
RAxML. Values at nodes represent bootstrap support greater than 70%.
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