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Abstract The thalassinidean shrimp Callichirus seilac-

heri is a common species in the intertidal zone of the South

American Pacific coast. However, our knowledge of its

reproductive ecology is rather limited. The present study

was carried out between January and December 2003 at

Las Machas, northern Chile. Although ovigerous females

were encountered almost throughout the study period, they

were particularly abundant between May and September

when water temperatures were lowest and sediment cov-

erage of the burrow entrances was highest. Females of C.

seilacheri produced numerous (17,450 ± 3,796 eggs) and

small (0.884 ± 0.080 mm; 0.262 ± 0.054 mm3) eggs

when compared to other thalassinidean shrimps for which

such information is available. Fecundity was positively

correlated with female size; however, correlations were

allometric, which might be related to the elasticity of the

abdomen. Egg volume increased by 41.2% during

embryogenesis, and egg loss during the incubation period

was on average 8%. Females inverted on average 14.9% of

their dry weight into egg production.

Keywords Fecundity � Reproductive output � Accretion �
Callianassidae � Northern Chile � Egg loss

Introduction

The shrimps of the Infraorder Thalassinidea are considered

as engineering organism due to their capacity to build

complex networks of galleries below the surface (Berke-

nbusch and Rowden 2003). Their life cycle, except for the

larval phase usually proceeds in cryptic habitats which may

explain at least partially the lack of available information

on the reproductive ecology of most of its representatives.

During the last decade, our knowledge about several

aspects of the life history of thalassinidean shrimps has

increased significantly (e.g. Kevrekidis et al. 1997; Nates

and Felder 1999; Berkenbusch and Rowden 2000; Bilodeau

et al. 2005; Hernáez and Wehrtmann 2007). However,

information especially on egg production and energy

investment for reproduction remained limited.

Female size explains only part of the observed vari-

ability in the fecundity of thalassinidean shrimps; the

correlation coefficient (r) reported for some species of this

group (e.g. Hanekom and Erasmus 1989; Souza et al. 1998;

Berkenbusch and Rowden 2000) is usually considerably

lower than that observed in brachyuran and anomuran

decapods (Hines 1991; Corey and Reid 1991; Reid and

Corey 1991). It is assumed that the cryptic life may bring

about an important egg loss while females move around in

the galleries, thus explaining the relatively low correlation

between female size and egg production (Thessalou and

Kiortsis 1997).
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Egg size is one of the most variable parameter in

decapods and offers valuable information on a species’

reproductive strategy. It is a useful indicator of the duration

of embryogenesis and larval size at hatching (Steele and

Steele 1975). Moreover, several studies on thalassinidean

shrimps showed a clear relation between egg size and type

of larval development (Forbes 1973; Felder and Griffis

1994; Thessalou et al. 1999). Such information, however, is

restricted to just a few thalassinidean species.

The energy inverted in reproduction of decapods can be

described as reproductive output (RO, Pianka 1972).

Although this value varies among species and even within

the same species (Wehrtmann and Kattner 1998), it is

assumed that many female decapods devote around 10% of

their body weight to the production of eggs (Hines 1982,

1991; Lardies and Wehrtmann 1996; Hernáez and Palma

2003; Brante et al. 2004). The RO in unknown for the

majority of thalassinidean shrimps, particularly for those

species inhabiting the southeast Pacific coast.

Considering thalassinidean shrimps of the Americas,

representatives of the genus Callichirus Stimpson, 1866 are

a common element of the intertidal and subtidal zone of

some sandy beaches (Felder and Griffis 1994). Currently,

this genus comprises three species; however, only C. sei-

lacheri Bott 1955 (=C. garthi; Retamal 1975; see Sakai

1999) can be found along the eastern Pacific coast (12�N–

37�S; Sakai 1999). Both the life cycle and the population

dynamics of C. seilacheri seems to be strongly influenced

by temperature and sediment movements (Hernáez and

Wehrtmann 2007). Despite of the fact that this species is

characteristic of many sandy beaches along the Chilean

coast (Aste and Retamal 1983), its reproductive biology is

completely unknown, a situation similar to that in most

other thalassinideans of the Americas. The present study

analyzed fecundity, egg characteristics, and RO of C. sei-

lacheri. Additionally, we compiled and compared the

published information about the reproduction of other

thalassinideans which may facilitate a better comprehension

of the reproductive strategies of these burrowing shrimps.

Methods

Study area

Shrimps were collected monthly from January to Decem-

ber 2003 in the intertidal zone of the beach Las Machas,

northern Chile (18�250S–70�190W). This sector is charac-

terized by fine sediments of terrigenous origin, supplied by

the rivers Lluta and San José (Soto et al. 2002). The beach

is wide open and influenced by high energy waves, espe-

cially during autumn (April–June) and winter (July–

September). The physical structure of the beach shows a

seasonal pattern with the formation of wide intertidal plains

during the summer, and an increased accretion during

autumn and winter (Hernáez and Wehrtmann 2007). The

presence of C. seilacheri is restricted to the area between

the rivers Lluta and San José (approximately 8 km), with

high gallery densities in the intertidal zone (P. Hernáez,

pers. obs.).

Analyses of material

Specimens were collected with a yabby pump (diameter:

77 mm), and surface water temperature was measured to

±0.1�C. Ovigerous females were put into individual plastic

bags and transported to the laboratory of the Universidad

Arturo Prat in Iquique, northern Chile. The following

parameters were measured for each individual: total length

(TL; ±0.1 mm; from anterior carapace margin to posterior

region of telson), carapace length (CL; ±0.1 mm; from

anterior to posterior carapace margin) and wet weight

(±0.1 g).

We detached the total egg mass from the ovigerous

female and separated three subsamples of 100 eggs each,

which were dried for 48 h at 65�C together with the

remaining egg mass. Subsequently, each subsample and the

remaining egg mass were weighed on an analytical balance

(Sartorius; ±0.1 mg). Egg weight and total egg number

were calculated according to the following equations:

E ¼ S=100 ð1Þ
NE ¼ OM=E ð2Þ

with E = egg weight, S = average weight of subsample,

NE = total egg number; OM = weight of total egg mass.

Developing eggs of C. seilacheri were classified into

three stages (Stage I–III) considering shape and the

development of both abdomen and eyes as described by

Wehrtmann (1990). We separated arbitrarily 20 eggs from

the egg mass and measured the width and length of each

egg under a microscope equipped with a calibrated ocular

micrometer. These data were used to calculate egg vol-

ume (EV) according to the formula proposed by Turner

and Lawrence (1979) for oblate spheroids: EV = 1/6

(a 9 b2 9 p), where a represents length, and b width.

The RO was estimated exclusively for females carrying

recently produced eggs (Stage I), applying the formula

proposed by Clarke et al. (1991):

RO =
dry weight of the entire egg mass

dry weight of the female without eggs
:

Data analyses

The relation between fecundity and female size is descri-

bed by an allometric model (Y = aXb), which has been

used widely for this purpose in similar studies on other
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decapods (e.g. Hines 1991; Corey and Reid 1991; Hernáez

and Palma 2003). According to Somers (1991), an iso-

metric relation is indicated by values for b near to 3. Thus,

b values of \2.90 and [3.10 were taken as indication of a

negative and positive allometric relation, respectively (see

Hernáez and Wehrtmann 2007). An analysis of covariance

(ANCOVA; Zar 1999) was applied to the relation between

egg number and CL for each embryonic stage to estimate

egg loss during the incubation period. In case of a signif-

icant difference (P \ 0.05), a Tukey a posteriori test was

used to establish the similarity between each pair of

developmental stages (Zar 1999).

Results

A total of 716 individuals of C. seilacheri were analyzed.

Forty-eight of them revealed as ovigerous females (6.7%)

with CL ranging from 18.6 to 23.2 mm (average

21.7 ± 0.83 mm). A majority of the ovigerous females

(95%) measured between 20 and 23 mm CL.

The number of eggs carried by the females varied

between 9,612 and 25,550 (average: 17,450 ± 3,796). The

fecundity increased significantly with both female size and

weight (Table 1). Correlation was relatively low, except

for CL where the coefficient was almost 90% (Fig. 1). All

relations tested to explain egg production in C. seilacheri

tended to be allometric (Table 1). Considering exclusively

females with eggs of Stages I and II, fecundity tended to be

higher and egg volume to be smaller in the cold than in the

warm period (fecundity, June–September: 18,278 ± 3,905

eggs; November–May: 16,718 ± 4,775 eggs; egg volume,

June–September: 0.227 ± 0.031 mm3; November–May:

0.243 ± 0.017 mm3). However, differences in both

fecundity and volume of egg were not statistically signifi-

cant (t test, P [ 0.05).

Ovigerous females were encountered almost throughout

the study period, with the exception of January–February

and October. The highest frequency of egg bearing females

was observed from May to September, when mean water

temperatures were lowest (Table 2). The vast majority of

females with recently extruded eggs (Stage I: 92%) was

collected between May and July, when water temperature

started to decline (Table 2).

During the incubation period, females of C. seilacheri

lose 8% of their initially produced eggs (ANCOVA,

f = 3.38; P \ 0.05). No statistically significant differences

were detected between numbers of eggs carried by females

with eggs in Stages I and II; however, females with eggs in

Stage III carried significantly lower numbers of eggs than

females with eggs in Stages I and II, respectively (Tukey test,

P \ 0.05). During embryogenesis, egg volume incre-

ased from 0.216 ± 0.021 SD (N = 12) to 0.305 ± 0.054

SD mm3 (N = 20), representing an overall increment of

41.2%. Egg length ranged between 0.765 and 1.213 mm

(average: 0.887 ± 0.078 mm). Females inverted on average

14.90 ± 3.88% of their dry weight into egg production, and

RO varied between 8.3 and 22.4%. No statistically signifi-

cant differences were detected for RO values among months

(ANOVA, f = 0.05, P [ 0.05).

Discussion

Information on the reproductive biology of ghost shrimps

generally refers to relatively small sample sizes, and the

reported percentage of ovigerous females ranged between 4

and 35% of all collected individuals (Kevrekidis et al.

1997; Nates and Felder 1999; Berkenbusch and Rowden

2000). Thus, both our sample size (716 individuals) and the

percentage of egg carrying females (6.7%) are in the range

of previously published studies on thalassinidean shrimps.

Table 1 Ovigerous females of Callichirus seilacheri

Equation R R2 N

Fecundity versus size/wet weight

1. log NE = 2.621 + 1.654 log CL 0.897 0.805 48*

2. log NE = 1.672 + 1.271 log TL 0.536 0.288 48*

3. log NE = 3.680 + 0.304 log WW 0.528 0.278 48*

Wet weight versus body size

4. log WW = 0.893 + 1.974 log CL 0.618 0.382 48*

5. log WW = 0.145 + 3.269 log TL 0.796 0.634 48*

Allometric regression equations for the estimation of egg production

R correlation coefficient, R2 determination coefficient, N number of

females analyzed, CL carapace length, NE number of eggs, TL total

length, WW wet weight

* Statistically significant (P [ 0.05)
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Fig. 1 Relation between carapace length (CL) and number of eggs

(NE) of ovigerous females of Callichirus seilacheri from northern

Chile
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According to Coelho et al. (2000), the relatively low

number of individuals reported in demographic studies of

ghost shrimps might be due to the cryptic life style of these

species. It might be speculated that egg-bearing females are

situated deeper in the sediment and, thus, not easily

accessible to the yabby pump. Another explanation might

be related to the polygamist behavior of the species (Her-

náez and Wehrtmann 2007), assuming that a male fertilizes

only one or a limited number of females of his harem.

However, the present contribution was not designed to test

these assumptions, and further studies are required to

explain the low frequency of ovigerous females in C. sei-

lacheri and other thalassinidean shrimps.

The considerable variability among thalassinidean spe-

cies in fecundity and egg size (Table 3) may indicate

important differences in the reproductive strategy, and may

also reflect a latitudinal trend as observed in other decapods

(Thorson 1950; Sastry 1983; Clarke 1987, 1992; Brante

et al. 2004). C. seilacheri produces the highest number of

eggs compared to those thalassinideans where data are

available. However, this thalassinidean shrimp is the larg-

est species among those listed in Table 3, and it is assumed

Table 2 Ovigerous females of Callichirus seilacheri

Month Number of

ind.

Carapace length

(mm)

Egg number Egg length (mm) Seawater

temperature (�C)

Sediment coverage

of burrowsa

January – – – – 18.6 ± 1.66 –

February – – – – 20.2 ± 0.72 –

March 1 22.0 ± 0.0 19,846 ± 0.0 1.213 ± 0.0b 18.0 ± 0.85 –

April 2 20.2 ± 1.10 13,955 ± 6,141.9 0.731 ± 0.032 17.7 ± 1.52 –

May 9 21.4 ± 0.07 15,953 ± 3,970.5 0.756 ± 0.045 17.1 ± 0.77 X

June 11 21.4 ± 0.07 16,347 ± 3,240.5 0.735 ± 0.041 16.2 ± 1.69 X

July 7 22.2 ± 0.11 20,585 ± 4,573.8 0.713 ± 0.033 15.9 ± 0.98 X

August 9 21.9 ± 0.07 18,002 ± 2,656.3 0.775 ± 0.027 16.1 ± 1.78 X

September 5 22.0 ± 0.15 18,394 ± 2,773.9 0.736 ± 0.048 15.8 ± 0.54 –

October – – – – 17.3 ± 1.44 –

November 2 21.9 ± 0.46 18,347 ± 6,130.6 0.744 ± 0.032 17.3 ± 1.37 –

December 2 21.5 ± 0.14 15,833 ± 3,436.5 0.783 ± 0.038 17.1 ± 1.49 –

Total 48 21.6 ± 0.83 17,450 ± 3,796.8 0.749 ± 0.044 17.3 ± 1.27

F (test value) 1.91 1.35 6.90

Probability [0.05 [0.05 \0.001 \0.05

Monthly variation of number of collected egg-bearing females, carapace length, number and length of eggs (independent of embryonic

development), seawater temperature, and sediment coverage of burrows during of the study period (January–December 2003)

X covered; – not covered
a According to Hernáez and Wehrtmann (2007)
b Eggs in Stage III

Table 3 Carapace length of

ovigerous females, and number

and length of eggs in some

thalassinidean shrimps

n.a. information not available
a Obtained from regression

equation

Species Carapace length

(mm)

Number of

eggs

Egg length

(mm)

References

Callianassa filholi 5.5–14.9 1,985 0.68 Berkenbusch and Rowden

(2000)

C. kraussi n.a. 122 1.52 Forbes (1973)

C. tyrrhena 5.2–10.4a 270 1.18 Thessalou (1987)

Callichirus major n.a. 8,170 0.88 Pohl (1946)

C. seilacheri 18.6–23.2 17,450 0.88 Present study

Lepidophthalmus
louisianensis

n.a. 598 n.a. Nates et al. (1997)

L. sinuensis 7.0–16.8 251 1.22 Nates and Felder (1999)

Upogebia affinis n.a. 10,000 n.a. Pearse (1945)

U. deltaura 16.6–18.9 4,757 0.56 Tunberg (1986)

U. pusilla 14.7–16.6 n.a. n.a. Kevrekidis et al. (1997)
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that the area available for egg attachment increases with

female size (Hines 1982; Corey and Reid 1991). When

compared to a similar-sized species (Upogebia deltaura:

18.9 mm CL, 5,304 eggs; Tunberg 1986), fecundity in C.

seilacheri is still substantially higher (18.6 mm CL, 9,612

eggs); moreover, C. seilacheri produces considerably

larger eggs than U. deltaura (0.884 and 0.558 mm,

respectively). It is speculated that these differences in egg

numbers in similar-sized species are related to the elasticity

of the abdomen in C. seilacheri (Manning and Felder

1991), which provides more space for egg attachment.

Fecundity in C. seilacheri was strongly correlated with

carapace length (Table 1). The correlation coefficient

(0.89) was substantially higher than those reported for

other thalassinidean shrimps (0.55–077; Hanekom and

Erasmus 1989; Souza et al. 1998; Berkenbusch and Row-

den 2000). However, egg production in C. seilacheri

increased allometrically in relation to both female size and

weight, which indicates a disproportion among the vari-

ables associated with this relation (Somers 1991). This

might be related to the different dimensions used for the

description of fecundity (volumetric) and female size

(linear) (see Somers 1991). We assume that the elasticity of

the abdomen of C. seilacheri (as described for other ghost

shrimps; Manning and Felder 1991) leads to an overesti-

mation of TL, which in turn results in a disproportion of the

different biometrical parameters measured (allometry).

This interpretation is supported by the observation of Fel-

der and Lovett (1989) who attributed the observed

allometric increase between gonad weight and female size

of Lepidophthalmus lousianensis to the elasticity of the

abdomen.

Egg length of C. seilacheri is relatively low when

compared to other thalassinidean species (Table 3). It has

been demonstrated that egg size is correlated with both the

duration of embryogenesis and the size of hatchlings (Steele

and Steele 1975; Wehrtmann and López 2003). Regarding

thalassinideans, the available information demonstrate that

species with an abbreviated larval development such as

Callianassa kraussi (Forbes 1973), C. tyrrhena (Thessalou

et al. 1999) and L. sinuensis (Nates et al. 1997) produce

larger eggs than those with extended larval development

(C. filholi: 0.68 mm, Berkenbusch and Rowden 2000).

According to Aste and Retamal (1983), the larval devel-

opment of C. seilacheri consists of five larval stages; thus

our egg volume data confirm that relatively small eggs

indicate a prolonged larval period.

Egg loss in C. seilacheri was insignificant when com-

pared to the thalassinidean shrimp Calocaris macandrae

(66%; Buchanan 1963) and other decapods (for review, see

Kuris 1991). During embryogenesis, C. seilacheri lost

8.6% of the initially produced eggs, while the egg volume

increased by more than 40%. In accordance with other

studies on egg production in decapods (Kuris 1991), it is

assumed that—due to limited space for attachment—the

swelling of the eggs during embryogenesis results in a

reduction of the number of incubated eggs.

Females of C. seilacheri inverted 14.9% of their body

weight into the production of eggs. This value is slightly

lower than that reported for C. tyrrhena (19.6%, Thessalou

and Kiortsis 1997), but in the range of RO values (3–22%)

described for brachyuran crabs (Hines 1991; Brante et al.

2004) and higher than those published for anomurans

(3–10%; Lardies and Wehrtmann 1996; Hernáez and

Palma 2003). Additional RO data for thalassinidean

shrimps are needed to test whether the species’ cryptic life

may allow for a higher energy allocation to reproduction.

The reproductive cycle of many decapods, especially of

those in temperate and cold-water zones, is synchronized

with the temporal variation of environmental factors such

as temperature, photoperiod, and food availability (Clarke

1987; Bauer 1992; Kevrekidis et al. 1997; Berkenbusch

and Rowden 2000; Lardies et al. 2004). In our study the

number of collected ovigerous females increased with

decreasing temperatures, which coincided with the period

when the burrow entrances of C. seilacheri were usually

covered by a sediment layer. However, the mechanism of

providing sufficient oxygen for the embryos inside the

covered burrow remains to be studied.
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