bundon, 11956
OO \mathfrak{x}^{r} Y.A. Chace wile the anctor's

1. GORDON Corpplinento
\qquad
2. Redescription of Alpheopsis monodi SOLLAUD,
a rare freshwater prawn from Sénégal.
3. The function of the linea impressa in the Alpheidae.

Extrait du Bullelin de Mnstitut Françis d'Afrique Noire. Tome XVIIL, serie A, ne 4, octobre 1956.
\qquad

INVERTEBRATE 200LOGY
Crustacen

DAKAR, IFAN

1. Redescription of Alpheopsis monodi Sollaud, a rare freshwater prawn from Sénégal. 2. The function of the linea impressa in the Alpheidae

by Isabella GORDON.

1. Redescription of Alpheopsis monodi Sollaud, a rare freshwater prawn from Sénégal.

In July 1939 Dr Th. Monod collected in Senegal a number of small freshwater shrimps (Caridea) which at first sight appeared to be Hippolytids. As Dr Monod was uncertain as to the family and knew of no freshwater Hippolytidae from the African continent, he sent part of the material to the late Dr R. Gurney for examination. Gurney was also puzzled by the specimens and sent them to me at the British Museum, since he did not feel competent to deal with them. In his covering letter he wrote © If they are Hippolytids they must be a new genus since there is none with these characters. So far as I know only Lysmata has a split antennular flagellum? I suppose it might be an Alpheid, but I do not know any genus which it could fit into n. Dr Monod then sent me the rest of his material and in January, 1940, I made some preliminary notes and sketches and decided that, although the specimens were in many ways surprisingly like Hippolytids, they must belong to the family Alpheidae. At that time I did not recall any freshwater species of Alpheids but a search through the Zoological Record showed that in fact two such species had been recorded from the African continent namely, Alpheopsis haugi Coutière 1906 and A. monodi Sollaud 1932. In 1940, however, I had not access to the requisite literature and the specimens were set aside as Alpheo-
p sis sp. Some vars later the specimens were thought to have been destrosed be enemy action but eventually they were rediscovered and proved to agree quite well with Solbato's species A. monodi.

Unfortunately the descriptions of these interesting freshwater Apheids are rather inadequate. Coutime had at his disposal only three ovigerous females of A. haugi from Gabon and the species has not again been found. Solave's material comprised six specimens, five ol which did not exceed 10 mm . in length. Now that an adequate sample of both sexes is avalable, a fuller desription of Apheopsis monodi is given below. Nthough both the known localities are near to the sea, the water in which 1. monodi lives along with large Palaemonid River Prawns, ete. is 'parlaitement doure' and 1. Inugi was found at Xgòmó, Gabon 'dans un petit lar qui se déverse dans l'Ogooué, a plus de 200 km . de la mer".

Alpheopsis monodi Sollaud.

Sobard, E. 1932. Bull. Soc. Zool. Fr. 57 (1) : 370-386, 2 fig.
Materiul. Ruisseau de Néma, eau douce, entre Toubakouta et Messina, Sénégal. Collected at night by Dr 'Th. Monod, $9-V I T-39,40$ males and 15 females (three ovigerous, one of these minus carapace and anterior appendages). The specimens range from 7.5 to 18.5 mm . in total body length.
Presiotsly recorded lrom the Cameroons in streams not far from the conast, in the region of Manoka Bay,

Description of fomale. The largest specimen in this excellent sample measures 18.5 mm . in length and is represented in lateral aspect in fig. 1. The corapace, which measures 6 mom. from the anterior margin of the cornea to the posterior dorsal edge, is smooth except for the three anterior spines. The median of these, the short rostrum, is concealed by the fully exposed cornea of the eve (cf. fig. 15) : in dorsal aspect it is carinate and rather shorter than the erestalk. The latter has a row of setae on the anterointernal lobule as described and tigured by Somato (1932, p. 377, fig. 1. On either side of the rostrum is a distinct extra-corneal spine : the rounded pterroostomial angle is marmed and beas a few fine short setae. When the eve, antennule and antenna are removed, as in the mate represented in fig. 15, a minute inftanrbital lobule is apparent near the extra-comeal spine.

The abdomen like the carapace is entirely smooth. The first and fifth somites are rather shorter than the others which are about
eppal. The plema of the first two somites are wide and deep and form the brood wamber which is closed posteriorly be the fourth ;air of pleopods. The posterolateral angles of the third and fourth pleura are rounded while that of the filth plemon is amble. The sixth plemon is a movably articulated triangular plate.

The telson, which is longer than the sixth adhominal somite. is of almost uniform diameter throughout its length: the apes is

 of left peracopod V showing rows of setae on ventral margin of propodus, at wede
 al seale $e=1 \mathrm{~mm}$.
milomly convex and, in addition to the usual two pairs of hut lateral spines, hears some $20-2$ 't long setae each with a short shat and a long finely plumose distal portion tig. 19). The uropod is represented in tig. 20 but the long setac are omitted and the details of the suture line or diaeresis on the exopod are shown at a higher magnification.

Autenmule. The pedmele is at least half as longr as the carapare
and is mather more rohust than that of a smaller male represented in lig. 16 see fig. 1). The slender, pointed stylocerite extends shohtly ferond the distal articulation of the first segment: the thatorst appears to contain several sand grains. The second serment is rather longer than the first, and twice as long as the thind, segment. The two llagella are long, each exceeding hall the body length: the shorter ramus of the outer flagellum is lused to the longer throughout the greater part of its length : the fused portion comprises 13 or $1 / 4$ segments and the free portion appears to have 2 or 3 segments. but here the segmentation is indistinct tig. 17 . The accessory flagellum is almost as long as the peduncle, and bears many bundles of olfactory setae in large specimens: in soung recimens there may be only (i-8 bundles.

Antenm. The scaphocerite is long and narrow, but little comtracted distally and the spine just fails to reach the distal artionlation of the third segment of the antennular peduncle. There is a spine on the basicerje below the base of the srale. The llagethm is slender and very long equal to or longer than the body.

Mouthparts. Those from the right side of the largest lemate ar: represented, all at the same magnification, in fig. 6-11. The smatl athrohranch at the hase of the third maxilliped is adhering to the appendage.

Perteropds. The lirst pate are symmetrical and, though rather more rohnst than ans of the others, are remarkably slender for an Apheid. As solland says they are 'fort pen alpheidiens and $^{\text {sen }}$ the cappus is unusmally long and narow ; when extended they reach the middle ol the seaphocerite fig. 13). The dactrlus is nearly as long as the palm and the cutting edge of the fingers is mammed except for a tooth at the extreme tip as ligured fes sofmov (1932, p. 2st, lig. 2 B). On the inner surface of the carpus there is a longitulinal series of 6 or 7 comb-like rows of setae (lig. 12). The serond and subsequent pairs of peraeopods are reme sender. The second right peracopod of the larees female is repmesented in fig. l't and the left one is similar. The carpus is the lomrest segment and is composed of live subsegments; merus phos ischium : carpus as $\overline{5}$: 1 . When extended this peraeopod exoreds the seaphocerite by the dactshand the last subsegment. The tirst subsegment is the longest, the second and fouth the shortest. The thid peracopod, the distal sequments of which are represented in fig. s. surpasses the saphocerite by its daclolus which is just wer omethird of the propodus. The ventral mamin of the lattes is ammed with a series of spines. The merns is rather ingere amb
considerably stouter than. the propodus and armed with two stout -pines on the ventral margin (Coctìme, 1932, fig. 2 C). There is one similar spine on the ischium. The lourth pair of peraeopods is very similar to the third. The fifth pair is appreciably longer, exceeding the scaphocerite by at least half of the dactylus. The capus and propodus together are longer than the merus phos
b \qquad
 Mouthparts, all at seale a . 1 mm. - Fig. 12. Carpus of right firsl peratopod,
 face.
ischimm (in the third pair they are equal) : the distal thind of the propodus has comb-like rows of setae on the ventral margin and a number of long terminal setat (fig. 4).

Branchial jormula. There are five plearohranchs, one to rach peraeopod, in addition to the arthrobranch on the thire maxilli-
peet. In eppodite is present on all but the last of the thoracic appendages and there is a setobranch on each of the five peraeopods.

Pleopods. The pleopods of the largest female are indicated rather

 respectively of largest female, at seale $a-=1 \mathrm{~mm} .-$ - Fig. 15 . Carapace of male mea-
 Pedmele of ripht antennule of same made, in ventral aspect. - Fig. 17. Proximal portion of external fatedme of antemule, more highly magnified, showing aceessory fasellum and olfactory sedac. - Fig. 18 . Second pheopod of male, setat omitled, with appendix masenlina and appendix interma more hishly marnilied. Fig. 19. 'Tulson of mate. - Jig. 20. lisht uropod of mate, with diacresis more highly
 $r=0 . i=1 \mathrm{~mm}$.
sketchily in lig. 1 ; the firse three pairs ate long and - the sumall radopod of the first pair exepted . vers similar: rach ha- : peominent lobe on the immer margin ol the hasis as shown in lig. 2 . In this specimen, which had presumably recently produced a brood, nearly all the ovigerous setae are wanting. The right louth pleopods js as represented in lig. 3 . In the three wigerous sperimens the ova are attached chefly whe thest the pairs of pleoperts. hut a fow may adhere to the fourth pair which, as atrealy watal. - loses the brood chamber posteriont. Ther pleopode of the latues nom-nrigerous females agree with those deseribed los somato 1932, p. 382, fig. 2 D). The stippled parts of basis and emdopent at pleopod 3 are thin and membranous and some wigemus setan are present ; in pleopods 1 and 2 the median third of the innew marsin ul the basis is a thin mombramous labr with thickemed apiond brider.

The ose are small and rather mumerous: each is wal and the longer asis measures on an average 0.5 mon. the shorter 0.42 nam.

The males greatly outmomber the females in Dr Nowobs samplas which were collected at night. They vary in lengh lrom $\overline{\text { a }}$, to Is man. and are so smilar to the small and the mon-wigemonfemales that some dare is required in sepratime the sexos. llowever, the appendix masedina on the endopod ol plewpod 2 is lane and armed with $\overline{3}$ lone temmal spince and is casily sern fige Ls. The males and smaller females are more slemder than the laxar females - - compare the carapace represented in lig. IS with that
 type specimens. In our specimens only the smallest have from six to eight rows on the accessory antennular llagellum. hot the momber of such rows increases rapidly with age see fig. I7.

Habitat. Dr Moxom informs me that the specimens were maght at night in the regetation of a stream together with one. or perhapre two. pecies of River Prawns belonging to the gemes Macentazdhimm. Although the localis was but a shom distamer from Bandiala, a marine mangrove with Rhizophore the water was per-
 the roast. Alpheopsis hugg, on the other hand, was fonmel at a distane of over dol kin. from the se a
 refered to the erenus Apheopsis, some ond tentatirely since the -helipeds are mbnown in five of them and the material was stmortimes inadeguate of the twelve littoral marine species one in West Driman. one Chitran, one West Indian and the rest are fron

Ihw Tudo-Wespacific. Those in which the chelipeds are known lall roughly into two groups; in one the chela is smooth and entire as in the genus thonas, the other is extremement remarquable par la preseme sur les pinces de la première paire des sillons et des Inhes apheopsidiens dont on pourra trouver la trace dans toute lebendue da geme Apheus "Coctisme. 1906, p. 377. To this latter eroup belongs A/pheopsis africanus Holomes (1952, p. 何, tig. 11 and Cormine 1899 , p. 193 , fig. 228 -231 as A. trispinosus. The chelijuds may be equal or unequal, but in all these species the carpus is lar shorter than the chela and, as a rule, moch expanded distalls. A. cholciope de Max (1911. p. 179 and 1915, pl. V. fig. 17 a-e is an exception in that the short earpus is searcely "xpanded distalls.

The two lieshwater species from the drican continent are retafed tu the lirst group with entire smooth ehela. Sobated has compated the two species as far as one can until more specimens of 1. hengi are available and here it is only necessary to mention that the equal chelipeds are much more robust in A. hangi than in . 1. momodi : moreover the carpus is lar shorter than the chela and distimelle enlarged distally while the palm is at least thret times as longe as the dactylus. A. monoti is exceptional in having the lirst peraeopods very slebder, with small chela and long narrow capus and it is this, logether with the slender peraeopods II to \backslash and the lully exposed conea, that gives the species its strons superficial resemblane to an llippolytid.

2. The fexctor of the lanea mpinessa in the Alfilithab.

Cormitns, in his monograph on the Alpheidue, has described in minute detail the progressive elaboration of the chelae of the tirst pair of peraeopods within the family and has introduced a -umeial lerminology for the furrows, crests and lobes which attain their maximmon development in certain species of the genus 1/phens ' (rangon' Cootì̀ne, 1899, p. 19'́ and fig. 230 and 232 ; p. 2.23 fig. 270 and $2 \overline{2} 1$, etc.). One feature seems to have puzzled him namuly. the linea impressa which in the genus Alpheus is "romplete et lermée, limitant sur la lace inféricure et une partie de la face "xterne palmaire une aire trianqulaire à cotés courbes" p. 2l0. "Il ast diffecile d'expliguer la signification de la 'linee
impressa' : au sillon externe qui la constitue correspond un sillon interne tout anssi net, de sorte rue le trajet de cette ligne est marqué par un double amincissement de l'épaisse paroi palmaire. Ce trajet me parait nullement correspondre a une aire d"insertion museutaire : c'est sans doute une formation de meme ordre que la - linea thalassinica' non calcitiée de la carapace des Callianasses ot des Cébies $"($ Coutitas, 1899, p. 211).

I take this opportumity, therefore, of placing on record an observation which 1 made in 1 mil, 195 and which demonstrates dearly the significance of the linea impressa. Wiss P. J. Wolater sent me two living specimens of $1 /$ phens macocheles Ilanstone) which had been caught in a crevice at Church Reel. Wembury on 9-V-5'h by Mr G. M. Sposese of the Marime Biological Lahoratory, Plymouth. The larger specimen died in transit but the smaller one lived for a time in the ver small amount of sea water in which the specimens had travelled. During the night of 13 -1'th April the specimen underwent a moult which it survived athough. unfor-

 withdrawn from the old colicle at a mont. - Fig. 22. Larger cheliped of same specinnen, in two different aspects, showing conmencement of withdrawal of the thesh. c. Jidge of moulted carapace. m. Longitudinally spite enticle of meras. x. Pate bounded by the linea impressa, displaced by the partial withdratwat of the propodus from the old euticle. Seale 5 mm.
tumately, it failed to withdraw its chelipeds (peracopods l) and cast them with its old cuticle. I examined the moult on April lith. and made some camera lucida sketches of the chelipeds which 1 coloured as a record (the specimens had been sent so that I might make some sketches of the colour in Jife). From these sketches it is clear that the linea impressa is a line of resorption and that the chela can be withdrawn without distortion through the gap which results when plate x is loosened. The smaller cheliped had been almost freed from the old cuticle; the cuticle of the more proximal segments had been split longitudinally so that the carpus, merus and ischium projected fig. 21 ; c is the margin of the cast carapace). In the case of the larger cheliped, the so-called hammer claw, withdrawal had just commenced; the palm bulged slightly through the gap caused by the displacement of the triangular plate x-. Coctiens's 'aire triangulaire' - and the carpus was partially freed but had been damaged and soon showed signs. of disintegration (fig. 22). When the appendage was turned over to obtain the view represented in the lower sketeh, the triangular plate fell away from the protruding proximal portion of the palm. When captured this specimen, the male, was pale golden brown, with darker chelipeds' but alter the moult these chelipeds were plentifully supplied with red spots as indicated in fig. 21 and 22.

Ifarmok (1909, p. 207) refers briefly to moulting in a specimen of Alpheus dentipes (Gueran) observed at Naples on November $13 \mathrm{th}, 1890$; he writes: "In this vase the muscular mass of the claw was withdrawn through a erack which extended along the outer margin of the propodus. The cleft was continuous with a small fissure involving the proximal segments of the cheliped and extending through the basal ring. The great muscular mass of the hammer claw was thus withdrawn without distortion. 'Ihis fissure was assumed to correspond to a linear absorption area, but I have not been able to repeat the observation \%. It would be erroneous, he adds, to infer that all Macrura in moulting withdraw the flesh of their large chelipeds through the 'draw plates' of the basal segment ol the limb as does /Homarus. Since then much experimental work has been done on lactors influencing moulting, and on reversal ol the chelipeds, in Apheids and large numbers have been kept through a number of successive moults e. g. Hess. 1941, p. 215 mentions 136 specimens of (rangon [1/pheus] armillatus). Darby $(1938, p .78)$ in an abstract of a paper read hefore the American Association for the Adrancement of science writes: " The method of hreaking the exo-skeleton at the time of monlting was investi-
quted. ['reparatory to moulting the carapace $[=$ culicle $]$ is refured in thickness. Preformed lines of lissure, observable at atl times. are then ruptured by hydrostatic pressure which develops within each joint. The puncture of a single joint (without injury to the nerve) so that no pressure could be built up within it resulted in failure to break that particular segment of the shell, even though the rest of the carapace $=$ cuticle was shed without dilficulte x. The observation which 1 made in 19.5 must therefore be quite commonplace to a number of experimentalists. The limen impressa is one of the preformed lines of fissure to which Darby refers and is a special adaptation in the Npheids with large chelipeds to enable the chelae to be withdrawn without distortion at the monlt. Cobtere does not show the linea impresse in his earlien illustrations of the large chelipeds of Ogyris, Athanas. Arete. +6. 1899, fig. 203 to 206) ; and from his remarks on p. 194-195. I formed the impression that the said line impressa first appeared in Apheopsis in a simple lorm, becoming much more pronomced in Symalpheus and above all in $1 /$ pheus tig. 229, 230, 232. 245. 270 and 27 l and later ligures in Corments. 1899). However. in Inly, laty I found be chance a cheliped of a mate thanas laesirhimbus (Bisso) that had been shed during a moult, in much the same way as the chelipeds of $1 /$ phens macrocheles. This cheliped was found in material dredged in shallow water at Cadaqués in Span and the phate, x wan be seen delached for the most part from the palm of the chela. It is a relalively small, more namowly triangular, plate and the linen impresse may not be so apparent in Ithanas as in Symalphens minor SAs, for pample Cortaine. 1899. p. 200, fig. 2告) or as in srecies of the genus Aphens. The limed impressa may well be absent in those Mpheids with small nonspecialised chelae, especially such a species as A/pherpsis monorli (see tig. 13 ol the present paper). It would be interesting to know whether or not there is any special adaptation to facilitate withdrawal of the enlarged and curiously modified chela of one of the second pair of peraeopods in the rave qemus Leontoceris stensmas,
 10 amd 11 .

LIST OF WORKS CITED

Coutièm (H.) 1899. - Les "Alpheidae ", morphologie externe et interne, formes larvaires, bionomie. Ann. Sci. nat. Zool., (8), 9, 559 p., 409 text-fig., 6 plates.
Coutième (H.) 1906. - Sur une nouvelle espèce d'Alpheopsis, A. haugi... Bull. Mus. Hist. nat. Paris, 12, 376-380, fig. 1 and 2.
Darby (H. H.) 1938. - Moulting in the crustacean, Crangon armillatus. Anat. Rec., 72, Supplement, Abstract 98, p. 78.
Herrick (F. H.) 1909. - Natural History of the American Lobster. Bull. U. S. Bur. Fish., 29, 149-408, 42 tex-fig., plates XXVIII-XLVII [1911].
Hess (W. N.) 1941. - Factors influencing moulting in the crustacean, Crangon armillatus. Biol. Bull. Wood's Hole, 81, 215-220.
Holthils (L. B.) 1952. - Crustacés Décapodes, Macroures. Expéd. Océan. Relge... de l'Atlantique sud (1948-19), 3 (2), 88 p., 21 text-fig.
Kemp (S. W.) 1910. - Decapoda Natantia ol the Coasts of Ireland. Fisheries, Ireland, Sci. Invest. 1908, I [1910], 190 p., 23 plates.
De Man (J. G.) 1911 and 1915. - Decapoda of the Siboga Expedition. II. Alpheidae. Siboga. Monogr. $39 a^{1}, 133-465$, and Supplement to $39 a^{1}, 23$ plates.
Sollaud (E.) 1932. -- Sur un Alphéide d'eau douce, Alpheopsis monodi n. sp... au Cameroun. Bull. Soc. zool. Fr., 57, 375-386, 2 text-fig.
Stebring (T. R. R.) 1905. - South African Crustacea. III. Marine Invest. S. Afr., 21-123, plates XVII-XXVI.

