# Or the Systematics of Ancinus (Isopoda, Sphaeromatidae), with the Lescription of a New Species from the Tropical Eastern Pacific ${ }^{1}$ 

Peter W. Glynn ${ }^{2}$ and Carmen S. Glynn ${ }^{2}$


#### Abstract

Recent quantitative sampling of sandy beaches in Central America revealed that species in the sphaeromatid genus Ancinus are abundant and widespread at low latitudes. Ancinus panamensis n. sp. is described from the Pacific coasts of Panama and Colombia and compared with $A$. brasiliensis Lemos de Castro from the Caribbean coasts of Panama and Costa Rica. The morphology and color polymorphism of the Panamanian species are illustrated in detail. Study of all known species in the genus indicated the existence of at least four and probably five distinct species in the New World. A key to these species is presented.


A recent comparative stụdy of the sand beach faunas of Panama has shown that sphaeromatid isopods in the genus Ancinus are often present in great numbers on both Pacific and Caribbean shores (Dexter 1972). The Pacific speciec of Ancinus (referred to by Dexter [1972] as $4 \quad$ inus sp. A) was found to rank second in abundance of all the macroscopic animals sampled, with a mean density of 102.6 individuals/ $\mathrm{m}^{2}$; the Caribbean species (Ancinus sp. B) was the most abundant animal present, with a mean density of 80.3 individuals $/ \mathrm{m}^{2}$. Subsequent sampling by Dexter (personal communication) and ourselves elsewhere in Central America and Colombia indicated that these species are numerically important at several luce es and have probably gone unrecognized for so long because of the lack of fine quantitative sampling on the sand beaches in this region.
Ancinus is presently known only from the New World. Bathycopea, a closely related genus, contains deep-living species in both European (North Atlantic) (Tattersall 1906) and western North American (Menzies and Barnard 1959, Lorola e Silva 1971, Schultz 1973) waters. Fiv pecies of Ancinus have been described as foll....s: the Atlantic species are Ancinus dePressus (Say 1818) from the eastern and Gulf

[^0]coasts of the United States and A. brasiliensis Lemos de Castro 1959, from Brazil; the Pacific species include A. granulatus Holmes \& Gay 1909, A. daltonae Menzies \& Barnard 1959 (recently placed in Batbycopea, see below), and $A$. seticomvus Trask 1970, from the California coast. Loyola e Silva (1971) synonymized A. granulatus and $A$. brasiliensis with $A$. depressus and transferred $A$. daltonae to the genus Batbycopea. The synonymy of Ancinus was based mainly on the appearance of the pleotelsonal apex, which Loyola e Silva (1971) concluded is due to the viewing position and is, therefore, nothing more than a form of intraspecific variation. Schultz (1973) did not agree with this conclusion and asserted that better criteria would probably be found to show the distinctness of the three species. Schultz (1973) did conclude, however, that Ancinus seticomius is a junior synonym of $A$. granulatus. These conflicting views indicate some of the current difficulties encountered in this group.

In our study a detailed comparison was made of the morphology and color polymorphism in the allopatric populations of Ancinus in Panama in order to provide new data for the evaluation of species in this group. Large samples of live and preserved material were examined from several different populations (Fig. 1). Many individuals of different size and sex were dissected and measured quantitatively. The results of this analysis are comparad critically with collections of all known species of Ancinus. We offer evidence here that the tropical Pacific



Fig. 1. Principal collecting localities on the Pacific and Caribbean coasts of Panama. 1, type locality for Ancinus panamensis n . sp., sand beach between Naos and Culebra islands; 2, 3, beaches on Naos Island; 4, Palo Scco leprosary; 5, Venado Beach; 6, María Chiquita; 7, Shimmey Beach; 8, San Lorenzo. Note the difference in orientation of the large-scale maps.

Ancunus is a new species and that the Caribbean species belongs to $A$. brasiliensis. Further, our results corroborate Schultz (1973) in his opinion that $A$. granulatus, A. depressus, and A. brasiliensis are separate species. However, we cannot accept Schultz's conclusion that $A$. seticomrus is a junior synonym of $A$. granulatus. The status of $A$. seticomvus is problematical and will require further study.
It is a pleasure to acknowledge the numerous donations of material made by D. M. Dexter
and her constant help and interest in this Material was also kindly provided b Bowman, C. E. Dawson, and M. L. We thank G. A. Schultz for making avail manuscript on Ancinus and both G. A. and T. E. Bowman for their critical of the manuscript. Assistance in the fic laboratory was provided by A. Velardes: we express our gratitude for the enc ment and assistance offered by I. Rubiri

Ancinus belongs to the section Anct the group Platybranchiatae (erected by 1905). Some of the more important teristics of the platybranchiate sphaerot include: (a) absence of transverse brat folds on $\mathrm{Plp}^{4}$ and $\mathrm{Plp}^{5}$, (b) exopods of P 数 $\mathrm{Plp}^{5}$ are unjointed, (c) exopod of $\mathrm{Pl}^{3}$ squamiferous protuberances in slight and (d) pleotelson usually without a slit or foramen. Among some of the distim ing features of the Ancinini may be note Md without molar process, (b) pereopod chelate in both sexes, and (c) pereopod hensile in male, ambulatory in female.

Genus Ancinus Milne Edwards 1840

## Type Species

Naesa depressa Say 1818. Ancinus (Say, 1818) Milne Edwards 1840.

## Diagnosis

Cephalon fused with pereonite $1 ; \mathbf{M x}^{\mathbf{1}}$ degenerate; $\mathrm{Mx}^{2}$ composed of two lober mera directed downward; pleonite 1 very small suture on each side; $\mathrm{Plp}^{1}$ uniratim $\mathrm{Plp}^{3}$ exopod uniarticulate; uropod wh exopod, basipod not widened laterall ${ }^{3}$ breviated from Loyola e Silva 1971).

## Remarks

Batbycopea can be distinguished on the of the following characters: $\mathrm{Mx}^{2}$ compose three lobes; epimera expanded laterally; nite 1 with two sutures on each side, the terior pair well developed; Plp ${ }^{1}$ biramous; exopod biarticulate; uropodal basipod wid laterally (Loyola e Silva 1971).


Fig. 2. Ancinus panamensis n. sp. $A$, dorsal view, male holotype, length 4.29 mm , width 2.05 mm ; $B$, pleotelson, later ' :iew of holotype; $C$, pleotelson, dorsal view of female allotype, length 2.89 mm , width 1.41 mm .

## Ancinus panamensis n. sp.

Figs. 2, 3, 4, 5, 6

## Diagnosis

Cephalon narrower than pereonites; frontal margin of cephalon and pereonite 1 broadly rounded. Sutures separating cephalon and pereoni 1 reach medially only to about halfway bet. ien eye and rostrum. Rostrum anterior margin smooth. Pereonites 1-3 broadest, pereonites 4-7 narrower and subequal in width. Lateral margins of pereonites and epimera smooth, without ridges. Lateral margins and apex of pleotelson broadly rounded. Pleotelson dorsum strongly arched (best viewed laterally).

Anterolateral margins of pleonite smooth, following body outline. Uropodal endopod styliform, strongly arched, recurved, and extending slightly beyond tip of pleotelson. Md palp articles 2 and 3 with 9 and 10 plumose setae respectively; incisor with three strongly sclerotized cusps. Lacinia mobilis well developed, present on both mandibles, bilobed, each lobe a stout sclerotized tooth. Setal row consists of two acute serrate spines adjacent to lacinia mobilis, a few simple fine setae and a large bladelike spine serrated apically. $\mathbf{M x}^{1}$ exite with 11 spines, one stout and three serrate. $\mathrm{Mx}^{2}$ endite with five weakly plumose setae; exite with a total of six plumose setae. Mxp palp articles 2, 3, and 4 with produced



Fig. 4. Ancinus panamensis n. sp. Mouthparts from male holotype.
inner base of propodus slightly shorter than carf: :c; basis and ischium fringed with fine elor : te simple setae. $\mathrm{P}^{2}$ dactylus (male) relatively short, closing at midlength of propodus; three long tapering setae on process inside proximal part of propodus. $\mathrm{P}^{3}-\mathrm{p}^{7}$ highly setose; merus, carpus, and propodus with numerous closely set elongate setae distally and with fewer long stout setae along medial border. Ischium with numerous fine setae on all pereopods. Plp ${ }^{1}$ uniramous with 33 plumose marginal setae (PM'S). Pp ${ }^{2}$ exopod less than half length of endopor . tylet tenuiform, slightly shorter than endopud; endopod medial and lateral borders with fex penicillate and numerous plumose setae respectively. $\mathrm{Plp}^{3}-\mathrm{Plp}^{5}$ with well-developed blood sinuses (broken lines in Fig. 5 delimit these areas). $\mathrm{Plp}^{3}$ exopod ovate, $3 / 4$ length of endopod, lateral margin fringed with short simple setae. Plp ${ }^{4}$ endopod with apical spine. Plp ${ }^{5}$ exopod with three squamiferous protuberances, encopod distomedial border with incipient prc berance.

## Coluration

The dorsum in the male holotype displayed ${ }^{2}$ variegated pigment pattern of reddish brown, brou-nish red, and white. (All colors in this Paper are from Kornerup and Wanscher 1967.)

This particular color morph is designated "pattern" and is discussed in more detail below under color polymorphism.

## Measurements

Male holotype, length 4.29 mm , width 2.05 mm . Female allotype (gravid), length 2.89 mm , width 1.41 mm . The mean length and width (and size range) of 101 paratypes sampled at random were $1.98 \mathrm{~mm}(1.02-3.40 \mathrm{~mm})$ and $0.95 \mathrm{~mm}(0.48-1.70 \mathrm{~mm})$, with a mean width: length ratio (percent) of 48.0. Since the distributions of samples were not approximately normal, the median and 0.95 confidence limits of the median ( $K=50 / 100[N+1]-\sqrt{ } N$ ) are also given to indicate the degree of dispersion in the paratypes. The median length and width (and 0.95 confidence limits) of the 101 paratypes were $1.63 \mathrm{~mm}(1.34-1.95 \mathrm{~mm})$ and 0.77 $\mathrm{mm}(0.64-0.94 \mathrm{~mm})$. The mean length and width (and size range) of 17 adult male paratypes were $3.76 \mathrm{~mm}(2.96-4.28 \mathrm{~mm})$ and 1.91 mm (1.64-2.14 mm); for 23 adult female paratypes the mean length and width (and size range) were $3.44 \mathrm{~mm}(2.40-4.04 \mathrm{~mm})$ and 1.69 $\mathrm{mm}(1.20-2.00 \mathrm{~mm})$. The mean length of $10 \mathrm{re}-$ leased young was 0.83 mm with the range $0.81-0.84 \mathrm{~mm}$. The mean and median number of embryos per female (range in length 2.05-


Fig. 5. Ancinus panamensis n. sp. Pleopods from male holotype.
2.81 mm ) respectively in a sample of 20 from Naos Island (11 August 1972) were 9.7 and 10. The Kendall rank correlation test showed a highly significant positive correlation between body size and number of embryos ( $P \ll 0.001$ ).

## Type Locality

Sand beach between Naos Island and Culebra Island (no. 1 in Fig. 1) near Pacific entrance of the Panama Canal ( $79^{\circ} 31^{\prime} 57^{\prime \prime} \mathrm{W} ; 8^{\circ} 54^{\prime} 51^{\prime \prime} \mathrm{N}$ ).

In sand near neap low water level. Mate type catalog number USNM 143954, females type usnm 143955, 363 paratypes usnm 14 (20 July 1969).

## Material Examined

(Collections were made by authors noted otherwise.) Monthly collections nuw ing at least 100 individuals were examined the sand beach between Naos Island and bra Island over the period 5 February


FIG. 6. Color polymorphism in Ancinus panamensis n. sp. $A$, uniform; $B$, stripe; $C$, pattern; $D$, half pattern; $E$, bicolor; F , bi-O; $G$, bi-1/2 O; $H$, half belt. Various morph patterns are illustrated on a single standardized individual.

13 - ay 1971. Large collections were also exailuned from the following localities in Panama: Naos Island beaches (nos. 2 and 3, Fig. 1), 30 July 1969 and 28 August 1969 (collector D. Dexter), several samples in 1970 and i971; Palo Seco Leprosary (no. 4, Fig. 1), 11 December 1969, 11 and 12 March 1970, 22 October 1971; Venado Beach (no. 5, Fig. 1), 8 January 1970; San Carlos Beach, Panama Province ( $79^{\circ} 57.5^{\prime} \mathrm{W} ; 8^{\circ} 28.0^{\prime} \mathrm{N}$ ), 4 August $196^{\sim}$ collector D. Dexter. One collection of $71 \mathrm{~s}_{1}$, ecimens was examined from Colombia, Juanchaco, Bahia de Málaga ( $77^{\circ} 22.0^{\prime} \mathrm{W}, 3^{\circ}$ $54.4^{\prime} \mathrm{N}$ ), 20 January 1971.

## Distribution

Abundant at type locality and on other partly protected sand beaches near the Pacific terminus
of the Panama Canal (Fig. 1). Also found at San Carlos Beach, Panama, and at Juanchaco, near the mouth of Bahia de Málaga, Colombia.

## Supplementary Descriptive Notes

The following information is based on the examination of adult male and female paratypes. Pereonite 1 in males tends to be the broadest of all pereonites; in females about half have pereonites 1 or 2 the broadest and half pereonite 6 the broadest. Ant ${ }^{1}$ reaches to pereonite 4, flagellar articles $10-11$. Penicillate setae present on both antennae (about $10-15$ visible along anterior margin of Ant ${ }^{1}$ and 50-60 along anterior margin of Ant ${ }^{2}$ ). Pleotelson inflated in females, with a rounded apex (Fig. 2C) as in males. Uropods do not reach apex of pleotelson in all specimens. Mouthparts virtually identical
in both sexes. Md palp articles 2 and 3 with 7-9 and 6-10 plumose setae respectively. $\mathrm{Mx}^{1}$ exite with eight-nine spines, one always stout, twothree serrate. $\mathrm{P}^{1}$ dentiform process may be subequal in length to carpus. The process inside the proximal part of the propodus of $\mathrm{p}^{2}$ with three tapering setae in the six males examined. $\mathrm{P}^{2}$ ambulatory in female and similar to $\mathrm{p}^{3}$. Elongate setae on merus, carpus, and propodus abundant on $\mathrm{p}^{3}-\mathrm{p}^{5}$, decreasing in number on $\mathrm{p}^{6}-\mathrm{p}^{7}$. Pleopods similar in both sexes. Plp ${ }^{1}$ with 22-28 PMS. Specimens collected in Colombia varied slightly from the Panamanian material in the following characters: (a) dorsum of pleotelson less inflated, and (b) pleotelsonal shelf relatively narrow.

## Affinities

Ancinus panamensis shares a number of features in common with $A$. depressus (Say) and A. granulatus Holmes \& Gay. The pleotelson in these three species is inflated and tends to be truncate posteriorly. The third peduncular article of Ant ${ }^{1}$ is also without esthetascs. Ant ${ }^{2}$ in $A$. panamensis and $A$. granulatus has few setae present on peduncular article 5 and flagellar articles 1-3. In $A$. depressus these setae are much more numerous and present on a greater number of articles (up to nine articles). The location and number (3) of the squamiferous protuberances on the exopod of $\mathrm{Plp}^{5}$ is also similar in $A$. panamensis and $A$. granulatus. However, it will become apparent later that $A$. panamensis, like A. granulatus, stands apart from the closely allied species complex $A$. depressus, $A$. brasiliensis, and $A$. seticomvus.

## Etymology

The specific epithet panamensis is derived from the Republic of Panama, where the species was first collected.

Ancinus brasiliensis Castro 1959
Figs. 7, 8, 9, 10, $11 A-C$, and 12

## References

Ancinus brasiliensis Castro 1959: 215-218, figs. 1-8; Loyola e Silva 1963: 1-19, figs. 1-5. Ancinus depressus (Say 1818).-Loyola e Silva

1971: 212-215, fig. 1. Ancinus brasiliensis 1959. Schultz 1973.

## Diagnosis

Body elongate, breadth 0.44-0.48 of 1 c surface smooth except for ridges p . laterally on pereonites; pleotelson elod breadth $0.40-0.45$ of length; pleotelsonaf narrow, not noticeably truncate; pleotels. inflated, vault shelf narrow; Ant ${ }^{1}$ basal art and flagellar article 1 with numerous stét. esthetascs; pereopod 2 (male) propodus cess with four setae; Plp ${ }^{5}$ exopod with squamiferous protuberances.

## Coloration

Illustrated adult male "uniform." C p eggs green, newly released young white out pigmentation). See section on color morphism for further variations in this spe

## Measurements

Mean length and width (and size range spectively of individuals in random sal. ( $N=111$ ) from Maria Chiquita Beach ( 6 tember 1973 ) $3.25 \mathrm{~mm}(1.57-6.11 \mathrm{~mm}$ ) $1.50 \mathrm{~mm}(0.76-2.65 \mathrm{~mm})$. Mean length width (and size range) respectively of viduals in random sample ( $N=141$ ) Shimmey Beach (6 September 1973) 2.71 $(1.64-5.42 \mathrm{~mm})$ and $1.27 \mathrm{~mm}(0.82-2.39 \mathrm{f}$ The mean width: length (100) ratio (and $\mathrm{ra}^{2}$ of 20 individuals (range in length 2.83-4.03) was 46.4(44.4-48.2). Comparable measure in 20 Ancinus panamensis (range in length 4.28 mm ) gave a mean width:length ratio of 50.1 (48.3-51.8) with no overli, values, a quantitative indication of the elongate body proportions in A. brasiliensix largest individuals were males, as observed this species by Loyola e Silva (1963), and in panamensis. Mean length (and size range) released young $1.14 \mathrm{~mm}(1.12-1.19 \mathrm{~mm})$, mean and median number of embryop female respectively in 20 individuals (le $2.71-3.46 \mathrm{~mm}$ ) sampled from Shimmey 1 (16 October 1970 and 6 September 1973) 14.6 and 14. This indicates a larger brood than that observed in A. panamensis (mediá


Fig. 7. Amsinusbrasiliensis Lemos de Castro. A, dorsal view, male, length 5.64 mm , width 2.50 mm ; $B$, pleotelson, lateral view; $C$, pleotelson, female, length 4.74 mm , width 2.24 mm .
10). However, since the number of embryos a! ' body size are positively correlated in both s test) and females of $A$. brasiliensis attain a larger size, this difference is best interpreted as a size effect only. Mean length and width (and size range) of seven specimens from Brazil (courtesy of M. L. Koening, Castro 1959, Loyola e Silva 1963) $6.45 \mathrm{~mm}(5.38-8.50 \mathrm{~mm})$ and 3.05 mm (2.53-3.80 mm).

## 7 . Locality

. ibeira Beach, Mangaratiba Bay, Rio de Janciro State. Collected from 2 sand bottom at 1.5 m depth .

## Material Examined

panama: Maria Chiquita, from beach near mouth of Brazuelo River (no. 6, Fig. 1), 13

August 1969, 29 specimens, collector D. Dexter; 15 March 1970, 22 specimens; 6 October 1970, 35 specimens; 6 September 1973, 95 specimens. Shimmey Beach, near Ft. Sherman (no. 7, Fig. 1), 5 July 1969, three specimens, collector D. Dexter; catalog no. usnas 143957, 20 July 1969, 69 specimens, collector D. Dexter; 28 July 1969, 94 specimens, collector D. Dexter; 16 October 1970, 156 specimens; 11 August 1972, 398 specimens; 6 September 1973, 105 specimens. Ft. San Lorenzo, from beach at base of ruins east of the Chagres River mouth (no. 8, Fig. 1), 26 June 1969, one specimen, collector D. Dexter; 27 June 1969, seven specimens.
costa rica: Puetto Viejo ( $9^{\circ} 40^{\prime} \mathrm{N}, 82^{\circ} 44^{\prime}$ W), 2 April 1971, two specimens, collector D. Dexter. Cahuita south ( $9^{\circ} 44^{\prime} \mathrm{N}, 82^{\circ} 50^{\prime}$ W), 1 April 1971, 10 specimens, collector $D$. Dexter. Cahuita north ( $9^{\circ} 45^{\prime} \mathrm{N}, 82^{\circ} 52^{\prime} \mathrm{W}$ ), 3 April 1971, four specimens, collector D. Dexter. Airport



Fig. 9. Ancimus brasiliensis Lemos de Castro. Mouthparts from male in Fig. 7. Inset of distal portion of mandible (Md) from male, length 5.88 mm , width 2.72 mm .

Bei: , Limón ( $9^{\circ} 58^{\prime} \mathrm{N}, 83^{\circ} 01^{\prime} \mathrm{W}$ ), 19 March 1971, two specimens, collector D. Dexter.
brazil: Isle of Itamaracá, Pernambuco, two specimens, collection no. ITA 19, Halimeda sand bottom, 5.6 m depth; one specimen, collection no. ITA 91, calcareous algal bottom, 1.5 m depth. Tambaú, Paraiba, one specimen, from algae, collector M. L. Koening.

## Di •bution

A wide-ranging western Atlantic species. Widespread along Brazilian coast from Ubatuba (Enseado de Flamengo), São Paulo (Loyola e Silva 1963), ca. $24^{\circ}$ S to Tambaú, Paraiba State (M. L. Koening, personal communication), ca. $7^{\circ}$ S. Abundant on beaches in Panama at Maria Chiquita, Shimmey, and near Ft. San Lorenzo (Fig. 1). Present along Costa Rican coast between latitudes $9^{\circ} 40^{\prime} \mathrm{N}$ to $9^{\circ} 58^{\prime} \mathrm{N}$.

## Supplementary Descriptive Notes

The following is based on the examination of collections from Panama and Brazil. In each case where significant differences were observed these are noted, otherwise the material was in essential agreement. Ancinus brasiliensis is contrasted with other species of Ancinus in a
separate section below. Ant ${ }^{1}$ reach to pereonite 5 , peduncular articles with numerous penicillate setae ( 18 present along anterior margin in illustrated specimen); flagellum usually of 14-16 articles; uniramous stemless esthetascs present on peduncular article 3 and flagellar article 1 (unlike the usual esthetascs, these structures are stemless but presumably chemoreceptive in function, T. Bowman, personal communication), uniramous esthetascs with stems present on distal articles of flagellum; the Brazilian specimens have esthetascs on the distal flagellar articles only. Ant ${ }^{2}$ peduncular articles with numerous penicillate setae ( 75 present along anterior margin of illustrated specimen); flagellum usually of 8-10 articles; peduncular articles 4 and 5 and flagellararticles $1-4$ with numerous long simple setae. Rostrum anterior margin slightly indented lengthwise. Sutures between cephalon and pereonite 1 reach far medially, approaching midline. Anterolateral margin of pleonite usually concave. Ridges well developed laterally on epimera and pereonites 2-7. Pleotelson not inflated, lateral profile of apex acute (Brazilian material, Fig. $11 A, B$ ) or truncate (Panamanian material, Fig. 11C). Pleotelson narrow, more so in specimens from Brazil (Table 1). Pleotelsonal shelf relatively narrow and equal in all collections (Table 2). Pleotel-


Fig. 10. Ancinus brasiliensis Lemos de Castro. Pleopods from male in Fig. 7.
sonal apex (in dorsal view) slightly truncate, especially in younger individuals. Mxp as described in Loyola e Silva (1963), including simple fringe setae at base of palp article 4. Plumose setae on Md palp articles variable in number, ranging from $8-11$ on article 2 and 4-11 on article 3 ; incisor with three strongly sclerotized cusps and a stout nonsclerotized process. $\mathrm{P}^{1}$ basis and ischium without fine setae. ${ }^{2}$ dactylus long, closing onto carpus; process inside proximal part of propodus with four relatively short, stout, and blunt setae.
$\mathrm{P}^{3}-\mathrm{p}^{7}$ highly setose; merus, carpus, and prop dus with numerous closely set elongate set distally and along medial border (although off fewer in number than those present distall setae progressively diminish in number ort and $p^{7}$; fine setae on ischium increase in num from $p^{3}-p^{6}$, but absent from $p^{7}$. Plp $^{1}$ in ${ }^{1}{ }^{2}$ mens from Brazil and Pamana without and complete suture as illustrated in Loyola e $S_{3}$ (1963), Fig. 4; PMS number variable, from 2 27. $\mathrm{Plp}^{2}$ rami without clefts. $\mathrm{Plp}^{3}$ exopod ova smaller than endopod, lateral margin fringed


Fig. 11. Lateral views of pleotelson in males. Ancinus brasiliensis Lemos de Castro from Brazil- $A$, length 6.30 mm ; B, length 6.20 mm . A. brasiliensis from the Caribbean Sea, Panama-C, length 5.80 mm . Ancinus depressus (Say) from the Gulf of Mexico-D, length 11.92 mm .
with simple setae. Plp4 endopod acute apically. Plr" exopod with four squamiferous protuberan (a fifth incipient squamiferous protuberance also present proximally) and margin slightly squamous between two distal protuberances; endopod distal medial border with slight bulge.

Ancinus brasiliensis Compared with A. depressus and A. granulatus
Since Loyola e Silva (1971) and Schultz $\left(1^{-} 3\right)$ are not in agreement on the status of A.i.nus brasiliensis, $A$. depressus, and $A$. granulatus, the three species are here compared in detail. We hope to demonstrate that Schultz was correct in believing that the three species are distinct and not conspecific with $A$. depressus as interpreted by Loyola e Silva. Ancinus granulatus is treated first because this species is relatively easy to distinguish from the others.

Ancinus granulatus Holmes \& Gay 1909
Fig. 13A-C

## References

Ancinus granulatus Holmes \& Gay 1909: 375376, figs. 1 and 2; Loyola e Silva 1963: 18-19. Ancinus depressus (Say 1818).-Loyola e Silva 1971: 214. Ancinus seticomrus Trask 1970: 145-

149, figs. 1, 2. Ancinus granulatus Holmes \& Gay 1909.-Schultz 1973: 268-269, fig. 1B, $C, F$.

## Diagnosis

Body very broad and densely granulated; eyes slightly elevated on swellings; pleotelson very short with truncate apex; pleotelsonal shelf broad (revised).

## Material Examined

Pete's Campo, ca. 16 km north of San Felipe, Baja California, Gulf of California, Mexico,. 1 April 1969, three males, seven females, collector D. Dexter. Radar Beach, Punta Diggs, ca. 25 km south of San Felipe, Baja California, Gulf of California, Mexico, 18 March 1972, one male, collector D. Dexter.

## Discussion

The specimens of $A$. granulatus examined from the Gulf of California agree well with Holmes' and Gay's (1909) description of the species, including the dense granulations whose presence was denied by Loyola e Silva (1971). Other notable features include: (a) the elevation of the eyes on swellings, (b) a short pleotelson, (c) the truncate apex of the pleotelson, (d) 2 broad pleotelsonal shelf, (e) strongly recurved


Frg. 12. Color polymorphism in Ancinus brasiliensis Lemos de Castro. $A$, uniform-S; $B, C$, speckled; $D$, speckled; $E$, girdle; $F$, girdle-B; $G$, belt; $H$, half quadrate; $I$, quadrate; $J$, fleck; $K$, uniform. Various morph patte are illustrated on a single standardized individual.

TABLE 1
Ratio of Width to Length of Pleotelson in Ancinus brasiliensis and Ancinus depressus


Note: Pleotelsonal width measured at a point two-thirds the length of the pleotelson (toward apex). Measurements include both sexes and large adults selected to maximize overlap in size.

* Nonparametric Mann-Whitney U test (after Siegel 1956).
$\dagger$ One measurement each from illustrations in Castro (1959) and Loyola e Silva (1963).
TABLE 2
Ratio of W'idth of Pleotelsonal Shelf to Length of Pleotelsonal Vault in Ancinus brasiliensis and Ancinus depressus

| SPECIES | locality | body length (mm) |  |  | ratio (\%) |  | SIGNIFICANCE level, $P^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NUMBER | $\bar{X}$ (range) | MEDIAN | $\bar{X}(5 \bar{x})$ | MEDIAN |  |
| Ancinus | Brazil | 4 | 5.91 (5.38-6.30) | 5.98 | 11.8 | 12.0 |  |
| brasiliensis | Itamaracá |  |  |  |  |  | NS |
|  | Lambari |  |  |  |  |  | $P>0.05$ |
| Ancinus | Panama |  |  |  |  |  |  |
| brasiliensis | Shimmey Beach | 10 | 5.54 (4.74-6.27) | 5.72 | 11.6 (0.40) | 11.4 |  |
| Ancinus | Gulf of Mexico | 10 | 9.42 (5.51-11.92) | 9.46 | 15.1 (0.56) | 14.4 | $P \ll 0.001$ |
| depressus | Texas <br> Mississippi |  |  |  |  |  |  |

A.E: Shelf width is the average of two sides measured at a point one-half the length of the vault. NS, not signiticant.

* Nonparametric Mann-Whitney $\boldsymbol{U}$ test (after Siegel 1956).
uropods, and $(f) \mathrm{Plp}^{5}$ with three squamiferous protuberances. The collection from Pete's Campo contained, in addition to the 10 specimens of $A$. granulatus, six adult male and female (some gravid) Ancinus that correspond eo Trick's description of $A$. seticomus. Schultz (15 i) examined the type specimens of $A$. granulatus and paratypes of $A$. seficomrus and concluded that they are conspecific. He emphasized that the key character used by Trask to erect the species $A$. seticomrks, namely the setal number on the process of the propodus of pereoPod 2, is not 2 good character for specific distinction. Schultz found the setal number to
vary between six-eight in both forms and noted that "...it was difficult to count the exact number on some of the male propodi." The setal number in the Pete's Campo material was four-five in $A$. granulatus and five-six in $A$. ?seticomvus. Our study of the Pete's Campo material indicates the existence of two distinct species, with no overlap whatever in the morphological features enumerated for $A$. granulatus above. The form agreeing with $A$. seticomvus has a smooth body surface with no granulations and can be further contrasted with $A$. granulatus as follows: (a) eyes not elevated, (b) pleotelson long, (c) pleotelson nearly acute


Fig. 13. Cephalon and pleotelson (dorsal and lateral views) from Ancinus granulatus Holmes \& Gay, $A, B$, an male, length 7.12 mm , width 3.65 mm ; and Ancinus ?seticomvus Trask, $D, E$, and $F$, male, length 6.43 mm , 3.02 mm . Cephalon tilted down anteriorly and pleotelson tilted down posteriorly in both specimens.
or narrowly rounded, (d) pleotelsonal shelf narrow, (e) uropods only slightly recurved, and (f) $\mathrm{Plp}^{5}$ with five squamiferous protuberances, one positioned far basally (Fig. 13D-F). Additional specimens agreeing with $A$. seticomvus were collected by D. Dexter at Punta Diggs and Topolobampo (Sinaloa), Gulf of California, and at Mazatlan (Sinaloa), near the entrance to the Gulf. In order to resolve this problem, it will be necessary to study the holotypes, type collections, and-preferably-new collections. It is possible that the sympatric occurrence of the two species has led to mixed collections and the resulting confusion noted.

Ancinus depressus (Say 1818)
Fig. 11D

## References

Naesa depressa Say 1818: 482-485. Amca depressus(Say 1818).-Milne Edwards 1840:22. pl. 32, figs. 17-20; Richardson 1905: 271-2 fig. 282; Richardson 1909: 173-177, figs. 1 Menzies and Frankenberg 1966: 43, fig. Loyola e Silva 1971: 212-215, fig. 1; Schu 1973: 269-270, fig. 1 A.


[^0]:    ${ }^{1}$ Research supported by Smithsonian Research Foundation grant no. 436130. Manuscript received ${ }^{5}$ November 1973.
    ${ }^{2}$ Smithsonian Tropical Research Institute, P.O. Box 2072, Balboa, Canal Zone.

