Synalpheus pococki Coutiere

Fig. $24 \mathrm{a}-\mathrm{h}$
Swalphews neomeris var, pococki Coutiere, 1898d, Bull. Soc. Fnt. France 1898 (7): 167, fig. 2 (Holothuria Bank, N. W. Australia. Macelesfield Bank. Arafura Seal.

Smalpheus pococki De Man, 1911. Siboga Fxped. 39a' (2): 234, fig. 32.
Additional Australian Records:
Coutière, 1900). Bull. Mus. Hist. nat.. Paris 6 (8): 411. Albany Passage. Torres Straits.

Specimens examined: 1.19 mom female from AM 67 (near Darwin).
Diaphosis: Rostrum slender, 3.5 times as long as broad at base, reaching to end of first antennubar article. Orbital teeth a little shorter with outer margins straight. inner margins concave. Rostral base with orbitorostral process.

Visible part of first antennular article a little longer than second; third a little shorter than second. Stylocerite reaching middle of second antennular article. Squamous portion of scaphocerite not reduced, reaching near end of antennular peduncle: lateral tooth longer than peduncle. Carpocerite 4.0 times as long as broad when viewed from below, slightly longer than antennular peduncle. Inferior spine of hasicerite a little shorter than stylocerite, superior spine prominent, acute.

Large chela 2.6 times as long as broad, fingers occupying almost the distal one-third, with acute tooth above dactylar articulation. Merus three times as long as broad, superodistal margin terminating in an acute tooth. inferior margins inermis. Smal! chela 4.0 times as long as broad, fingers 0.38 the total length. Carpus 0.6 as long as broad, with superodistal margins armed with acute tooth.

Carpal articles of the second leg with a ratio: 10:1:1:1:3: third article about as long as broad.

Merus of third leg four times as long as broad bearing two shont strong spines on distal half, but distal margins unarmed. Carpus 0.4 as long as merus. distosuperior margin terminating in obtuse projection, distoinferior margin with spine. Propodus distinctly curved, bearing one spine proximally and one at about three-quarters length along inferior margin: one distal spine. Dactylus one-fourth as long as propodus, unguis about one-cighth as long as entire dactyl; inferior unguis thicker at base and a little shorter than superior unguis.

Telson 2 times as long as wide. posterolateral angles slightly projecting and acute.

OPPOSITE

 11 mm male from AM 67; a, Anterior region, dorsal view: b. c, large chela and merus, inner face; d, small cheliped: e, second leg; f, g, third leg and enlarged dactylus; h, telson. Srmalphems iocosta, 14 mm mate from AM 13: i. j, wird leg and dactylus. 13 mm fenale from
 Superior unguis. In reduction the roughness where the unguis was athached no longer may be secn. 12 mm female from WM 60-65: n, third leg. a, b, c, d, e, f, h seale $a: g, j, l$ seale b : i. b. m, n. scate e.

Discussion: The only difference between this species and S. iocosta De Man is the nature of the third leg (see below). Our specimen agrees well with Coutiere's original description as well as De Man's specimen from Indonesia.

Biological notes: Our specimen was taken from a "growth on a pearl shell", and that of De Man's was captured in a dredge at 13 metres. Coutiere did not make any remarks about possible habitats of his specimens, but his specimens from Albany Passage were dredged at 10 fathoms. We suggest that the unique propodus of this species may be an adaptation for a special environment, similar to the hooked dactylus of the small chela of S. comatularum, and the strange ungui of the third legs of S. charon; however, no available data suggests what this habita! might be.

Alustralian dismibuton: Darwin, Aralura Sea and Torres Straits.
General distribution: De Man's specimen from the east coast of Aru Istands in Indonesia is the only record from other than Australia.

Symalpheus iocosta

De Man

Fig. 24 i-n
Synalpheus iocosta De Man, 1909a, Tijdschr. ned. dierk. Vereen. II. 11 (2): 119: 1911 Siboga Fxped. 39a' (2): 235, fig. 33.

Specimons exdmined: I specimen from AM 13; 1 specimen each from CS 19. 20. 21: 1, WM 69 65: 1, WM 94-65: 1. WM 290-65.

Discussion: As this species is almost exactly the same as S. pococki Coutiere ($p .366$) except in the propodus of the third leg we are not offering a separate description. In the propodi, that of S. pocochi is distinctly curved, more curved than any other synalphed, and bears but three spines while in this species it is almost straight and bears $7-8$ spines atong the inferior margin. We have pictured the legs from four specimens and show how consistent they are in proportion and armature. De Man in his original deseription of this species, with a series of 42 specimens, points out that the dactylus of the third leg is longer. less heavy and has smaller ungui than in S. pococki, but that these characteristics are variable. Our specimens of the two species are in excellent agreement with the original descriptions. One might question the separation of the two species. but certainly nothing in the present collections nor from those previously reported weuld indicate that the separation of the species is other than valid.

Biological notes: This species has only been collected in dredges from many types of bottoms in water up to 72 fathoms. The three specimens dredged from Cockburn Sound were found associated with sponges and bryozoans. Ou: specimens ranged from $9-12 \mathrm{~mm}$ in length.

Australian diswihution: From Cape Naturaliste to Carnarvon in Western Australia and one specimen from the Gulf of Carpentaria.

General distribution: This species has not been reported since De Man's original specimens from the Aru Islands.

Synalpheus charon (Heller)

Fig. 25
Alpheas charon Heller, 1861. Sbr. Akad. Wiss. Wien 44 (1): 272, pl. 3. fig. 21. 22: 1865. Reise Novara Crust. 2 (3): 107. Paulson, 1874, Invest. Red Sea Crust.. 1: 104, pl. 8, fig. 4.

Synalphews charom De Man, 1911. Siboga Exped. 39a1 (2): 245, figs, 37. Banner. 1953. Pacif. Sci. 7 (1): 37, fig. 11. Banner \& Banner, 1967. Bishop Mus. Oce. Pap. 23 (12): 262.

Syathheus charon charon Banner, 1956, Pacif. Sci. 10 (3): 331.
Syatpheus charon ohscarus Banner, 1956. Pacif. Sci. 10 (3): 329. lig. 5.
Symatphews prolificus Bate, 1888. Challenger Rept. 24: 556, pl. 99, lig. 4.
Synalphems helleri De Man, 1911. Siboga Exped. 39a' (2): 245, lig. 37.
Additional Australia Records: Patton. 1966. Crustaceana 10 (3): 281. 289. Willis, I. Coral Sea and Wistari Reef. Queenstand.

Specimens examined: I specimen from AM 123: 1. BAII 33.
Diagnosis: Rostrum with margins of proximal section usually parallel. distal section forming an acute triangle, not reaching to end of visible part of first antennular article. Orbital teeth acute, a litte shorter and much broader at base than rostrum. Rostral base with orbitorostral process.

Antennular peduncles stout. articles subequal. Stylocerite reaching slightly past middle of second antemntar article. Squamous portion of scaphocerite reaching end of antennular peduncle lateral spine longer, reaching to end of carpocerite which is at least half the length of the third article past that article. Carpocerite 3.5 times as long as broad. Inferior spine of basicerite not quite as long as stylocerite. superior margin rounded.

Large chela 2.6 times as long as broad, lingers occupying the distal third: slight protrusion above dactylar articulation. Merus 2.3 times as long as broad: superodistal margin terminating in acute tooth, distal ends of inferior margins inermous. Small chela almost three times as long as wide, finger 0.4 of total length. Merus 2.3 times as long as broad, superodistal margin terminating in small acute tooth.

Carpal articles of the second leg with a ratio 10:1.7:1.7:1.7:5. Jirst articte as long as four following; second to fourth articte broader than kong.

Merus of third leg incrmis. three times as long as broad, carpus 0.4 as long as merus with superior margin projecting as tooth, inferior bearing heavy spine. Propodus 0.8 as long as merus, bearing on its inferior margin 34 short heavy spines, with a pair distally. Dactylus stout, ungui about a third of total length. Inferior unguis obtuse, only slightly curved, inferior surface with excavate "pocket". Superior unguis thin and composed of an acute tip and a lateral flange. (See Banner. 1956, fig. 5.)

Telson as usual for Symapheus, 2.3 times as kong as posterior margin is hood: distolateral margins not projecting. nor acute. Posterior margin areuate. Anterior pair of dorsal spines located in the midder

Disenssion: This species is readily recognized by the dactyli of the thoracte legs which have the heavy inferior unguis with the pocket-like cavity in the lower side and the smaller acule upper unguis with the lateral llange. No other species of the genus Symalphews bears a similar dactylus.

The great variation in the rostral from has lead to the separation of one new species and one new subspecies. S. helleri De Man and S. charon obscurws Banner. We placed these in synonymy in 1967 (Banner \& Banner, 1967: 262). We have figured the rostral front of both of our specimens because they show the fange of variation (liges 25 a and h). The rostrum in the specimen from AM 123 is of the type with the straght proximal portion which was considered as characteristic of S. hedleri and S. charon ohecturas. The rostrum of the specimen from BAI 33 is the more typical.

The revicu of the Itawailan alpheids (Banner, 1953) disensed S. prolificus (Bate). known only from a single specimen from "Off Honolulu. Sandwich Istands". We suggested that if the ungui of the third lege were similar to S. charon. then the two species were cosely related. However, we remarked that "the nature of the second lege and of the stylocerite would be valid characteristies for the separation of the two species". The British Museum (Natural History) afforded us the opportunity to re-examine the type specimen of Bate's species. None of the supposed diflerences between S. prolificus and S. chamon are valid. The rostrum is of the type with parallel sides proximally: the stylocerite meaches the middle of the second antennular article: the list carpal article of the second lege is only sighty longer that the sum of the four following, therefore whin the range of variation: and, most inmportant, the ungui of the dactyli of the third lege have development chatacteristic of S. chaton. S. proliticus, a species unteported sinee it was deseribed in 1888 . is planly a synonym of S. charon. We have added figures of Bates's holotype to our figures of Australian specimens.

Biological motes: This species appears to live largely, if not entirely, on living coral. It has been commonly colleeted from heads of Pocillopora meandrima Verrill in association with A/pheqs lottini Guerin, and crabs of the genus Trape-ia (Bamner, 1953: 38). All three crustaceans are orange-red in colour. In Austratia it hats also been found in Stylophora pistillata (Lsper) and Seriatopera sp. (Pattom, 1906). The specimen from BAI: 33 was taken from a living Porites sp. In nonAustralian waters, it has been collected from dead coral heads in shallow water and Bates specimen was dredeed from 33 metres. The Austratian specimens are emall. 10-1.3 mm in length, but it has been reported up to 22 mm in length.

Australian dismbution: Heron Island and Wistari Reef in the Capricorn Group, Rudder Reel, off Port Douglas, and Willis I. Coral Sea.

General distribution: This species has been reported from the Red Sea to Mexico, and from Japan to the Gieat Barrier Reef. We have seen specimens in the American Museum of Natural History in New York from Feuador and Columbia. South America.

Fig. 25. Simatphows charon (Heller). 13 mm female from AM 123: a, anterior region, dorsal view: b, e, large chela and merus; d, small cheliped: c, second leg; f, g, third leg and dactylus. 10 mm female from BAU 33: h, anterior region, dorsal view. Alphets (Symatphows) prolificus Bate, from "Off Honolulu". Holotype: i, anterior region, dorsal view; j, second leg: k, ! , hird leg and dactylus. a, b, c, d, e, f, h, j, k, scate a; g, I, seale b; i, seale e.

Synalpheus gracilirostris De Man

Fig. 26

Symathets gracilirostris De Man, 1910b. Tijdschr. ned. dierk. Vereen: 11 (4): 291; 1911, Sihoga Fxped. 39a' (2): 269, fig. 49.

Specimens examined: 1.11 mm male from BAU 44.
Diaghosis: Rostrom awl-shaped, reaching to middle of second antennolar article. Orbital teeth narrow and acute, reaching to middle of visible part of lirst antenoular article. Rostral base with orbitorostral process.

Visible part of first antennular article 1.5 times longer than second, second and third articles coual. Second antemular article as broad as long. Stylocerite reaching to last quarter of second antenmuar article. Squamous portion of seaphocerite narrow, reaching to end of third antennalar article, lateral spine much longer reaching about length of third article pasi that article. Carpocerite 4. 0 times as long as broad, reaching about half way from end of third artiche to end of squame. Basicerite with inferior spine as Iong as stytocerite, superior pine acute and prominent.
large chela 2.8 times as long as wide with fingers one-third total length. with acute tooth above dactylar articulation. Merus 2.7 times as kong as broad. superior margin terminating in an acute both, other margins inermous. Small cheta three times as long as broad, fingers shorter than palm. Carpus cup-shaped, 0.2 as long as chela merus similar to that of large chela.
(appal articles of second leg with a ratio: $10: 1: 1: 1: 5$
Merus of thid leg live times as long as broad. Carpus 0.5 as long as merus. with superior margin terminating in an obusc woth, inferior margin ferminating in a heave spine. Propodus as long as merus and bearing on inferior margin seven -pines and a pair distally. Dactylus bimguiculate, superior unguis a little longer but equal in thickness at base to inferior unguis.

I elson 2.0 times as long as posterior margin is broad. Posterolateral anglen Wighty projecting and acule, about half as long as outer posterior spine

Disenssion: De Man based his deseription on two specimens. We have one specimen from Australia and two from Zamboanga. Philippines; the species has not otherwise heen reported. Our three specimens are similar to each ether, and differ from De Man's deseription in four ways: 1) the inferior spine of the basicerite is atmost equal in lengh to the stylocerite instead of "much shorter than the sylocerite". 2) The superior spine of the basieerite of our specimen is prominent and acute while De Man states "upper angle subacute, but not spiniform". 3) The anterior margin of the chela terminates in an acute tooth rathe Han a "small, rather obtuse tuberele". 4) The lateral angles of the telson in our specimens are more produced.

All four chamateristics are known to be somewhat variable in the genus. bet in combination, especially with the marked difference in the inferior spine of the basicerite, they may indicate a new species. However, with a total of five specimens known and with variability so common among many species of syalpheids, we are deferring the application of a new name.

Biological notes: De Man's specimens were dredged from 54 metres, but our three specimens have come from dead coral in waters up to 2 metres deep. It is a small species with none of the known specimens longer than 11 mm .

Alastratian distribution: Our specinien came from Hayman lsland in the Whitsunday Group, Queensland

General distribution: Timor in Indonesia; southern Philippines.*

Fig. 26. Simatphems gracilionstis De Man. 11 mm male from BAU 44: a, anterior region. dorsal view; b, c, large chela and merus: d, small cheliped; e, second leg; f, g, third leg and enlargement of dactylus; h, tetson. b, c, d, c, f, scale a: g, scale b: d, h, scale e.

Synalpheus echinus sp. nov.

Fig. 27
Holorype: 17 mm femate from Trigg Island, near Perth. Western Ausbalia, collected by W. H. Butler. 20/14/61 (WM 92-65).
Peratypes: 1. 14 mm incomplete femate from same location as type: $1,28 \mathrm{~mm}$ ovigerous female from Carnac ls. collected by F.. P. Hodgkin (WM 51-65) ; 1. 17 mm male and 1 laree mutilated fenale from Rottoest Is. (WM 12822. 12823): 3 males and 3 females, $16-20 \mathrm{~mm}$ from lancelin Is., (BAll 3 and BAl| 4). All lacalities are near Perth, Western Australia.

Diagnosis: Rostrum narrow almost 3 times ats long as broad at base. reaching to end of first antemnalar article. Orbital teeth also slender but slighty more than half as long as rostrum : teeth divergent. Rostral base with orbitorostral process.

Visible part of tirst antemobar article 1.7 times as long as second article: second and third article of same length. Styfocerite reaching to near middle of second antennubar article. Squamous portion of scaphocerite marrow, as long as antennalar peduncle, outer spinc longer than carpocerite. Carpocerite subequal to antennular peduncle, 4.0 times as long as broad. Inferior spine of basicerite as long as stylocerite superior spine rachine to level of tips of orbital teeth.

Distal atick of third maxilliped bearing on distal two-hards of superomedial face an amature of $[0-20$ strong but clongate spines with blant or acute tips (the spines with blant tips may represent longer spines that have been broken). Tip of article carying a circtet of five spines, shorter and heavier than those of face.

Large chela stout, 2.8 times as long as broad, fingers ocenpying the distal third. Margin of palm above dactylar antebation k erminating in two rounded proiections. the superion larger. Merus 2.6 times as lorg as broad, fingers a lithe shorter than palm; fingers with random setac only: tips of both dactyl and potlex bearing two low cusps. Merus 2.7 times as long as broad, distosuperior margin bearing diangular tooth.

Carpal aticle of scond leg with a ratio: 10:2.0: $1.5: 1.5: 4.0$, midde artickes broater than long.

OPPOSITE

 region, dorsal view; b, c. large chela and entargement of distal section; d, merus large chela; e, f, small chela, merus and cappus: g, distal artiche of third maxilliped of hototype, lateral view (setac on medial face omitted); h, second leg; i, j, third leg and enlargement of dactyl; k, telson. Paratype, 17 mom made from BAU, 44 : I, anterior region, dorsal view: m, thitd maxilliped of snecimen from BAU 4 (setae on medial face omitted). Paralype, 27 mm lemate from WM St-56: n. anterior region, dorsal view. I4 mm female from BAL $4: 0$ anterion region of

Merus of third leg 3.7 times as Iong as broad, inermous. Carpus 0.4 as long as merus, superodistal margin extending as obtuse tooth, inferodistal margin terminating in strong spine. Propodus subequal in length to merus, bearing on its inferior margin five strong spines and a pair distally. Dactylus biunguculate. ungui cqually thick at bases, but with superior unguis a litte longer than inferior. Apex between ungui " V "-shaped.

Telson 1.6 times as long as posterior margin is broad; posterolateral angles acute and projecting, but much shorter than adjacent spine Dorsal surface of telson slightly concave along midline.

Inscusson: If Couteres groups are to be used, this species would probably best be placed in the Paulsoni Group.

As lan as we can determine this species differs from all other species of Sriolpheas in the armature of the third maxilliped. While most symalpheds have spines on the tip of the maxillineds, they have short bristles or long hairs on the imner face, but this species has spines also on the inner face. Unfortunately, the maxillipeds are usually not mentioned in specific deseriptions, so we cannot state conclusively that this is a unigue characteristic in the genus. Certainly no condition like this was reported by Coutiere in his thesis (1899: 171) or in any species deseription that we have seen: moreover, we have examined all those species in our collections and in the collections of the Smithsonian lastitution and found no parallel development. The species has two other characteristics which, while not unique, are rate enough to be noteworthy: the narowness of the rostrum. and the shortness of the carpocerite. The plate illustrates some of the differences we have noted in the development of the rostral front.

The specific name is from the Greek echinos and refers to the spines on the maxillipeds. The holotype and four paratypes will be deposited at the westem Australian Museum. Six paratypes will be placed at the Australian Museum.

Biological notes: There are no notes in the collection which indicate any unique habitat: all came from coral heads from 3 metres or less deep; the specimen from Carnac Island came from "reef platform". The specimens range from $17-28 \mathrm{~mm}$.

Australicm distrihution: All specimens in the collection calme from near Perth. Western Australia.

Synalpheus tumidomanus (Paulson)

Fig. 28
Alpheas tumidomamus Pautson, 1875, Invest. Crust. Red Sca (1): 101, pl. 13. fig. 2.

Synalphens tumidomanus Coutiere, 1905a, Fauna and Geog. Mald. and laccad. 2 (4): 876. pl. 73, fig. 14; 1909, Proc. I.S. natn. Mus. 36: 24, fig. 5. Banner \& Banner, 1968, Micronesica 4 (2): 275.

Synalpheas tumidomanus exilimamus Coutière, 1909, Proc. U.S. natn. Mus. 36: 10 Inote: the combination was proposed by Coutiere without explanation, and the name "exilimanus Paulson" evidently was substituted in crror for Piaulson's sracilimamus. 1875: 1021.

Syalphets hulutensis Coutiere, 1908: Bull. Soc. Philomath., Paris 11 (5): 202
Syalphens hulutensis hutulensis Crosnier \& Forest. 1966. Rés. Sci. Camp. Calypsor 27 (19): 297, fig. 30 .

Synalpheus mac-cullochi Coutiere, 1908a, Bull. Soc. Philomath., Paris IX. 11 (5): 203. Halc, 1927b, Trans. R. Soe. S. Aust. 51: 308.

Symatphens theophane De Man, 1911, Siboga IExped. 39a' (2): 261, pl. 10. hig. 44.

Syatpheas anisocheir Stebbing, 1915, Ann. S. Alr. Mus. 15: 86, pl. 23. Barnard. 1950. Ann. S. Afr. Mus. 38: 736, figs 139 a-d.

Synalpheus japonicus Yokoya, 1936, Jap. J. Zool. 7: 133, fig. 3.
Nec. Symalphens tumidommus Kubo, 1940a, J. Imp. Fish. Inst., Tokyo 3+ (1): 90, text lig. 11, 12 (S. hasilicrassas Coutiere)

Ner Symalpheus anisocheir Fourmanoir, 1958. Naturaliste malgache 10 (1-2) 116. fig. 4 (identity unknown).

Additional Australian Records: MeNeill, 1968, (a Barrier Reef Fxped. Sci. Rep. 7(1): 17. Low lsles.

Spectmens examined: 3 specimens from AC 29: 1, AC 30: 2, AC 35:
4. AM I: 1, AM 16: 1, AM, 31: 4. AM 35: 1, AM 60:1 AM65:7. AB 75:

1. AM 101: 2. AM 115: 6, AM 122: 1. AM 131; 2, AM 158: 2. AM 187:
2. AM 189; 2, AM 210: 2, AM 220; 2, AM 251; I, AM 253; 1, AM 255:
3. AM 256: 1, AM 264; 2, AM 273: 1. AM 305:2, AM 396: 1, AMF 4495 : 14, AM P 858: 2. AM P 2149; 1. AM P 3956: 2, АM P 4837; 1, AM P 486.3: 2. AM P 5491: I, AM P6308; 1. AM P 6353: 1, AM P 6488: 3, AM P6527: 1. AM P 6825: 6. AM P 8266;2. AM P 8701: 2, AM P 8970; 1, AM P 9072: 2. AM P 11187: 1, AM P 11272: 3. AM P 13562: 3. AM P 13565: 3, AM P 13582: 6, SMC 805: 17, VM 33: 17. VM 35: 1, WM 4765: 1, WM 52 65: 3. 7665 ; 3. WM 99-65: 2. WM 105-65; 3. WM 112-65: 2, WM 117-65: 1. WM 125 65: 4. WM 141 65: 1, WM 155 65; 3. WM 164 65: 11, WM 175-65; 2. WM 177-65; 8, WM 181-65: 2. WM 240-65; 4, WM 268 65: 3. WM $29765: 1$. WM 17360 .
Tahte 5. I'ariations in Sy nalpheus tumidomanus (Parlsom)

Characteristic	S. tumidemomus (from Paulson's description and figures)	9 specimens from Torres Straits. BAL 27	27 specimens from around Australia
Length, rostrum to antennular articles	Approaching end of first	Three-fourths first to onefourth second.	From one-half first to one-quarter second.
Length. orbitai teeth to rostrum	0.7 length, (from plate)	From 0.5100 .8 length.	From 0's to 0.9 length.
Length. stylocerite to antennular articles	Middle of second	Middle to near end of second.	Middle to near end of second
Length, squame to antennular articles	End of second (from plate)	Base to threc-fourths length of third.	Base to end of third.
Length. lateral spine of scaphocerite to antennular articles.	Fnd of third	Slightly shorter to slightly longer than third.	Slightly shorter to slightly longer than third.
Length, carpocerite to antennular articles ..	End of third	Surpasses by one-fourth to one-half length of third.	Surpasses by entire length of third.
length breadth ratio of carpocerite (viewed laterally)	$5 \cdot 2$ (from plate)	4.5-6.0.	4.()-6.().
Length inferior tooth basicerite to antennula articles.	(Not clear from plate)	Three-fourths length 10 end first.	From three-fourthe length first to middle second.
Superior tooth, basicerite	Short. acute	Acute angle, slightly projecting.	From rounded to projecting acute tooth.
length breadth ratio of large chela	$2 \cdot 7$ (from plate)	2.5-2.8. . .	2-3-3.0.
Nature of protrusion above dactslus, large chela.	Strong. rounded	From no protrusion to acute tooth.	From no protrusion to acute 100 h.
Length breadth ratio of small chela	Not given	$3 \cdot() 3.4$	$2 \cdot 7-3 \cdot 4$
Second leg carpus, ratio of tirst article to 4 following.	First longer than sum of four following.	First article from slightly shorter to slightly longer than sum of four following.	First article from slightly shorter to slightly longer than sum of four following.
Length breadth ratio of merus of third leg.	Not stated	$4 \cdot 0-4 \cdot 8$.	3.5-5.0
Posterolateral angles of tison	Angula: weeth half length of adjacent spines.	Acute angle only slightis projecting.	From almost a right angle to acute proiecting teeth.

Diagnosis: Table V sets forth the major diagnostic characters of S. tumidomamas with three exceptions: 1. The rostral base has an orbitorostral process. 2. The meri of the large and small chela are characterized by an acute tooth on the distosuperior margin. 3. The biunguiculate dactyli of the third legs have the superior unguis a little longer and thicker at the base than the inferior, and the noteh between the ungui is " V "-shaped, almost acute.

Discussion: The long and rather confused application of names to specimens of this species or species complex had been diseussed originally by Coutiere in several papers (1899, 1905, 1909), reviewed by De Man (1911), Holthuis (1952), Crosnier and Forest (1966), Banner \& Banner (1968) and Miya (1972). The problem appears to resolve itself at this time to the consideration of the appropriate name for, and extent of variation in populations of, three possibly separate species found in three separate faunal realms: The Indo-Pacifie, the tropical eastern Atlantic, and the tropical and subtropical castern Pacific. Holthuis has discussed the eastern Pacific form and has applied the name S. spinifrons (H. Milne-Edwards) to the species that Coutiere had once lumped under the name S. tumidomanus and later named S. Latastei. Holthuis did not discuss S. lockingtoni which may be related. Crosnier and Forest, considering the tropical Atlantic specimens, established two subspecies of S. hulutensis Coutiere and established a lectotype for the parent species from Coutiere's Maldive and Laceadive specimens. We, working with twenty-two specimens from the Marshall Istands and other central Pacific collections, pointed out the wide range of variation in characteristics previously considered to be of worth for specific identification and placed S. hululensis and S. theophane De Man in synonymy under S. tamidomanus (Banner \& Banner, 1968: 275).

Because of the difficulties that have been found in this group of nominal species, we have decided to use this large Australian collection to determine if our conclusions from the Marshall Islands were correct. We have augmented the study with a collection of twenty specimens from the Red Sea, Paulson's type locality. However, as we have no specimens from either the Atantic or eastern Pacific, we do not extend our conclusions to the species complexes of these other realms.

In our 1968 paper, we reported on the variation in six characteristics. Here we have considered 15 characteristies and selected nine specimens each from New South Wales, northern Australia, West Australia and southern Australia. The nine specimens from northern Australia were taken from a single collection from the Torres Straits to determine variation within a limited population: the others were to determine if there were enough differences in geographically separated populations to warrant their consideration as subspecies. The results are given in Table V.

The specimens from the Red Sea conformed well to Paulson's description in all points and did not show variation as great as did the specimens from Australia. Most had a strong superior tooth on the basicerite above the dactylar articulation of the large chela, and relatively strong posterolateral teeth on the telson. However, in this small collection variation was noted-for example, the posterolateral teeth on the telson varied from as long as Paulson depicted to as short as the lonsest from Australia. Thus, we believe that the population in the Red Sea shows the potential of variation we are reporting, but the variation is more muted.

These results confirm our earlier opinion that the species is very variable. and that S. hutulensis is a synomym of stamidomanos. The variation casily encompasses the Iectotype established for S. Autulensis hutulensis by Crosnier and Forest. We will leave to those authors the decision on the best way to treat their two Atantic subspecies, whether they should be continued as subspecies of S Inmidomanus or raised to specific rank. (We regret we were unable to refer to the important paper of Crosnier and Forest in our 1968 study, for we received our copy of their work when our paper was at the publisher in Japan.)

I wo other nominal species should be considered. The first was deseribed as Sympheas macrullochi by Couticre from the coast of "S. W. Australia". This species was distinguished from S. pathsoni Nobili by having cegs of greater volume and from S. Aumidomanus by the lack of strong booth on the basicerite and the lack of teeth on the posterolateral angles of the telson. Through the coutesy of Mme. Laturent of the Muséum National d’Histoire Naturelle in Paris we were able to examine seventeen specimens from Australia that Coutiere had identified as S. matallochif: six came from the type locality. five came from Nelson's Bay. and six came from an unspecified area in South Ausiralia. We have also examined six female specimens loaned to us by the South Australian Museum that Hale (1927b: 308) had reported as this species from Kangaroo Istand. South Nustralia. All specimens fell within the range of variation we have discussed for S . famidomanus and the species has been placed in synonymy to S. ammidomamus We should atso note that the use of egeg sie is not a good criterion for specien separation, for as Brooks and Herrick (1891: 377) first noted, poecilogony exist, in the Alpheidac, and as we point out (1968: 277) the eggs grow both larger and more elongate as the embyro matures. We observed this difference in both Coutieres specimens and in Hate's; in the latter of the five ovigerous femates. two specimens had conspicuously larger eges and in those eggs the eyenpots were large and dark.

The other species is S. anisocheir Stebbing (1915: 86) from South Africa. Barnard (1950: 736) suggested that it was closely related to S. hululensis. We could find no characteristies in the descriptions or figures that would separate this species from the range of variation that we had found for S. tumidomamus. The two characteristics somewhat emphasized by Stebbing (he compared his species to no other) were the disproportionate sies of the large and small chelae and the proportions of the articles of the second leg. These camot be used to dis tinguish his form from S. tumidomumus. Barnard (1950: 736) described and drew the orbitorostral process "Rostrum with ventral prolongation (tig. 139 e)" as a specific characteristic: we have compared his description to the process in our specimens and found them to be similar, if not identical (Banner \& Bamer. in preparation).

On the basis of the figures given by Fourmanoir of secemens he identilied as S. anistocheir, we cannot determine the species he was studying, but the form of the orbital teeth and chola indicate it may be in the genus Alphems which precludes the possibility that it is S. Itmidemanus.

OPIPOSITF

 a. scale a; l. p., scale b.

Upon studying specimens of S. tumidomanus in Japan, Miya (1972: 65) reached the conclusion that S. japonicus was also a synonym; he further accepts the variation we had deseribed in 1968 ats applying to the Japanese specimens.

Biological notes: Our specimens have been collected from the intertidal rone to waters up to slightly over 81 fathoms deep, from the heads of dead coral and from sponges. Our specimens ranged in size from $1(0-25 \mathrm{~mm}$.

Australian distribution: S. tumidomanus has been found off all shores of Australia and at Norfolk Island and I ord Howe Island. Tasman Sea.

General dismibution: In the Indo-Pacific the species is known (under various names) from South Africa: Red Sca; Persian Gulf: Ceylon; Maldive Archipelago: Singapore: Thailand: Indonesia; Philippines*; Japan and across the eentral Pacific to the Phoenix Archipelago. It has also been found on the Mediteramean coast of Israel. Whether it or closely related species occur in the Atlantic and eastern Pacific remains to be determined.

Synalpheus paraneomeris Coutière

Fig. 29
Synalpheas paraneomeris Coutière, 1905a, Fauna and Geog. Mald and Laccad. 2 (4): 872, pl. 71, fig. 7. Banner, 1953, Pacif. Sci. 7 (1): 40, fig. 13, 14; 1956. Pacif. Sci. 10 (3): 331, fig. 6.

Synalpheus paraneomeris halmaherensi; De Man, 1909a, Tijdschr. ned. dierk. Vercen 11 (2): 122.

Synalpheus paraneomeris praedabundus De Man, 1909a, Tijdschr. ned. dierk. Vereen 11 (2): 123.

Synalpheus paraneomeris prolatus De Man, 1911, Siboga Exped. 39a' (2): 241 [cf. Banner 1953: 43].

Syalpheus paraneomeris prasalini Coutiere, 1921, Trans. Linn. Soc. Lond. II. 17 (4): 415 , pl. 61, fig. 6.

Synalpheus paraneomeris seychellensis Coutiere, 1921, Trans. Linn. Soc. Lond. 11, 17 (4): 415, pl. 6I, fig. 7.

Synalpheus townsendi Coutière, 1909, Proc. U. S. natn. Mus. 36 (1659): 32「partim ef. Banner, 1953: 44].

Specimens examined: 2 specimens from AM 214: 4, AM 326; 10, BAU
10; 3, BAU 11: 3, BAl! 15: 3, BAU 16; 3, BAU 21: 1, BAU 29: 2, BAU!
30; 2, BAU 31: 5, BAU 32; 3, BAU 33: 1, BAU 34; 3, BAU 47: 2, BAU
48: 10, BAU 55; 2, BAU $57: 2$, BAU 58.
Diagnosis: Rostrum narrow and acute, reaching to near end of first antennular article. Orbital hoods trianguiar, acute to subacute, variable in length but not reaching beyond end of rostrum. Rostral base with orbitorostral process.

Second and third antennular article equal, slightly longer than broad: visible part of first article slightly longer. Stylocerite reaching from near base to near end of second antennular article. Lateral tooth of seaphocerite variable, longer than antennular peduncle; squamous portion variable in breadth and length. reaching to or beyond middle of third antennular article. Carpocerite usually 5.0 times as long as broad, reaching beyond end of third antemular article. Inferior spine of basicerite a little shorter than stylocerite, superior margin not produced.

Large chela subeylindrical, 2.6 times as long as broad, fingers occupying distal 0.3. Superodistal margin of palm at most slightly produced. Merus 3.0 times as long as broad, superior margin often produced into a small acute tooth. Small chela three times as long as broad, fingers shorter than palm, dactylus not broadened. Merus similar to that for large chela.

Carpal article of second leos with ratio: 10:1:1:1:3.
Merus of third legs four times as long as broad, unarmed. Carpus 0.4 as long as merus, distosuperior margin projected as tooth, inferodistal margin bearing spine. Propodus almost equal to merus, bearing $4-5$ slender spines on inferior margin and two distally. Dactylus biunguiculate, with inferior tooth usually
a litule shorter and broader at base than superior unguis. Dactylus often slightly expanded with inferior margin convex proximal to inferior unguis, as if it were a vestige of a third unguis.

Telson 2.2 times as long as posterior margin is broad, posterolateral margin forms right angles or slight rounded projections, inner pair of posterolateral spines long and slender, over twice length of outer pair. Spinules on upper surface small and lying posterior to middle.

Discussion: Although Coutiere in his original description remarked on the variation in some of the characteristics. he described two additional varieties and De Man described three varieties of the species. All were described on the basis of hut lew specimens. The junior author, first with 100 specimens from Hawaii (1953) and later with 90 specimens from the Marianas (1956) pointed out the wide range of variation found within the populations of this species and discarded the varietal names as they appeared to be merely designations of individuals within the normal span of variation. Collections studied tater made no changes in this assessment. In his carliest paper, the junior author also reported that the single broken specimen that Coutiere had reported from Hawail as S. townsendi, an Atlantic species, appeared to be S. paraneomeris.

The Australian specimens also show similar variability in proportions and have several not previously remarked upon. Thus, some from Australia have a slight rounded projection above the dactylar articulation on the large chela, a characteristic not reported from Hawaii or the Marianas. Two characteristics. variable in other populations, appear to be more fixed in the Australian specimens: first. the superior margin of the meri of the large and small chetac always projected as a small acute tooth in the Australian specimens. but only occasionally did so in the Hawaiian specimens; second, the inner pair of spinules of the posterion margin of the telson was consistently much longer than the outer pair in the Ausitralian specimens, while in other collections studed the inner pair at times was only slightly longer than the outer pair.

Miya (1972:54) pointed out that in the Japanese specimens of S. paraneomeris the posterolateral corners of the telson were spiniform ; a characteristic We have not observed in our collections. Further, his specimens do not appear to have the inferior margin of the dactylus of the third legs slightly convex proximal to the inferior unguis. Perhaps this may indicate a geographically isolated subspecies.

Biological notes: All the Australian specimens were taken from dead coral heads in water up to 15 ft , except for two specimens that were aken hy Haw at II fathoms. The deepest record for the species was the one identified by Coutiere as S. Townsendi, taken by trawl in Hawaii at 69 fathoms; however, as it was without major thoracic appendages, its identification was not certain.

Banner reported (1953: 41) "Colour typically olive brown to grey, but those living in heads of Pocillipora meandrina reddish". Yaldwyn in field notes (AM 326) stated "Body and appendages greenish, transparent with sattering of small red chromatophores. Eyes black; tips of fingers green and eges green". Our specimens ranged from $7-15 \mathrm{~mm}$ in length, mosi specimens being around 10 mm .

Alustralian distribution: All Australian specimens were collected from north eastern Australia and the Great Barrier Reef from near Cairns southward to off Cape Moreton, near Brisbane.

General distribution: Maldive Archipelago; Indonesia; Japan: Philippines*: Mariana; Caroline: Marshall: Gilbert; Fiji : Samoa: I ine and Hawaiian Islands. The species was not found in our Malayo-Thai collections.

 dorsal view; b, large cheliped: e small cheliped: d, second leg; e, f. third leg and entarged dactolus: g, tetson. b, e, d, e, scale a; a, f, g. scate b.

APPENDIX

Alpheids Associated with Crinoids

A number of species of alpheids, mostly synalpheids of the Comatularum group, are known to live upon the comatulid crinoids or feather stars. Some appear to be obligate symbionts; others appear to prefer the symbiotic association but may live freely: some appear to be on the crinoids by a matter of chance. As we have remarked in the Introduction (p. 277) we suspect that collection data may not show the true association, for the shrimp may be dislodged from the crinoid in the collecting, particularly in the hauling of a dredge. In some cases the collector may have even separated the shrimp from the host without noting the association in his locality notes.

The following Australian species are known to be associated with crinoids (for synonymy, see main text):

Athanas indicus (Coutière)
Synalpheus comatularim (Haswell)
Synalpheus stimpsoni (De Man)
Synalpheus carinatus (De Man)
Symalpheus demani Borradaile
In addition the Australian S. fropidodactylus which is morphologically closely associated with the first three species of Synalpheus maly also be associated with crinoids, for the only two specimens known were collected by dredging and may have been dislodged from a crinoid in the process. Of the non-Australian members of the specialized Comatularum group, S. odontophorus was reported originally by De Man (1911:208) from Indonesia and later by Miya (1972:51) from Japan in dredge hauls without any indication of symbiotic associations: however we have specimens yet unreported, from the South China Sea which came from crinoids. Thus in the Comatularum groun of Coutiere, five of the six presently recognized species are definitely, or may be, associated with crinoids. The sixth species of the group, S. albatrossi Coutiere, probably is not in such an association for it is known only from the Hawaiian Archipelago where shallowwater crinoids do not occur.

Of the two species reported from crinoids not in the Comatularum group. Athanas indicus (Coutière) and Synalphens demani, little can be said. Athanas indicus is normally associated with echinoids (see Part I, p. 329), but a specimen collected from Swains Reefs (AM 392) was reported to be taken from a crinoid. Synalpheas demani in Australian waters is known only from dredge hauls, but we (Banner \& Banner 1968: 274) have reported it from crinoids in the Marshall Fslands. Miya (1972: 62) has recorded that all of his Japanese specimens "were living in association with Comonthina schlegeli (Carpenter)".

It should be noted that Johnson (1902a: 49) lists Athanas jedanensis De Man. Syadpheus acanthitelsonis Coutiere. Syalpheas quadrispinosus De Man. and Alpheus paralcyone Coutiere as occurring in "crinoid grounds" and he suggests they may be symbionts upon the echinoderms; these species have not elsewhere been so reported. Finally a specimen of Alphens edwardsi (Audouin) was reported by C. Smalley ((S 31) as being upon a crinoid in Western Australia: we have not considered it here because obviously this is not the normal habitat for this well-known and often-collected species.

A number of authors have rentarked on the association of the shrimp with the crinoids, most especially Potts (1915a, b) working in Torres Straits. and A. H. Clark (1921) who not only reviewed all previous reports, but also added his own personal observations. Most of the observations were limited to S stimpsoni (named by Pots S. hrucei) and S. comatularum. According to Clark the shrinip are "semiparasitic commensals" which have "to a greater or less extent adopted the sucking up of food particles from the streams flowing down the ambulacral grooves of the crinoids to the mouth." Potts pointed out that the shrimp are afforded protection from predators by the crinoid which folds its arms over the dise-and the shrimp-when disturbed. Clark stated that the most heavily infested family of the crinoids are the large and shallow water comastreids of the Indo-Pacific, which, unlike many other lamilies of crinoids, lack plates and spines to cover the ambulacral grooves and thus protect their food supply.

While Potts was primarily concerned with color patterns, he had other observations on the biology of the shrimp (1915a): They live as mated pairs. normally on the dise facing towards the mouth. When disturbed they take refuge on the underside of the arms. They resist displacement by digeing into the flesh of the host with the hook-shaped dactylus of the small chela of S. comatularmm and by the sharp, curved biunguiculate dactyli of the third to fifth thoracic legs of S. stimpsomi. When disolaced, they will attempt to return immediately to the ir host, but if it is not available, they will shun light and approach any other objects, whether living subjects or not. If a group of them are kept in a glass dish, all will cling together. Potts also remarked on zonstion in the Torres Straits, with S. stimpsoni occupying the upper zone in the reaf and S. comatularum being dominant below 5 fathoms. (We have records of the latter species being collected intertidally.)

Potts pointed out that both species inhabit two species of crinoids, Comanthus. immorensis and comatula purpurea: the former crinoid species is extremely variable in color. ranging from pate green through banded to a dark green; the latter species is red. Potts observed that the shrimp had bright red and dark purple. almost black, chromatophores, and that (presumably by contraction of the chromatophores) the shrimp could become almost transparent. In almost all cases the color of the shrimp on any individual crinoid was adjusted to blend completely with the color of the host, usually in the form of pigmented longitudinal stripes against the transparent, or white, background. In a few cases he observed contrasting coloration which he interpreted to be that of a new arrival from a crinoid of a different color. He remarked that in his preservative mixture of formalin and glycerine, the purple pigment dissolved, but the red color remained fixed in the specimans. Clatk gave other similar examples of protective coloration.

Key to the species of alpheids known to live on or or suspected of living on crinoids as symbionts

1. Eyes dorsally and laterally exposed Athanas indicus (pt. I, p. 327)

- Eyes covered by orbital hoods (Symalphews)

2. (1) Dactylus of third leg biunguculate: without orbitorostral process 3
--. Dactylus of third leg triunguiculate: with orbitorostral processS. demani (p. 324)
3. (2) Distoinferior margin of third leg with tooth 4
Distoinferior margin of third leg inermous 6
4. (3) Dactylus of small chela crescentric, strongly hooked
S. comatularum (p. 289)

- Dactylus of small chela straight 5

5. (4) Fixed finger of large chela bearing strong, flat tooth on medial side

\qquad
S. odontophorus
--. Fixed finger of large chela with medial edge rounded, not projecting.
S. stimpsoni (p. 292)
6. (3) Rostral carina strong and continued almost to posterior end of carapace

Rostral carina slight and terminating anterior to eyes

Note: We recently were loaned a specimen of Syalpheus from a crinoid collected near Lizard Island, Queensland that is apparently new. We plan to describe it in Part III of this study.

GUIDE TO AUTHORS OF AUSTRALIAN MUSEUM MEMOIRS AND RECORDS

1. Scope

The Australian Musemm publishes in 1 m Records and Memoirs the results of orginal reseateh dealing with material in its collections or with subjects of interest to the Masemm, including taxonomic and gencral zoology, palacontology, anthropology, mineralogy, and related tiekls. Combihutions of wed afove average length are published in the Memoirs.

2. Submission of manuscripts

Manuseripts should be sent to the lititor, Records and Memors of the Ausaratian Museum. The original and one copy of the text must be submitted; the ather should retain one copy. Original artwork sould be retained by the author pending final aceptance of the paper for publication: wo copies of the illustrations must be submitted with the fext. Alternatively, good-quality photographic reproductions of the original artwork may be submitted. Papers will be reviewed by at least one referee before being considered for fina! acceptance. They must be in tinal form for publication so that changes at proof stage will be as lew as possible.

The mantucript including tables, headings, matees, legends fo figures, and literature cited-. must be clearly and nealy byewritten, double-spaced, on one side of bond or other good quality paper, and with 3 cm margins af round. Pages should be numbered consecutively. Tables and legends boflusirations. should be on separate pages at the end of the manuscript. The entire mamoseript should be securels rastenced together.

3. Presentation

Papers should be arranged as follows
(i) The title, which should be concise and specific. The higher ctassification of the group deati with should be indicated in the title of zoological papers; in patacontological papers the position of a local formation in the world scheme shoudd be indicated.
(ii) The author's name and professional address.
(iii) A summary not exceeding either 3 per cent of the text or 200 words and inteligrible to the reader without reference to the main text.
(iv) A list of contents may be included if the paper is very long.
(v) Introduction.
(vi) The man lext of the paper.
(vii) Acknowledgments.
(viii) References (see below).
(ix) Index (in the case of very long papers).

The approximate position of tables and figures should be indicated in pencil at the left-hand margin.
Only the names of genera and species should be underlined. Unkes indieated elsewhere in the text, or where nomenclature follows a generally accepted standard (which should be cited), the authority shoukd he cited when any specific name is used for the lirst time.

In taxonomic papers the short form (taxon, author, date, page) should be used in syonmmies and the full reference taken to the end of the paper. In synonymies a period and dash (.-.) shoubl separate the name of the taxon and the name of the author except in the case of the reference to the original description. Where new spectes ate described the location of the type matertal most be indicaled and Article 73 and assosiated recommendations of the International Code of Zoological Nomenclature should be followed. Dichotomous keys with contasting parts of couplets adjacent to cach other are recommended. In these only the tirst part of the couple should be numbered and the beginning of the second indicated with a dash at the teft-hand margin. Keys must not use serially indented cooplets.

4. Tables

Tables should be typed on separate sheets and numbered in arabic numerals. Headings should be ell-explanatory. Materiat in the text should not duplicate that in the tables. Duplication of information in tables and graphs should generally be avoided.

Tables should have the very minimum number of horizontal and vertical tines. Very targe or complex tables should be submitted in a form suitable for direct preparation of line flocks; such tables shoukl not exceed $14 \mathrm{~cm} \times 20 \mathrm{~cm}$ and numbers and letters shouk be as larse as practicable.

5. Illustrations

Line drawings, maps and graphs atre regarded as "figure" and are to be numbered comecolively; these numbers will be used in the tinal printed copy. Photographs are regarded as "plates": they should be numbered. but the numbers eventually assigned to them will follow the series in the volume of the Records: references to plate numbers in the text should therefore be carefully checked at proof stage.
figures should be drawn in blach indian ink on bristol board, good quality paper, tacing linen, or fainty blue-lined graph paper. Related diagrams should be grouped to form a single tigure suitabl: for eventual reduction to a size not execeding $14 \times m \times 20$ cm. Parts of figures should be labelled a, b. a efe (e.g., fig. la. Ho). The nameds) of the athores), the number of the figure and the intended reduction should be clearly marked on the back of the illustration and the arientation of all illustrations indicated.

Photographes souk be best-quality, glossy, with moderately high contrast, and mounted on white hourd.

All kegends to illustations should be submitted on pages separate from the fext and nol attached (o) the artwork.

6. References

References should be arranged aphabedially and shronologically. Tales of gournats shoud be abbrevated according to the Worde I ist of Scientific Periodicals (4he ed.) Titles of all references must be given in full. It will be assumed that the list of references has been ehecked for accuracy by the author. The following examples may be of assistance:
 Norfoth. 1962 63. J. Anim, Fiol. 35:43 53, 5 tahles, 2 figs.
Mayr. L.. I. G. Linstey, and R. 1. Usinger. 1953. Methods and mincaplen of systematio foology. MeGraw-llill. New York. Pp. ix, 328, 14 tables, 45 ligs.
Schone. H.. 19th. Complex behaviour. In T. H. Waterman (ed.), The physiology of Cruatacea. Vol 2: +655.50 .22 ligs. Academic Press. New York.

7. Proof:

 delas and anly crocolial corrections shouk be made. Authors ate repuested to pay particutar ationton whechins of numerical matter, mathematical symboh. list of names, and references.

8. Free coples

Authers recerse 50 copio free of darge. Additional copios maty be ordered at the time proots are returned.

9. Correspondence

 Sodney South, N.S.W. 2000, Australia.

