FAO SPECIES CATALOGUE

VOL. 13 MARINE LOBSTERS OF THE WORLD

An Annotated and illustrated Catalogue of Species of Interest to Fisheries Known to Date

The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy.
© FAO Rome 1991

Cover illustration: the Atlantic deep-sea lobster (Acantacharis caeca) in aggressive posture outside its burrow. Drawing by M. D'Antoni.

FAO SPECIES CATALOGUE

VOL, 13 MARINE LOBSTERS OF THE WORLD

An Annotated and Illustrated Catalogue of Species of Interest to Fisheries Known to date

prepared by
L.B. Holthuis

Nationaal Natuurhistorisch Museum
Leiden, The Netherlands

PREPARATION OF THIS DOCUMENT

Lobsters are among the most prized of fisheries resources and of signific a nt commerc ial interest in many countries. Because of their high value and esteemed culinary worth, much attention has been paid to lobsters in biological, fisheries, and systematic literature. The present volume represents a comprehensive treatment of the identific ation, taxonomy, distribution, biology and ecology of the world's lobsters that are of interest to fisheries.

The author of this catalogue, DrLB. Holthuis, is one of the world'sforemost authorities on crustaceans. He prepared the first volume in the FAO species catalogue series,"Shrimps and Prawns of the World" published in 1980. He also hascollaborated with FAO in the preparation of crustacean speciesidentific ation sheets for the eastem central Atlantic, the westem Indian Ocean, and the Mediterranean/Black Seas, and by revising the information on crustaceans formost of FAO's national field guides to commercial marine resources in Afric a and Asia. One of his areas of spec ialization is lobsters and since 1946 he has been the sole orsenior author for over 25 taxonomic artic les conceming this group; more than any other author, past or present. His work on lobsters has included the examination of specimens from the major museums of the world and extensive travels to examine and collect them firsthand.

Technical Editors: W. Fischer, L Garibaldi and K. Capenter, Fisheries Resources and Environment Division, FAO

Illustrators: M. D'Antoni and P. Lastrico, FAO, Rome
Page composition: G. Sciarappa-Demuro, FAO, Rome

Abstract

Holthuis, LB. FAO species catalogue. Vol. 13. Marine lobsters of the world. An a nnotated and illustrated catalogue of species of interest to fisheries known to date. FAO Fisheries Synopsis. No. 125, Vol. 13. Rome, FAO. 1991. 292 p.

Abstract

This is the thirteenth issue in the FAO senies of world-wide annotated and illustrated catalogues of major groups of organisms that enter marine fisheries. The present volume on marine lobsters includes 149 species in 3 infraorders, 10 families and 33 genera. There is an introductory section that supplies general remarks on the biology and fisheries of lobsters, a glossary of technical terms, illustrated keys to infraorders, superfamilies, families, subfamilies and species, and detailed accounts on species. Species accounts include illustrations of the species and their distributions, and information on scientific and vemacular names, types, distribution, habitat, biology, size, interest to fisheries, and relevant literature. Following the species accounts is a table of species by major fishing area, an index, and a bibliography. Two original contributions to nomenclature are presented in this volume. A new subgenus, Sagmariasus, is erected under the palinurid genus Jasus. In addition, the new name, Callianassa biffari, is proposed to replace the junior primary homonym C. affinis Holmes, 1900.

Distribution

Authors

FAO fisheries Officers
Regional Fisheries Councils and Commissions
Selector SC

TABLE OF CONTENTS

Page

1. INTRODUCTION

1.1 Plan of the Catalogue31.2 General Remarks on Lobsters 5
1.2.1 Morphology 5
1.2.2 Size 8
1.2.3 Habitat and Biology 8
1.2.4 Interest to Fisheries 8
1.3 Illustrated Glossary of Technical Terms 9
2. SYSTEMATIC CATALOGUE OF SPECIES 17
SUBORDER MACRURA REPTANTIA 17
Key to the three Infraorders and their Superfamilies 17
2.1 INFRAORDER ASTACIDEA 19
SUPERFAMILY NEPHROPOIDEA 19
Key to the Familyand Subfamilies of Nephropoidea 19
Code
2.1. Family Thaumastochelidae THAU 22
Key to Genera 22
Thaumastocheles 22
Key to Species 22
Thaumastocheles japonicus THAU Thau 1 23
Thaumastocheles zaleucus THAU Thau 2 24
Thaumastochelopsis THAU Thaup 24
Thaumastochelopsis wardi THAU Thaup 1 25
2.1.2 Family Nephropidae 26
Subfamily Neophoberinae 26
Acanthacaris NEPH Acant 26
Key to Species 26
Acanthacaris caeca NEPH Acant 1 26
Acanthacaris tenuimana NEPH Acant 2 28
Subfamily Thymopinae 29
Key to Genera 29
Nephropides NEPH Nephid 30
Nephropides caribaeus NEPH Nephid 1 31
Nephropsis NEPH Nephps 31
Key to Species 32
Nephropsis acanthura NEPH Nephps 12 35
Nephropsis aculeata NEPH Nephps 1 36
Nephropsis agassizii NEPH Nephps 37
Nephropsis atlantica NEPH Nephps 4. 38
Nephropsis carpenteri NEPH Nephps 5 39
Nephropsis ensirostris NEPH Nephps 6 41
Nephropsis malhaensis NEPH Nephps 7. 42
Nephropsis neglecta NEPH Nephps 8. 42
Nephropsis occidentalis NEPH Nephps 9 43
Nephropsis rosea NEPH Nephps 10 44
Nephropsis stewarti NEPH Nephps 3 45
Nephropsis suhmi NEPH Nephps 11 46
Nephropsis sulcata NEPH Nephps 13. 47
Thymops NEPH Thym 48
Thymops birsteini NEPH Thym 1 48
Thymopsis NEPH Thymop 49
Thymopsis nilenta NEPH Thymop 1 49
Subfamily Nephropinae 50
Key to Genera 50
Eunephrops NEPH Euneph 53
Key to Species 53
Eunephrops bairdii NEPH Euneph 1 54
Eunephrops cadenasi NEPH Euneph 2 55
Eunephrops manningi NEPH Euneph 3 55
Homarus 57
Key to Species 57
Homarus americanus NEPH Horn 2 58
Homarus capensis NEPH Horn 3 59
Homarus gammarus .NEPH Horn 1 60
Metanephrops NEPH Metan 61
Key to Species 61
Metanephrops andamanicus NEPH Metan 2 66
Metanephrops arafurensis NEPH Metan 3 67
Metanephrops armatus NEPH Metan 15 67
Metanephrops australiensis NEPH Metan 4 68
Metanephrops binghami NEPH Metan 1 70
Metanephrops boschmai NEPH Metan 5 71
Metanephrops challengeri NEPH Metan 6 72
Metanephrops formosanus NEPH Metan 7 73
Metanephrops japonicus NEPH Metan 8 74
Metanephrops mozambicus NEPH Metan 16 75
Metanephrops neptunus NEPH Metan 9 76
Metanephrops rubellus NEPH Metan 10 77
Metanephrops sagamiensis NEPH Metan 11 78
Metanephrops sibogae NEPH Metan 12 79
Metanephrops sinensis NEPH Metan 13 80
Metanephrops thomsoni NEPH Metan 14 81
Metanephrops velutinus NEPH Metan 17 82
Nephrops NEPH Neph 83
Nephrops norvegicus NEPH Neph 1 83
Thymopides NEPH Thy 85
Thymopides grobovi NEPH Thy 1 85
2.2 INFRAORDER PALINURIDEA 87
Key to recent representatives of the three Superfamilies of Palinuridea 87
SUPERFAMILY ERYONOIDEA 88
2.2.1 Family Polychelidae POLY 88
SUPERFAMILY GLYPHEOIDEA 88
2.2.2 Family Glypheidae 88
GLYPH
Neoglyphea 89
GLYPH Neog
Neoglyphea inopinata 89
SUPERFAMILY PALINUROIDEA 90
Key to Families 90
2.2.3 Family Palinuridae PALIN 91
Key to Genera 91
Jasus PALIN Jas 95
Subgenus Jasus 95
Key to Species 95
Jasus (Jasus) edwardsii PALIN Jas 2 97
Jasus (Jasus) frontalis PALIN Jas 3 98
Jasus(Jasus) lalandii PALIN Jas 4. 99
Jasus (Jasus) novaehollandiae PALIN Jas 5. 100
Jasus (Jasus) paulensis PALIN Jas 1 101
Jasus (Jasus) tristani PALIN Jas 6 103
Subgenus Sagmariasus 104
Jasus (Sagmariasus) verreauxi PALIN Jas 7. 105
Justitia PALIN Just 107
Key to Species 107
Justitia japonica PALIN Just 3 108
Justitia longimanus PALIN Just 1 109
Justitia mauritiana PALIN Just 2 110
Linuparus PALIN Lin 111
Key to Recent Species 111
Linuparus somniosus PALIN Lin 1 112
Linuparus sordidus PALIN Lin 2 113
Linuparus trigonus PALIN Lin 3 114
Palinurus PALIN Palin 115
Key to Species 115
Palinurus charlestoni PALIN Palin 2 116
Palinurus delagoae PALIN Palin 4 117
Palinurus elephas PALIN Palin 1 119
Palinurus gilchristi PALIN Palin 5 120
Palinurus mauritanicus PALIN Palin 3 121
Palinustus PALIN Palinus 123
Tentative Key to Species 123
Palinustus mossambicus PALIN Palinus 2 124
Palinustus truncatus PALIN Palinus 1 125
Palinustus unicornutus PALIN Palinus 3 126
Palinustus waguensis PALIN Palinus 4 126
Panulirus PALIN Panul 128
Key to Species 128
Panulirus argus 133
PALIN Panul 1
Panulirus cygnus 134
Panulirus echinatus PALIN Panu14 136
Panulirus gracilis PALIN Panul 13 137
Panulirus guttatus PALIN Panu12 138
Panulirus homarus PALIN Panu16 139
Panulirus inflatus .PALIN Panul 14 141
Panulirus interruptus PALIN Panul 15 142
Panulirus japonicus PALIN Panul 16 143
Panulirus laevicauda PALIN Panul 3 144
Panulirus longipes PALIN Panul 7 145
Panulirus marginatus PALIN Panul 17 147
Panulirus ornatus PALIN Panu18 148
Panulirus pascuensis PALIN Panul 18 149
Panulirus penicillatus PALIN Panul 9 151
Panulirus polyphagus PALIN Panul 10 152
Panulirus regius PALIN Panul 5 153
Panulirus stimpsoni .PALIN Panul 19 155
Panulirus versicolor PALIN Panul 11 156
Projasus 158
Key to Species 158
Projasus bahamondei 158
Projasus parkeri 159
Puerulus 161
Key to Species 161
Puerulus angulatus 162
Puerulus carinatus 163
Puerulus sewelli 164
Puerulus velutinus. 165
2.2.4 Family Synaxidae 166
Key to Genera 166
Palibythus 166
Palibythus magnificus 167
Palinurellus 168
Key to Species 168
Palinurellus gundlachi 168
Palinurellus wieneckii 170
2.2.5 Family Scyllaridae SCYL 171
Key to Genera 171
Subfamily Arctidinae 173
Arctides SCYL Arct 173
Key to Species 174
Arctides antipodarum SCYL Arct 1 175
Arctides guineensis SCYL Arct 2 176
Arctides regalis SCYL Arct 3 177
Scyllarides SCYL Scyld 178
Key to Species 178
Scyllarides aequinoctialis SCYL Scyld 2 183
Scyllarides astori SCYL Scyld 7 184
Scyllarides brasiliensis SCYL ScyId 8 185
Scyllarides deceptor SCYL Scyld 9 186
Scyllarides delfosi SCYL Scyld 10 187
Scyllarides elisabethae SCYL Scyld 5 188
Scyllarides haanii SCYL Scyld 11 189
Scyllarides herklotsii. SCYL ScyId 4 190
Scyllarides latus SCYL ScyId 1 191
Scyllarides nodifer SCYL Scyld 3 192
Scyllarides roggeveeni SCYL Scyld 12 193
Scyllarides squammosus SCYL Scyld 6 194
Scyllarides tridacnophaga .SCYL Scyld 13 195
Subfamily Ibacinae 195
Evibacus SCYL Ev 195
Evibacus princeps SCYL Ev 1 196
Ibacus SCYL Ib 197
Key to Species 197
Ibacus alticrenatus SCYL Ib 2 200
Ibacus brevipes 201
Ibacus brucei 202
Ibacus ciliatus 203
lbacus novemdentatus 204
lbacus peronii 205
Parribacus 207
Key to Species 207
Parribacus antarcticus 209
Parribacus caledonicus 211
Parribacus holthuisi 212
Parribacus japonicus 213
Parribacus perlatus 214
Parribacus scarlatinus 215
Subfamily Scyllarinae 216
Scyllarus 216
List of Species 216
Scyllarus arctus 217
Scyllarus batei 219
Scyllarus bertholdii. 221
Scyllarus brevicornis 222
Scyllarus martensii 223
Scyllarus pygmaeus 224
Scyllarus rugosus 225
Subfamily Theninae 227
Thenus 227
Thenus orientalis 227
2.3. INFRAORDER THALASSINIDEA 229
2.3.1 Family Thalassinidae THAL 229
Thalassina THAL Thal 229
Thalassina anomala THAL Thal 1 229
2.3.2 Family Upogebiidae UPOG 232
Upogebia UPOG Upog 232
Upogebia capensis UPOG Upog 233
Upogebia major UPOG Upog 2 234
Upogebia pugettensis UPOG Upog 3 235
Upogebia pusilla UPOG Upog 4 236
Upogebia wuhsienweni UPOG Upog 5 238
2.3.3 Family Callianassidae CALL 239
Callianassa CALL Call 239
Callianassa australiensis CALL Call 1 241
Callianassa biffari CALL Call 2. 242
Callianassa californiensis CALL Call 3 244
Callianassa gigas CALL Call 4 245
Callianassa japonica CALL Call 5 246
Callianassa kraussi CALL Call 6 248
Callianassa petalura CALL Call 7 249
Callianassa turnerana CALL Call 8 250
Callianassa tyrrhena CALL Call 9 252
3. LIST OF SPECIES BY MAJOR MARINE FISHING AREAS 254
4. BIBLIOGRAPHY 265
5. INDEX OF SCIENTIFIC AND VERNACULAR NAMES 277

1. INTRODUCTION

This cata logue intends to include all those species of marine lobsters that are of interest to fisheries, according to the following three criteria: (i) all species known to be used for food, (ii) species known to be sold for bait and as subproducts, (iii) species not exploited at present but considered by experts to be of potential commercial value. The last category includes deep-sea forms which during exploratory fishing cruises were found to be suffic iently abundant, large enough in size, and suffic iently accessible to fishing gear so that a fishery for them might be profitable.Edible speciesfound in markets asan admixture to the main catch are included, even if they only make up a negligible percentage of the catch.

The classification adopted here is a traditional one. The marine lobsters are considered to form part of the suborder Mac rura Reptantia Bouvier, 1917, which is recognized here as one of the four suborders of the order Decapoda Latreille, 1802. The Decapoda form one of the many orders of the Class Crustacea, Brunnich, 1772*. Aside from the Macrura Reptantia, there are the following three suborders in the Decapoda: Macrura Natantia (shrimps), Anomura (hermit crabs, etc.) and Brachyura (crabs). In several modem handbooks(e.g. Bowman \& Abele, 1982, in Bliss, Biology of Crustacea,1:21-25) the Decapoda are divided into two suborders, the Dendrobranchiata (conta ining the Penaeidea) a nd the Pleocyemata (containing all the other Deca poda). The suborderMac rura Repta ntia is disc arded in this modem classific ation, but the infra orders Asta cidea, Pa linuridea and Thalassinidea are kept assuch;the fomersubordersAnomura and Brachyura are demoted to infraorders and are on the same level as the Astacidea, Palinuridea and Thalassinidea. The closerlink between these last 3 infra orders as indic ated in the traditional classific ation is ignored in the modem classification. From the infraorders down, the classification of the Macrura Reptantia is the same in the two systems.

The present catalogue is largely based on data obtained from the literature and often it is diffic ult to evaluate the reliability of published data. Sometimes a uthors working far from a dequate library facilities have diffic ulty in correctly identifying the speciesthey encounter in the field. Moreover, the disc overy of new species, the more correct delimitation of known species, or even the introduction of nomenc latural changes, may cause confusion and lead to the use of scientific namesthat are incorect by modem standards, orapply to more than one species. For instance, recent taxonomic investigations showed that the name Panulirus japonicus had long been used for specimenswhich now prove to belong to five distinct species (P. japonicus, P. marginatus, P. pascuensis, P. cygnus a nd \mathbf{P}. longipes), and the subspecies \mathbf{P}. longipes femoristriga. Some a uthors used the name longipes for what is now recognized as P. cygnus and P. longipes, considening them distinct from P. japonicus. Therefore old rec ords of \mathbf{P}. japonicusand \mathbf{P}. longipeshave to be treated with some reserve, although several of these specieshave a quite restricted distribution, and their provenance may give a clue to their true identity. A similarsituation involves the species of the subgenusJ asus (J asus), which in the older literature were considered to be a single species, orat the most two, but which now are recognized as six distinct species (J. lalandii, J. frontalis, J. edwardsii, J. paulensis, J. tristani, and J. novaehollandiae). Quite recently all but one of the species of Nephrops were transferred to the genus Metanephrops, with the result that the na mes of those species had to be changed accordingly. All such name changes, due to changing taxonomic views, are unavoidable and will also occur in the future. Name changesdue to purely nomenclatural reasonshave become quite rare in Macrura Reptantia.

[^0]The question whether the generic name of the common lobster should be Homarus or Astac us wasa controversial topic in the end of last century, but has since been definitely decided. Some well known specific nameshave been changed for reasons of priority, e.g., Palinurus vulganis Latreille, 1804, to Palinurus elephas (Fabric ius, 1787), and Homarus vulgaris H. Milne Edwards, 1837, to Homarus gammarus (Linnaeus, 1758), but most of these problems have been straightened out long ago and no longer cause any difficulties.

In the nomenclature of the spiny lobsters, there is a curious source of considerable confusion. This is the similarity of the two generic names Palinurus Fabricius, 1798, and Panulins White, 1847, for two closely related genera. White (1847), when splitting the genus Palinurus into three genera, chose two new taxa names that are anagrams of Palinurus, viz., Panulinus and Linuparus. Linuparus is suffic iently different from either of the other names that it caused no difficulties, but Panulirus and Palinurus were frequently confused. Pfeffer (1881) tried to solve the problem by replacing Panulirus by a new generic name Senex, but this action is against the rules of nomenclature and Senex lapsed. Panulirus, being the valid name, has to be used, and at present it is generally accepted and has become firmly entrenched in carcinological nomenclature.

In taxonomic literature (with which I am best acquainted) information on the economic importance of species is rather scarce and of a very general nature. Relevant fisheries literature, being less fa miliar to me, was often difficult to locate. Notwithstanding the great help that I received in obtaining literature and information from Dr W. Fisc her, FAO, Rome and from fishery a uthorities all over the world, I may have overlooked important sources.

ACKNOWLEDGEMENTS

Thanks are due to Dr Walter Fischer, Fishery Resources and Environment Division, FAO, Rome, for his enormous help with the composition of this catalogue. It was through his insistence that keys a nd illustrations were added, against my strong objections; the result shows how right he was. Ms M. D'Antoni and MrP. Lastrico had the thankless task of supervising and producing the illustrative work, often an almost impossible undertaking when they had to work from published photographs in which details could hardly ornot at all be discemed; it is due to their capability and patience that most of the figurescame out so well. The outlay, editing and word processing of the catalogue wasdone by DrLuca Garibaldiand MsGiulia Sciarappa-Demuro and I am most indebted to their expertise and for their patience with me.

A serious attempt has been made in this catalogue to ascertain the location and condition of the type specimens of the speciestreated, including those of their synonyms. Forthis project I received the most valuable help from the following persons, whose names are followed by the abbreviations used for the names of their institutes (see p. 4): Dr Maya Deb (ZSI), Prof. J acques Forest (MP), Dr D.J .G. G riffin (AMS), Dr H.-E. Gruner (ZMB), DrJ .M.C. Holmes (NMI), Dr R.W. Ingle (BM), Mme E. Lang (MZS), DrE.A. Lazo-Wasem (YPM), Dr Raymond B. Manning (USNM), Mrs M.G. van der Merwe (SAM), Mr D. Platvoet (ZMA), Dr Earle E. Spamer (ANSP), Dr R.J. Symonds (ZMC), Dr Ludwig Tiefenbacher (ZSM), Dr Michael Türkay (SMF), Dr Torben Wolff (UZM), Dr John C. Yaldwyn (DWM); I am very grateful to all for giving so much of their time to find the required information.

From various persons I received information about lobsters, both oral and written, published and unpublished, which I have used in this catalogue. I am most grateful to all, and should like to mention especially MrJ.D. Booth, Fisheries Research Centre, Wellington, New Zealand (information on Jasus and Projasus), Prof. Phaibul Naiyanetr, Chulalongkom University, Bangkok, Thailand (occurrence, use and vemacular names of Thai lobsters), Mr T.J. Ward, CSIRO, Hobart, Ta smania, Australia (unpublished information on Linuparus) and DrTakao Yamaguchi, Aitsu Marine Biological Station, Kuma moto University, Japan (J apanese names of the J apanese lobsters).

1.1 Plan of the Catalogue

The presentation of each systematic category always includes the valid scientific name, reference to the original 'description, synonyms, and keys to, or lists of, the lower categories concemed. A brief diagnosis is given for Infraorders. The information by species is a ranged under the following paragraphs:
(1) Scientific Name: The heading foreach species gives the valid name followed by the reference to its original description.
(2) Synonyms: All known synonyms of the valid name are listed, as well asthe new combinations made with the valid and synonymous specific names. In the new combinations, the scientific name and the name of the author who first used the combination are separated by a dash (-) while in the synonyms no such interpunction is present.inc orect identifications of the species are not listed asa rule, but, in caseswhere the inc orrect name has frequently been used for the species, it is briefly disc ussed.
(3) FAO Names: English, French and Spanish namesfor each species, to be used primarily within FAO, were selected on the basis of the following criteria: (i) each name must apply to one speciesonly, in a worldwide context; (ii) the name must conform to FAO spelling nomenclature; (iii) the name should not lead to confusion with crustaceans other than lobsters; e.g., the word langostino is not used for Spanish FAO names, although in some Spanish speaking countries it isemployed for some lobster species; the reason for this is that in Spain and Venezuela the word langostino is used for some spec ies of shrimp. Wherever possible, the denominations selected were based on vemacularnames (orparts of names) already in existence within the areas where the species is fished. FAO names are of course not intended to replace local species names, but they are considered by FAO necessary to overcome the considerable confusion caused by the use of a single name for many different species, or several names for one species.

In some casesprevious FAO names have been changed in thiscatalogue. In most instancesthiswas done to obtain more consistency at the generic level. In the present catalogue, all species of one genushave the same na me provided with an appropriate prefix foreach: e.g., all species of the genusJasusare named "rock lobster", Jasus edwardsii having the name red rock lobster. These "generic" FAO names as used in this catalogue are the following (in systematic sequence): pincer lobster (the genera of Tha umastochelidae:
Thaumastocheles and Thaumastochelopsis), deep-sea lobster (Acanthacaris), lobsterette (all genera of Thymopinae: Nephropides, Nephropsis, Thymops, Thymopsis), lobster (all genera of Nephropinae: Eunephrops, Homarus, Metanephrops, Nephrops, Thymopides), fenix lobster (Neoglyphea), rock lobster (Jasus), furrow lobster (Justitia), spear lobster (Linuparus), spiny lobster (Palinurus and Panulirus), blunthom lobster (Palinustus), jagged lobster (Projasus), whip lobster (Puerulus), fury lobster (the genera of Synaxidae: Palibythus and Palinurellus), Spanish lobster (Arctides), slipper lobster (Scyllarides), fan lobster (Evibacus a nd ibacus), mitten lobster (Pamibacus), loc ust lobster (Scyllarus), flat lobster (Thenus), mud lobster (Thalassina), mud shrimp (Upogebia), ghost shrimp (Callianassa).
(4) Type: The type locality of the species (and of its synonyms) is provided. As a rule the indic ation of the type locality as given in the original publication is verbally quoted; if necessary, to this quotation explanatory or corrective detailsare added. The depository of the primary types is listed;if possible the present depository is given, but if that is unknown the depository at the time of the original description is indicated.
(5) Diagnostic Features: This topic is omitted for almost all the species presented in this catalogue bec ause the key is c onsidered suffic ient for identification. For spec ies of the genus Scyllarus, Thalassina, Upogebia, and Callianassa however, where no key is included, diagnostic features are included to aid in Identification.
(6) Geographical Distribution: The entire known geographic range of the species is given, inc luding areas where it is not of commercial importance. Of each species, the known range is illustrated on a map. These mapsare only meant to give a general impression of the distribution of the species.
(7) Habitatand Biology: The known depth range of the species, and information on types of substrate and salinity of its habitat are given here. In most instances this information is rather incomplete. Also, if a vailable, the most important data on the biology of thisspecies are mentioned.
(8) Size: The known totallength (tl.), as well asthe known carapace length (cl.) of both males and fema les, are provided where possible. Total length is mea sured from the tip of the rostrum to the extremity of the telson, but due to the curvature of the body this measurement usually is not very accurate. The carapace length genera lly includes the rostrum, but very often the actual extent of this length (whether measured from the tip of the rostrum, or from the posterior margin of the orbit to the posterior margin of , the carapace) is not indicated in the literature. Where total and carapace lengths are both given, the respective figures do not nec essa rily perta in to the same specimens but may have been obtained from different sources. As often the available information on the size attained by some species is very meagre, the figure cited here may be well below the actual maximum size, or may be a size ra rely attained.
(9) Interest to Fisheries: This paragraph gives an account of the a reas where the species is fished and of the nature of the fishery; its importance is either estimated (minor, moderate, major, or potential) or actual figures of annual landings are provided. Data on utilization (fresh, dried, cooked, frozen, canned, etc.) are also given where a vailable.Here too, the quality a nd quantity of the a vailable information vary considerably with the species.
(10) Local Names: These are the namesused locally forthe various species. The localspecies denomination is preceded by the name of the country concemed (in capital letters), and, where necessary, followed (in parentheses) by the geographical specific ation orby the language of the transcribed vemacular names. When known, the most commonly used vemacularname is listed first after each country, otherwise the namesare in alphabetical order. The catalogue was compiled from many sources, but where vemacular na mes are concemed it doubtlessly is incomplete. Where a large number of local names are used for one species in a restric ted area, only the most common are included.
(11) Literature : Reference is made to those papers giving good descriptions a nd illustrations of the species or treating it extensively (e.g., Species Synopses published by FAO a nd CSIRO, FAO Species Identification Sheets, etc.), or giving a helpful account of it.
(12) Remarks: Important information conceming the speciesand not fitting in any of the previous paragraphs is given here.

Abbreviations used : The following abbreviationsare used to indic a te the depositories of type material: AMS: The Australian Museum, Sydney, Australia. ANSP: The Academy of Natural Sciences of Phila delphia, Phila delphia, Pennsylvania, USA. BM: British Museum (Na tural History) (now: The Natural History Museum), London, England, UK. DMW: Dominion Museum (now: National Museum), Wellington, New Zealand. MCZ: Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA. MNRI: Museu Nacional, Rio de J aneiro, Brazil. MOM: Institut Oceanographique, Monaco. MP: Museum National d'Histoire Naturelle, Paris, France MT: Det Kongelige Norske Videnska bers Selskabs Museum, Trondheim, Norway. MZS: Musée Zoologique de I'Université, Stra sbourg, France. MZT: Museo ed Istituto di Zoologia Sistematica dell'Universitá di Torino, Italy. NMI: National Museum of Ireland, Natural History Division, Dublin, Ireland. NMW: Naturhistorisches Museum (formerly K.u.K. Naturhistorisches Hofmuseum), Wien, Austria. NTOU: National Taiwan Ocean University, Keelung, Taiwan QM: Queensla nd Museum, South Brisba ne, Qld, Austra lia. RMNH: Rijksmuseum van Natuurlijke Historie (now: Nationaal Natuurhistorisch Museum), Leiden, The Netherlands. SAM: South African Museum, Capetown, South Africa. SMF: Natur-Museum Senckenberg, Frankfurt, Gemany. TRN: Taiwan Fisheries Research Institute, Keelung, Taiwan. UMML: University of Miami Marine Laboratory (now: Institute of Marine and Atmospheric Science, University of Miami), Miami, Florida, USA. USNM: United States National Museum (now: National Museum of Natural History), Smithsonian Institution, Wa shington, DC, USA. UZM: Universitetets Zoologiske Museum, Copenhagen, Denmark. WAM: Westem Australian Museum, Perth, Westem Australia, Australia. YPM: Peabody Museum of Natural History, Yale University, New Haven, Connecticut, USA. ZMA: Zoologisch Museum, Universiteit van Amsterdam, Amsterdam, The Netherlands. ZMB: Zoologisches Museum der Humboldt-Universitat, Berlin, Germany. ZMC: University Museum of Zoology, Cambridge, England, UK. ZMH: Zoologisches.Museum und Institut, Hamburg, Gemany. ZML: Zoologisches Museum, Lübeck, Germany. ZMUG: Zoologisc hes Museum der Universität, Gottingen, Gema ny, at present on permanent loan to Natur-Museum Senckenberg, Fra nkfurt am Main, Gema ny. ZSI: Zoologic al Survey of India, Calc utta, India. ZSM: Zoologische Sta a tssa mmlung, München, Ba va ria, Germa ny.

1.2 General Remarks on Lobsters

1.2.1 Morphology

Even though the various major groups of lobsters show obvious differences in general appearance (see Fig. 1), their basic morphology is essentially the same

Nephropoidea Nephropidae
Meta nephrops andamanic us

Palinuroidea
Synaxidae
Pa linurellus wieneckii

Fig. 1. Major types of lobsters, showing differences in shape

The body of a lobster consists of two recognizable parts: the cephalothorax (=the entity formed by the fusion of cephalon, or head, with the thorax) with its appendages, and the abdomen (=tail) with its appendages(Fig. 2).

Fig. 2 Schematic illustration of the body and appendages of a lobster (Nephropoidea)

The 14 somites (orbody-segments) of the cephalothorax (the first 6 forming the cephalon, the last 8 the thorax) are fused and only in a few placesthere are visible indic ations of the lines between the somites. Each somite carmies one pair of appendages. These appendages are the following: Somite 1 ($=$ ophthalmic somite) camies the eyes, that are usually movable and consist of a stalk, formed by one ortwo segments, the distal of which ca mies the pigmented comea with visual elements;the eyes sometimes are reduced, viz., the comea may lack pigment or visual elements, such a reduced functionless eye may even be immovably fused with the body or be altogether absent. Somite 2 (=antennular somite) camies the a ntennulae, each of these consisting of a three-segmented peduncle carying two flagella, the length of the flagella often is of taxonomic importance; the antennulae sometimes are called "first antenna", like the antennae or second antennae they are tactile organs. Somite 3 (= antennal somite) cariesthe antennae (orsec ond antennae), which consis of a peduncle of 5 segments and a single flagellum. Through fusion of the segments with one a nother or with the body, the number of actually visible peduncular segments is smaller than 5 . The flagellum may be supple or whip-like, or (e.g., in Palinuridae) may be very stiff and strong;in the Scyllaridae the flagellum is transformed to a single plate-like segment, which makes the antennae six-segmented. In some speciesthere is scaphocente or antennal scale attached to the second segment of the peduncle. Somites 4 to 9 (i.e., the last 3 cephalon somites and the first 3 of the thorax) camy the mouth parts, appendages which have a function with the dissection and ingestion of food. Somite 4 camies the mandibles, strongly calcified, often molar-like organsthat are used forbreaking up the more solid food particles, and for chewing. Somites 5 and 6 camy the maxillulae (or first maxillae) and maxillae (or second maxillae) respectively, both are flat leaf-like organs. Somites 7 to 9 (= thoracic somites 1 to 3) camy the first to third maxillipeds, the first is leaf-like like the maxilla, the second and third are more leg-like, especially the third. Somites 10 to 14 (=thoracic somites 4 to 8) camy the five pairs of pereiopods or true legs. The first pereiopod, and sometimes also the second and the third, often (but not always) ends in a chela or pincer. The first leg usually is the largest of the true legs. The legsthat do not have pincers are indicated aswalking legs asthey are mainly used for locomotion.

Dorsally the cephalothorax is encased by the carapace, a single shield-like cover, which extendsall the way from the eyes to the last thoracic somite, and sometimes projects beyond the eyes as a na row median rostrum. Laterally, the carapace extendsto the bases of the legs, enclosing the branchial chamberwhich isa space between the body and the carapace housing the branchia orgills, and situated above the bases of all legs. In some groups, part of the antennular somite is visible dorsally asa triangular plate in front of the anterior margin of the carapace. In the Palinuridae, this so-called antennularplate may camy spines, the number and a mangement of which is of taxonomic importance. In some genera of Palinuridae, the lateral margins of the antennular plate are ridge-like, and swollen, forming a stridulating organ with a process on the innermargin of the antennal peduncle, which rubs overthis ridge; when the animal movesits antennae in a certain way, a rasping sound is produced by thisorgan.

Ventrally, the cephalothorax shows, between the basal parts of the appendages, a central plate, the thoracic stemum, on which the lines between the thoracic somites are usually indicated as grooves. In the females, the sexual openings are visible on the basis (the sixth segment of the leg counting from the tip) of the third pereiopods, in the males these openings are on the basis of the fifth pereiopods. This difference usually is the characterthat most easily distinguishes male and female lobsters.

The abdomen consists of six separate somites (numbers 15 to 20 on Fig. 2), which are not fused, but movably connected with each other. Each somite is surrounded by a chitinous a mour. the dorsal part is called tergite, the ventral part, stemite, and the two lateral parts, pleura (sing. pleuron). The combined abdominal stemites form the abdominal stemum, the combined abdominal tergites, the abdominaltergum. The pleura usually are downwarddirected lateral plates, covening extemally the pleopods. The shape and omamentation of the pleura is of taxonomic interest. The appendages of the first 5 abdominal somites (numbers 15 to 19) are the pleopods or swimmerets; they are implanted on the borderline between the stemite and the pleuron. In the male, the first and second pairof pleopods may be transformed into copulation organs, the so-called copulatory stylets, which are often stiff and of characteristic shape. The other pleopodsusually consist of a single-segmented peduncle carying two leaf-like appendages at the top. The pleopodsmay be reduced oreven entirely lacking on some somites. The sixth abdominal somite (=somite 20, being the last body segment) bears the tail fan, which consists of a pair of uropods and the unpaired telson. The uropods actually are the sixth pair of pleopods; they are rather wide and well calcified and usually about as long as the telson. The telson is a plate-like median appendage of the sixth abdominal somite, and sometimes it is considered to represent the seventh abdominal somite. The tail fan, when spread out, can be used for propulsion.

Important taxonomic characters are provided by the carapace (shape, surface sculpturation, spinatibn), eyes (absent, reduced or well developed, position of the orbits), antennulae (length of flagella), antennae (size, shape, dentition, and shape, length and structure of the flagellum), a ntennular plate (number and a arangement of spines, presence or absence of a stridulating organ), pereiopods (whether or not chelate, size and structure of chelae), thoracic stemum (general shape, shape of anteriormargin, presence orabsence of tubercles or spines), and abdomen (dorsal sculpturation, shape of the pleura, shape of the tail fan, number of pleopods). Also the colour, and especially the colourpattem of the speciesmay be of great help in rapid identification in the field.

1.2.2 Size

The largest Crustaceans are found among the lobsters. The Americ an lobster (Homarus americanus) has been reported to attain a total body length of 64 cm , while the Green rock lobster (Jasus vemeauxi) may reach a total body length of 60 cm . Several other species of Pa linuridae reach sizes between 40 and 50 cm . The smallest lobsters are found among the Scyllaridae: e.g., adult specimens of Scyllarus martensii, reach a total body length of 2.5 cm .

1.2.3 Habitat and Biology

Apart from the freshwatercrayfishes (superfamilies Asta coidea and Parastacoidea, which are not treated in this catalogue), all lobsters are marine animals, only a few species enter brackish water. Marine lobsters are found in practic ally all temperate and tropical seas (between about 65\%N and 60ㅇ), being most numerous in the tropics. They occur from the intertidal zone all the way to the deep sea (the deepest record being from almost 3000 m depth). Many species prefer a rocky substrate with cavities for shelter, but others are found on muddy or sandy bottoms in which they may dig their own burrows.Eelgrass meadows also form a habitat for some species.

The sexes in lobsters are mostly separate, although cases of hemaphroditism (both natural and abnomal) are known. The males impregnate the females (sometimes with the help of the copulatory stylets of the first abdominal somites), and in some species, spematophores, visible as black or transparent flat masses, are deposited on the female'sthoracic stemum. The females produce eggs, which are camied on the pleopodsand which usually form a conspic uous mass under the abdomen. After hatching, the larvae pass through several, usually pelagic stages, before molting to the postla rva which is most often benthic. The larvae often bear very little resemblance to the adults, e.g., in the Palinuridea, where the larvae (phyllosoma) are small, flat and perfectly transparent. Larvae are sometimes found faroffshore, but the importance of ocean curents in the zoogeography of the lobsters has often been grossly exaggerated.

The greaterpart of the lobsters seem to be omnivores and scavengers, but few detailed observations are available on feeding habits. Some species are attracted by dead fish put as bait in lobstertraps, but others are hardly ever caught in such traps. The Thalassinidea are mostly detritus feeders. Some lobsters also eat live animals; e.g.,
Scyllarides tridacnophaga has been observed to attack, open and eat spec imens of the giant clam Tidacna.

1.2.4 Interest to Fisheries

Lobsters are among the most highly esteemed seafood delicacies. The world catch of lobsters recorded in 1988 (FAO Yearbook of Fishery Statistics, 1990) exceeded 205000 tons, of which about 127000 tons corresponded to true lobsters (Family Nephropidae), about 78000 tonsto spiny lobsters (Fa mily Palinuridae) and about 2100 tons to slipper lobsters (Fa mily Scyllaridae). Although the greatest number of commercial species occurs in tropical waters, the largest lobster catches come from cold-temperate regions like the northwestem Atlantic (Fishing Area 21) with 62000 tons, and the northeastem Atlantic (Fishing Area 27) with 58000 tons. Species of genera like Homarus (about 64000 tons in 1988), Jasus (about 14000 tons) and Panulirus (about 56000 tons) form the subject of specialized fisheries and are the basis for important industries. Other spec ies (like Nephrops, Metanephrops and Palinurus) often form an important part of mixed catches (e.g. with shrimps), and are sold separately on markets. Many species cannot be obtained in great quantities, but the size of the specimens makes the capture and sale of single individuals profitable locally; in tourist areas such specimens are often sold directly to resta urants, hotels, etc. Several of the deep-sea species need specially equipped ships for their capture, and at present most are not commercially exploitable because of the high operating costs, but better knowledge of their biology and ecology might make them of commercial interest in the future. The species occuring on flat (muddy or sandy) bottom can be obtained by trawls] but a high percentage of lobsters is taken with lobster pots or other traps. Diving and spearing of shallow-water species is mostly done for local consumption or as a sport; spearfishing of lobsters at night with the light of torches, is a traditional way of fishing throughout the tropics. Species burrowing in sand or mud of the intertidal zone can often be captured by digging, or with yabbie pumps or slum guns (see p.242).

Since in all lobsters the tail is well developed, the abdominal muscles form the main edible part of the animal. In some Nephropids, the large clawsprovide enough meat to justify the rather laborious job of cracking the usually very heavy shell of these appendages. The Nephropoid and Pa linuroid lobsters are considered a delic acy almost everywhere. They are used almost exclusively for human consumption, seldom as bait. The Thalassinoidea, on the other hand, are only rarely used as food, but farmore often as bait.

1.3 Illustrated Glossary of Tec hnical Terms

Abdomen - The posterior part of the body (tail) of a lobster consisting of 6 well disc emable somites with their a ppendages, and including the tail fan (Figs 2,3).

Fig. 3 Abdomen (tail) in lateral view
Antenna (pl. a ntennae) -The appendage of the third cephalon somite, consisting of a five-segmented peduncle and a flagellum (Figs 2,4,6,9,11,14). Through fusion of the segments with the body or with each other, the peduncle may seem to consist of fewer segments. The flagellum is usually multi-a rticulated, it may be supple or very stiff; in the Scyllaridae the fla gellum is transformed into a single plate-like segment, similar to the peduncular segments. The antenna sometimes is named"second antenna", and the antennula, "first antenna". Both, the antenna and the antennula are tactile organs (feelers).

Antennal angle - An a ngular curve on the anterior margin of the carapace just below the orbit. On this place, the a ntennal spine (q.v.*), if present, is impla nted.

Antennl flagellum, see antenna

Antennalplate - Sometimes used for antennular plate (q.v.).

Antennalsomite - The third somite of the body (Fig. 2) (at the same time the third cephalon somite). It ca mies the antennae.

Antennal spine - A spine on the a nterior margin of the carapace just below the orbit (Fig. 5).

Antennula (pl. antennulae). - The appendage of the second cephalon somite, consisting of a threesegmented peduncle and two flagella (Figs 2,4,6,9, $11,14)$. The length of the flagella in some groups is of taxonomic importance. The antennula also is called first antenna; the antenna then is named second antenna.

Antennular plate, see a ntennular somite.
Antennular somite - The second somite of the body (Fig. 2) (at the same time the second cephalon somite). It camies the a ntennulae (Figs 4,6). Sometimes the dorsal surface of the antennular somite is visible in front of the carapace and between the bases of the antennae asa triangularplate, the so-called antennularplate, which in Palinuridae may be a med with dorsal spines or spinules, and which in some genera has the lateral margins swollen and forming part of a stridulating organ (q.v.) (Fig 4). The antennular plate sometimes is referred to a s a ntennal plate or inter-a ntennal plate.

Fig. 4 Antennular somite of a palinurid lobster (left antenna and eye omitted)

Anterolateral teeth - In Scyllaridae, the teeth of the lateral margin of the carapace, in front of the cervical incision (Pig. 6).

Arthrobranch, see branchium.
Basis- The sixth segment of a pereiopod, counted from the tip of the leg; it is situated between the ischium and the coxa (Fig 7,12). See pereiopod.

Branchial carina - A longitudinal carina over each lateral half of the carapace, in Scyllaridae extending from the orbit backward and bisected by the cervical groove into an anterior and a posterior part (Fig. 6,29).

Branchial chamber - The space between the thoraxand the lateral part of the carapace above the bases of the legs. The respiratory water current is pumped through the full length of the branchial chamber by action of some of the mouth parts.

[^1] glossary

Branchiostegal spine - A spine on the a nterior margin of the carapace below the antennal spine (Fig. 5).

Branchium (pl. branchia) - Gill. The gills are found on and nearthe bases of the thoracopods in the branchial chamber. They are whitish, plumiform organs that are placed on the epipods (the podobranchia), at the artic ulation of the leg with the body (arthrobranchia), or on the body itself (pleurobranchia) (Fig. 12). Water is pumped through the branchial chamber and gas exchange takes place through the thin wall of the gill fila ments.

Carapace, or dorsal shield (Figs 5,6) - A shield-like lateral extension of the thoracic somites, which covers the cephalothorax dorsally and extendsfrom the eyes to the posterior margin of the last thoracic somite. It is cylindrical or angular, and laterally fits snugly against the bases of the pereiopods, enclosing the branchial chamber above the bases of the pereiopods. The carapace may end anterodorsally in a rostrum which is placed between the eyes. The structure, pubescence, sculpturation (grooves and spines) of the carapace are of taxonomic importance.

Fig. 5 Lateral view of a nephropid carapace

Fig. 6 Schematic dorsal view of right half of scyllarid carapace and cephalic appendages showing various regions, spines, grooves, teeth, etc.

Cardiac tooth - In Scyllaridae, the median tooth on the dorsal surface of the carapace immediately behind the cervical groove (Fig. 6). Sometimes the tooth is low and knob-like, and then may be indic ated ascardiac knob.

Carina (pl. carinae) - Ridge or crest.
Cappus - The third segment of a pereiopod counted from the tip of the leg; it is situated between the propodus and merus (Figs 7,12). See pereiopod.

Cephalic - Belonging to the cephalon (q.v.)
Cephalon, orhead - In the Decapoda, the cephalon is formed by the first 6 somites of the body, and is fused with the 8 thoracic somites to the cephalothorax. The first cephalic somite (=the ophthalmic somite) camies the eyes, the second (= antennular somite), the antennulae, the third (= antennal somite), the antennae, the fourth, the mandibles, the fifth, the maxillulae, and the sixth, the maxillae (Fig. 2).

Cephalothorax - The a nterior 14 somites of the Decapod body, consisting of the 6 cephalon somites and the 8 thoracic somites (Figs 2,9,11,14). These 14 somites are fused to a single entity and the division between them can only rarely be obsenved (e.g., on the thoracic stemum). As each of the somites bears a single pair of appendages, the position of the fused somites can be ascerta ined by the position of these appendages. See also cephalon and thorax. Sometimes, but incorectly so, the term cephalothorax is used instead of carapace.

Cenvical groove - An often deep, transverse groove over the middle of the carapace, the lateral parts of which are usually curved forward (Figs 5,6).

Cenvical incision - An incision on the lateral margin of the carapace in Scyllaridae at the point where the cervical groove would meet that margin (Fig. 6).

Chela (pl. chelae), or pincer (Figs 7,9) - A sc issor-like organ caried by many lobsters on the first pereiopods, sometimes also found on some or all of the other pereiopods, sometimes entirely lacking. The chela is formed by the last two segments of the leg, viz., propodus and dactylus, a nd consists of a palm and two fingers. The upper or movable finger is formed by the dactylus, which a riculates with the propodus at the end of the palm; it opposes the fixed finger, which is immovably connected with the palm and forms with it the propodus. The opposing edges of the two fingers, the cutting edges, may camy teeth. The presence or absence of chelae, as well as their shape, size and omamentation, can be of great taxonomic value. The Nephropoidea have chelae on the first three pairs of pereiopods, the first of which usually is very large. In the Palinuroidea the first 4 legs have no true chelae, but the females of most species have a small chela on the fifth pereiopod. The Thalassinidea sometimes have a true chela on the first and second pereiopods, but often they only have a subchela (q.v.).

Chelate - Carying a chela orpincer.

Cheliped - A leg camying a pincer or chela (Figs 2,7); e.g., the first three pereiopods in Nephropidae are chelipeds.

Fig. 7 Schematic illustration of a cheliped

Copulatory stylets - The first pleopod of the male in several Nephropoidea, which has been transformed into an often slender, rigid organ that plays a role in the copulation (Fig. 8).

Fig. 8 First pair of pleopods of Homarus transformed into copulatory stylets

Comea - The distal part of the eye that camies the visual elements and is usually pigmented (Figs 2,4).

Coxa -The basal segment of a pereiopod, the seventh counted from the tip of the leg; it is followed by the basis (Figs 7,12).

Crushing claw - The larger first chela of some Nephropidae, in which the teeth on the cutting edge are wide and molar-like (Fig. 9). The crushing claw is used to crack molluscs and other hard objects.

Fig. 9 Anterior part of cephalothorax of Homarus (dorsal view)

Cutting claw - The smaller first chela of some Nephropidae, in which the cutting edges are semated, having a single row of na rrow sharp teeth (Fig. 9). This claw is used for cutting and breaking. It usually forms a pair with the crushing claw (q.v.).

Dactylus - The ultimate segment of a pereiopod; in a chela the dactylus is the movable finger (Figs 7,10,12, 16).

Fig. 10 Dactylus and propodus of a walking leg

Diaeresis - A transverse artic ulation in the distal part of the exopod of a uropod. The diaeresis is visible as a complete or incomplete line, sometimes with a row of small spinules along its anterior margin; the outer margin of the exopod of the uropod may have a spine or tooth at the spot where the'diaeresis joins it (Fig. 17). The presence or absence of a diaeresis is of taxonomic importance.

Distal - Farther away from the body (or centre of the body). The distal part of an appendage is its tip, i.e. the part farthest away from the articulation of the appendage with the body. The distal part of the abdomen is the tail fan, i.e. the part farthest away from centre of the body. Opposite term: proximal.

Endopod, or endopodite - The inner branch of a biramous leg (Figs 2,12,15,17). Most, or all appendages can be derived from a biramous leg, which consists of a peduncle of 2 or 3 segments, camying two appendages, the endopod and the exopod. In the thoracic appendages of the lobsters, the exopod has disappeared or is present as a reduced flagellum-bearing organ, while the distal 5 segments of the pereiopods represent the endopod. In most pleopods and in the uropod the bira mous construction of the appendage is still clearly apparent, and here the exo-and the endopod can be of about the same size. Opposite term: exopod.

Epipod - A usually small, oval or elongate leaf-like appendage on the outer margin of the first segment (coxa) of a thoracopod (Fig. 12). Sometimes the epipod camies a gill, the so-called podobranch.

Epistome - The median area on the ventral surface of the cephalothorax situated between the anteriormargin of the oral field and the bases of the antennae and antennulae (Fig. 11).

Fig. 11 Anterior part of cephalothorax of Nephrops (ventral view)

Exopod, or exopodite - The outer branch of a biramous appendage (see underendopod) (Figs 2,12,15,17). In the lobsters, the exopod is absent from the pereiopods, but still present in the maxillipeds where it forms an often flagellum-carying appendage of the endopod. In most pleopodsand the uropods the exopod isabout aslarge as, or sometimes even larger than, the endopod. Opposite term: endopod.

Eye - Organ of vision. A pair of eyes is placed on the first somite (= first cephalon somite). In most cases the eye is movably connected with the body and consists of a stalk of one or two segments, the distal of whic c camies the comea (Figs 2,4,9,1 1). The comea (q.v.) consists of the optical elements and usually is pigmented. In some species the eye is reduced, the optic al elements may be few or entirely absent, and also the pigment can be absent; the eye then usually becomes small and bulletshaped and may even become immovably fused to the body.

Fixed finger, see chela.

Ragellum (pl. flagella) - A usually whip-like, multiarticulated appendage of the antennula or the antenna, implanted at the top of the peduncle (Figs 2,6). The antenriula carmes two flagella, the antenna one. In most .Nephropoidea the antennal flagellum is flexible and whip-like, in most Palinuridae it is rather rigid and may be spinulate. In the Scylla ridae, the flagellum is reduced to a single large plate, which looks as if it were the 6th segment of the antenna (Fig. 6). Flagella are also found on some of the exopods of the mouth parts (Fig. 12).

Frontal hom - In Palinuridae, a large, and broad, often curved tooth, that is placed on the anteriormargin of the carapace just behind and above the eyes. The frontal homsusually are the largest teeth on the carapace and are directed over the orbit (Figs 4,14).

Gastric tooth - In Scylla ridae, a tooth in the median line of the carapace before the cervical groove. It usually is placed rather close to the cenvical groove and may be preceded by the pre-gastric tooth (q.v.) (Fig. 6).

Gastric tubercle - A tubercle on the dorso-median line of the carapace of some Nephropidae, situated between the base of the rostrum and the cenvical groove (Fig. 5).
Gill, see branchium.
Head, see cephalon.
Hepatic groove - A groove in the anterolateral part of the carapace branching off from the lateral part of the cervical groove and directed forward (Fig. 5).

Interantennal plate, see a ntennular somite

Intermediate carina- A longitudinal carina over the posterior part of the carapace behind the cervical groove, placed between the median carina and the branchial carina (Fig. 29)

Intestinal teeth or tubercles - The median row of teeth (ortubercles) on the carapace between the post-cervical groove and the posteriormargin of the carapace (Figs $6,14)$.

Ischium - The fifth segment of a pereiopod counted from the tip of the leg; it is situated between merus and basis (Figs 7,12). See pereiopod.

Lateral carina - A longitudinal carina overthe posterior part of the carapace behind the cenvical groove. The lateral carina is situated between the, branchial carina and the lateral margin of the carapace (Fig. 29).

Mandible - The first of of the mouth parts, located on the fourth somite (= cephalon somite 4), near the opening of the mouth (Fig. 2). It is a sturdy, heavily chitinized organ consisting of one piece that ends in a row of teeth and has a tubercular, molar-like area; it camies a usually three-segmented palp. It is used for breaking up and chewing the food.

Marginal posterior ridge of the carapace - The ridge that forms the extreme posteriormargin of the carapace, often becoming lessdistinct laterally (Figs 5.14).

Maxilla, or second maxilla - The third of the mouth parts, placed on the sixth somite (this is the sixth, and last, cephalon somite) (Fig. 2): Like the maxillula, and in contrast to the mandible, the maxilla is a flat and flexible organ.

Maxilliped - The three maxillipeds (first, second, and third) are appendages of somites 7 to 9 (=thoracic somites 1 to 3) (Fig. 2) and are considered to belong to the mouth parts because of their role with the ingestion of food. The first maxilliped is flat and leaf-like, somewhat similar to the maxilla; the second and the third, espec ially the latter, are more leg-like in sha pe (Fig. 11).

Maxillula, or first maxilla - The second of the mouth parts, being the appendage of the fifth somite (= fifth cephalon somite) (Fig. 2). It is sma Il, flat and flexible and placed close to the mandible.

Median carina - In Nephropidae the longitudinal dorsomedian carina of the carapace behind the cervical groove (Fig. 29)

Merus - The middle segment of a pereiopod, the fourth counted from either end (see pereiopod) (Figs 7,12).

Mouth parts - A general term for the appendages of somites 4 to 9 ($=$ cephalon somites 4 to 6 and thoracic somites 1 to 3) (Fig. 2). They are the, often small, appendages preceding the often large first pereiopods, and are placed around and behind the mouth opening on the ventral side of the body (Fig. 11). They include in backward sequence: the mandible, maxillula, maxilla and the first, second and third maxillipeds. They all play a role in the dissection and ingestion of food.
Ophthalmic somite - The first somite (= first cephalon somite) (Fig. 2). It camied the eyes.

Oral field - The usually sunken, median area on the a nterior part of the ventral surface of the cephalothorax, conta ining the mouth parts (=oral parts) (Fig. 11).

Orbit - The cavity in which the eyes are implanted. In many species, the orbit is only defined by the postorbital margin, which forms part of the anterior margin of the carapace; in those cases, the orbit is open a nteriorly (Fig. 5). In some Scyllaridae the anterior margin of the carapace practically surrounds the eye and the orbit is then closed or almost closed (Fig. 6).

Palm - The part of the chela, or pincer, that bears the fingers. It is part of the propodus, the rest of the propodus forms the fixed finger (Fig. 7).

Peduncle, see antenna, a ntennula, pleopod and'uropod.
Pereiopod, a lso written pereopod or peraeopod - The thoracic appendages behind the mouth parts, i.e. the a ppendages of somites 10 to 14 (= thorac ic somites 4 to 8) (Figs 2,12). The pereiopods consist of seven segments, these are, from proximal to distal: coxa, basis, ischium, merus, carpus, propodus, and dactylus (Fig. 12). The pereiopodscan be divided into chelipeds (those that camy a chela, Figs 2,7) and walking legs (those that do not, Figs 2,10).

Fig. 12 Schematic illustration of a thoracopod
Phyllosoma or phyllosome - The pelagic larva of Palinuroidea, in which both the cephalothorax and the abdomen appear as glassy transparent, nearly circ ular, very thin and flat discs (Fig. 13). These larvae are so different from the adults that they originally were described undera separate genus without any connection with the Palinuroidea.

Fig. 13 Phyllosoma lanva (Panulirus gracilis) (from J ohnson, 1971)

Pleopod - Appendage of any of the first 5 abdominal somites, usually formed by ah unsegmented peduncle which camies two branches usually formed of a single flat, leaf-like and oval segment (Figs 2,3,15). The outer of these branches is the exopod, the innerthe endopod. The pleopodr may be reduced or entirely absent from some somites, the endopod may have an appendix. In some species, the pleopods of the first or first two abdominal somites may be transformed into rigid copulatory stylets (Fig. 8), which play a role during copulation. In femalesthe pleopodsmay be largerand wider than in males, especially when the females camy eggs. The eggs are fastened to the pleopods and are camied as a conspic uous mass under the abdomen, the mass being protected on the outer side by the pleopods.

Pleurobranch, see branchium.
Pleuron (pl. pleura)- The lateral part of the chitinous ring that surrounds each somite, the dorsal part being the tergite, the ventral the stemite (Figs 3,15). The pleura of the abdominal somites aie often well developed and show aslateral plates that are directed downward and protect the pleopods; together with the stemites they may form a gutter-like cavity on the lower surface of the abdomen, which holds the pleopodsand the eggs. The pleura may be eitherlarge, rounded or triangular, or small and short. Their sculpturation, shape and spination are important taxonomic characters.

Podobranch, see branchium.
Postcenvical groove - A roughly transverse groove on the carapace in Scyllaridae, some distance behind and roughly parallel to the cervical groove (Fig. 6).

Postcenvical incision - An incision on the lateral margin of the carapace in Scyllaridae, behind the cervical incision and usually slightly closer to it than to the posteriorend of the carapace (Fig. 6). The cervical and postcervical incisions may divide the lateral margin into 3 parts.

Postcervical spine -A spine on the dorsal surface of the carapace, placed immediately behind the cervical groove (Figs 5,6).

Postcenvical teeth or tubercles - In Puerulus, the median row of teeth or tubercles on the carapace between the cervical and intestinal grooves (Fig. 14).

Fig. 14 Cephalothorax of Puerulus (dorsal view, pereiopods omitted)

Posterolateral teeth - In Scyllaridae, the teeth of the lateral margin of the carapace placed behind the postcervical incision (Fig. 6).

Postorbital margin - Part of the anterior carapace margin which defines the orbit (Fig. 5).

Postorbital spine - A spine on the carapace placed at some distance behind the orbital margin (Fig. 5).

Postrostral carina - A median ridge on the dorsal part of the carapace, which extends from the base of the rostrum backward, often to the posterior margin of the carapace (Figs 5,6).

Postrostral spines - Spines in the dorsomedian part of the carapace placed immediately behind the base of the rostrum, either in the median line or submedially (Figs $5,14)$.

Post-supraorbital spine - A spine placed at a short distance behind the supraorbital spine on the carapace (Fig. 5).

Pregastric tooth - In Scyllaridae, a tooth in the median line of the anterior part of the carapace (before the cervic al groove). It is placed before the gastric tooth and behind the rostral tooth (Fig. 6).

Propodus - The one but last segment of a pereiopod (q.v.), situated between the dactylus and the capus (Figs $7,10,12,16$). In a chela the propodus forms the palm and the fixed finger.

Proximal - Closer to the body (orcentre of the body). The proximal part of an appendage is its base, i.e. the part closest to the body. The terms proximal and distal can be used regardless of the position in which the appendage is directed, while tems like ventral, dorsal, anteriorand posterior in such a movable organ may be confusing.

Puerulus stage - The first postla rval stage of Palinurid lobsters. So named before the postlarval development of the Palinuridae was known; these animals were incorectly considered to belong to the genus Puerulus.

Rostral tooth, see rostrum.
Rostrum - A prolongation of the median part of the anterior carapace margin, which projects forward between and often beyond the eyes (Figs $5,6,9,11$). The rostrum can be of various shapes; in lobsters it is usually dorsoventrally depressed and often bearsteeth. In many species the rostrum is absent or reduced to a single spine orangle (e.g., in Palinuroidea); in most Nephropoidea it is well developed. In Scyllaridae it is hardly notic eable, but forthe presence of a tooth (rostral tooth) or tubercle (Fig. 6).

Scaphocerite - A scale-like appendage of the antennal peduncle, which is inserted on the outerpart of the distal margin of the second peduncular segment (Figs 9,11). The scaphocente is generally considered to be the exopodite of the antenna. It usually is small and may be a med with teeth. In some species it lacks altogether.

Sculpturation-The presence of grooves, ridges, spines, teeth, tuberclesorgranules on the exposed parts of the body.

Segment - A single part of an artic ulated unit. In the present catalogue, the term "segment" is only used for the segments of the appendages, the body segments are always indicated as "somites" (q.v.). A pereiopod (q.v.) has seven segments.

Somite or body segment -Any of the 20 segments into which the body is divided (Fig. 2). Each somite is surrounded by a chitinouscover, the dorsal part of which is temed tergite (q.v.), the ventral part stemite (q.v.) and the lateral parts, pleura (singular. pleuron, q.v.) (Figs 3,15).

Fig. 15 Schematic cross-section through an abdominal somite

Spermatophore - A viscous mass, containing the spematozoa embedded in a secretion from the spem duct,' which during copulation is deposited by the male on the thoracic stemum of the female in some lobsters. In the Palinuroidea the spematophores may be visible as black, tar-like or transparent gelatinous deposits covering the posterior part of the female stemum.

Stalk, or peduncle (q-v.), see eye.
Stemite - The ventral part of the chitinous ring that surounds each somite (the other parts are the dorsal tergite and the two lateral pleura) (Figs 8,15). Together, the various stemites form the stemum, e.g., the thorac ic stemum is the sum of the thoracic stemites.

Stemum, see stemite.
Stridulating organ - An organ formed by two parts of the body that produce a sound rubbing against each other (Fig. 4). In some Palinurid genera, the lateral margins of the antennular plate are ridge-like and thickened; a projection of the antennal peduncle rubs over this ridge when the antenna is moved in a special way,thereby producing a rasping sound, which evidently is a means of communication.

Stylet, copulatory, see copulatory stylet.
Subchela - An incomplete chela, in which the dactylus does not oppose a fixed finger, but, when the chela is closed, strikes against a broadened part of the propodus (Fig. 16).

Fig. 16 Subchela (Justitia)

Subdorsal carina - A ridge at either side of the middorsal line of the carapace, placed close to it and running parallel with it (Fig. 5). The subdorsal carinae are always paired.

Submarginal posterior groove of the carapace - An often deep groove parallel to the posteriormargin of the carapace and separated from it by the marginal posterior ridge (Figs 5, 14).

Supraorbital spine - A spine on the carapace placed obliquely above and somewhat behind the orbit (Fig. 5).

Swimmeret, see pleopod.
Tail, see abdomen.
Tail fan-A fan-like organ at the end of the abdomen, consisting of the telson, flanked on either side by the uropods (Figs 3,17).

Fig. 17 Schematic illustration of tail fan
Telson - A median appendage at the end of the sixth abdominal somite, usually longer, at least not much shorter than the somite itself, and sometimes considered to be the seventh abdominal somite. The telson has no a ppendages (Figs 2,3,17).

Tergite - The dorsal part of the chitinous ring that surrounds each somite (the other parts are the ventral stemite and the two lateral pleura) (Fig. 15). Together the various tergites form the tergum, e.g., the abdominal tergum is the sum of the six abdominal tergites.

Tergum, see tergite.
Thoracic somite, see thorax.
Thoracopod - Any of the 8 appendages of the thorax. The thoracopods consist of 3 pairs of maxillipeds (appendages of thoracic somites 1 to 3) and 5 pairs of pereiopods(appendages of thoracic somites 4 to 8) (Figs $2,12)$.

Thorax - The middle of the three main parts of the body (cephalon, thorax, a nd abdomen). It isformed by the 7th to 14th somites (= thorac ic somites 1 to 8) and bears the thoracopods (q.v.) (Fig. 2). The somites of the thoraxare fused with those of the cephalon and so form the cephalothorax (q.v.). Dorsally and laterally, the lines between the thoracic somites are not noticeable; ventrally, however, they may show astransverse grooves on the stemum.

Uropod - One of the pair of pleopods of the sixth abdominal somite (Fig. 2). In contrast to the pleopodsof the preceding somites, the uropods are stiff and heavily chitinized; they are well developed and form, together with the telson, the tail fan. They consist of an unsegmented peduncle, which bearsat its distal end the usually blade-shaped exo- and endopods, these can be folded against each other and sometimes under the telson (hence the name tail fan) (Figs 3,17).

Walking leg - A pereiopod that does not camy a chela. In the Nephropidae, the first three pereiopods are chelipeds, the last two are walking legs (Figs 2,10). The main function of the walking legs is locomotion, while that of the chelipeds is feeding.

2. SYSIEMATIC CATALOGUE OF SPECIES

SUBO RDER MACRURA REPTANTIA Bouvier, 1917

Macrura Reptantia Bouvier, 1917, Résultats Campagnes scientifiques Prince Albert I Monaco, 50:7,8,9.
The suborder Macrura Reptantia consists of three infraorders: Astacidea (marine lobsters and freshwater craysfishes), Pa linuridea (spiny lobsters a nd slipper lobsters) and Tha la ssinidea (mud lobsters). The infraorderAsta cidea conta ins three superfamilies of which only one (the Nephropoidea) is considered here. The rema ining two superfamilies (Asta coidea a nd Parastacoidea) conta in the freshwatercrayfishes. The superfa mily Nephropoidea (40 species) consists, almost entirely of commercial or potentially commercial species, and their few non-commercial representatives are dealt with here also, so as to give a complete picture of this group.

The infra orderPa linuridea, also conta ins three superfa milies(Eryonoidea, Glypheoidea a nd Palinuroidea) all of which are marine. The Eryonoidea are deepwater species of insignificant commercial interest and are only treated superfic ially in this catalogue. The Glypheoidea, an a lmost exc lusively fossil group, conta ins a single recent species, which is treated here. All species of the superfamily Palinuroidea (total about 120 species) are included in the catalogue. Members of the genus Scyllarus(over 40 species) are listed but only 7 spec ies are treated in detail because they are the only ones known to be of (potential) interest to fisheries.

The third infraorder, the Thala ssinidea, conta ins a single superfa mily, the Thalassinoidea which conta ins a round 100 species. Only a few representatives of this superfamily are known to be used asfood and bait and hence only these few species are treated in detail in this catalogue.

Key to the three Infraorders and their Superfamilies

1a. First three pairs of pereiopodr with true chelae, the first pair the largest and most robust
2a. Fourth pereiopod, and usually also the fifth, without true chelae.C arapace cylindrical, not flattened (Fig.18) \qquad Infra order Astacidea, Superfa mily Nephropoidea

2b. All pereiopods, or at least the first four, with true chelae. Carapace flattened (Fig. 19). Deep-sea specie \qquad Infra order Palinuridea, Superfa mily Eyonoidea, Fa mily Polychelidae
1b. Third pereiopod never with a true chela, in most groupschelae also absent from first and second pereiopods
3a. Antennal flagellum reduced to a single broad and flat segment, similar to the other antennal segments (Fig. 20) \qquad Infra o rder Palinuridea, Superfa mily Palinuroidea, Fa mily Scyilaridae
3b. Antennal flagellum long, multi-artic ulate, flexible, whip-like, or more rigid

4a. Epistome long, about $1 / 3$ of carapace length. Eyes on a median elevation of the cephalon (Fig. 21) Infra order Palinuridea Superfamily Glypheoidea Fa mily Glypheidae

4b. Epistome short, far shorter than $1 / 3$ of the carapace. Eyes not placed on an elevation of the cephalon

5a. Carapace with numerous strong and less strong spines and two frontal homs over the eyes. Rostrum absent or reduced to a single spine. Legs 2 to 4 (usually also 1) without chelae or subchelae (Fig. 22) . . Infra o rder Palinuridea Superfa mily Palinuroidea Fa mily Palinuridae

5b. Carapace with at most a few spines; no frontal homs. Rostrum present, even though sometimes small. Legs 1 and 2 simple, chelate, or subchelate

6a. First pereiopods simple, rostrum flat, broad and triangular orbroadly oval (Fig. 23)......... Infra order Palinuridea Superfa mily Palinuroidea Fa mily Synaxidae

6b. First pereiopod chelate or subchelate. Rostrum of diverse shapes (Fig. 24) . . Infra order Thalassinidea
simple dactylus

Fig. 23

Infra order Palinuridea Superfa mily Glypheoidea Fa mily Glypheidae

Fig. 21

Fig. 22

chela
Infra order Thalassinidea
Fig. 24

2.1 INFRAORDER ASTAC IDEA La treille, 1802

Astacini Latreille, 1802, Histoire naturelle générale et partic ulière des Crustaces et de Insectes, 3:32.
This group includes the true lobsters and crayfishes. The Astacidea can be easily distinguished from the other lobsters by the presence of chelae (pincers) on the first three pairs of legs, and by the fact that the first pair is by far the largest and most robust. The last two pairs of legsend in a simple dactylus, except in Thaumastocheles, where the 5th leg may bear a minute pincer.

The infra order consists of three superfamilies, two of these, the Astac oidea Latreille, 1802 (crayfishes of the northem Hemisphere) and the Parastacoidea (crayfishes of the southem Hemisphere), include only freshwater species and are not further considered here. The third superfamily, Nephropoidea, comprises the true lobsters, treated below.

SUPERFAMILY NEPHROPOIDEA Da na, 1852

Nephropinae Dana, 1852, ProceedingsAcademy natural Sciences Philadelphia, 6: 15.
The Nephropoidea or true lobsters include two families, Thaumastochelidae and Nephropidae. The Nephropidae are commercially very important, while the Thaumastochelidae include only three species, none of which is of economic interest; they are only listed here for completeness' sake.

Key to the Families and Subfamilies of Nephropoidea

1a. Eyes entirely absent, or strongly reduced, without pigment. Telson unarmed. Chelipeds very unequal, the larger with fingers more than four times as long as the palm; cutting edges of the fingers of the larger cheliped with many slender spines. Fifth pereiopod (at least in the female) with a chela. Abdominal pleura short, quadrangular, lateral margin broad, truncate, not ending in a point. Scaphocerite with several very large teeth on the inner margin (Fig. 25) Thaumastochelidae

Thaumastochelidae
Fig. 25

1b Eyes well develope dor reduced, always presentas movable appendages. Telson with lateral and/or postlateral spines. Chelipeds equal or unequal, but fingers always considerably less than twice as long as palm; teeth on the cutting edge placed in the same plane. Fifth pereiopod without a true chela. Abdominal pleura large, triangular or ovate, usually ending in a point. Scaphocerite, if present, with the inner margin evenly curved, unarmed (Fig. 26) \qquad Nephropidae

2a. Rostrum laterally compressed for the larger part of its length, with dorsal and ventral, but no lateral teeth. Carapace with branchiostegal spine. Body entirely covered by numerous closely placed and sharply pointed spinules. Lateral margin of the telson with 6 to 12 spines (Fig. 27) .. Neophoberinae

2b. Rostrum dorsoventrally depressed with lateral (and sometimes ventral), but without dorsal teeth; sometimes without any teeth. Carapace without a branchiostegal spine. Body never uniformly covered with spinules, although granules may be present all over, or spinules may be placed on the carapace. The lateral margin of the telson with at most three lateral spines, which if present, are usually small and irregular

Nephropidae
Fig. 26

Neophoberinae
Fig. 27

3a Scaphocente absent. Carapace without postorbital spine (Fig. 28). Abdominal sternites unamed in both sexes. No podobranch on second maxilliped Thymopinae

3b Scaphocente present. Carapace with a distinct postorbital spine (Fig. 29). Stemites of second to fifth abdominal somites in the male with a sharp median spine each. Podobranch usually present on the second maxilliped \qquad Nephropinae

Thymopinae
Fig. 28

carapace (lateral view)

Fig. 29

2.1.1

FAMILY THAUMASTOC HEUDAE Bate, 1888
THAU

Thaumastochelidae Bate, 1888, Report Vovage Challenger, Zool., 24:7,11,46.
The family is easily recognized by the peculiarshape of the large cheliped with its swollen palm and the very elongate fingers (at least four times as long as the palm) that ha ve very slender, altemating, large and small teeth.

Two genera with a total of three species known so far.

Key to Genera:

1a. Eyes totally absent, eventual remnants immovably fused to the ophthalmic somite (Fig. 30a). Second and third maxillipeds with well developed exopods. Distal part of uropodal. exopod behind the diaeresis wide and short (Fig. 30b) \qquad Tha umastoc heles

1b. Eyes present, slender and slightly movable, without pigment (Fig. 31a). Exopods of second and third maxillipeds reduced to short scale-like rudiments. Distal part of uropodal exopod, behind diaeresis a na rrow rounded lobe (Fig. 31b) \qquad Thaumastoc helopsis

a. anterior part of carapace (dorsal view)

a. anterior part of carapace (dorsal view)

b. uropod

Thaumastocheles Fig. 30

Thaumastochelopsis
Fig. 31

Tha umastoc heles Wood-Ma so n, 1874
THAU Thau

Thaumastocheles Wood-(Mason, 1874, ProceedingsAsiatic Society Bengal, 1874: 181. Gender masculine. Name placed on the Offic ial List of Generic Names in Zoology in Opinion 519 (published in 1958).

Type Species: by monotypy: Astacus zaleuc us Thomson, 1873.

Key to Species:

1a. Teeth on fingers of large cheliped placed in a single row and oriented in the same plane as the fingers themselves (Fig. 32a). Indo-West Pacific \qquad T. japonic us
(Fig. 33).
1b. The teeth on fingers of large cheliped not in the same plane as the fingers themselves, pointing altematingly obliquely inward and outward; the bases of the teeth are placed in a single line, but the teeth themselves form two diverging rows (Fig. 32b). Westem Atlantic . . T. zaleucus

Dia gram (not drawn to scale) showing a rrangement of teeth on finger of large cheliped (after Calman. 1913)

Thaumastoc heles japonic us Calman, 1913, Annals
Magazine Natural History. (7)12:230.
FAO Names: En - Pacific pincer lobster.
Type : Type loc ality: "Off Yenoshima, Odawara Bay [=off Enoshima nearOdawara, Sagami Bay], Japan, 200 fms [$=366 \mathrm{~m}$]" Type specimen in Zoological Museum of University of St. Andrews, Scotland, UK.

Geographical Distribution : East coast of J apan between Sagami and Tosa Bays. A single pincer collected nearNew Caledonia (22002'S 165057'E; 800 m deep) may belong to the present species (Monod, 1973: 126, figs 37-39) (fig. 34).

Fig. 34

(after Doflein, 1906)
Fig. 33

Habitat and Biology : The spec ies is known from depths between 366 and 700 m (the New Caledonian specimen from 800 m).

Size : Total length 9 to 17.5 cm , carapace length between 4 and 6 cm .
Interest to Fisheries : None so far. The species is rarely caught, and usually as single specimens. Also the great depths at which it occurs makes it less interesting for commercial exploitation.

Literature : Ba ba et al., 1986: 152, 153, 281, fig. 104.

Astacus zaleuc us Thomson, 1873, Nature, London 8:246, 247, fig. 1. Specific name placed on Official List of Specific Names in Zoology in Opinion 519 (published in 1958).

FAO Names: En Atlantic pincer lobster.
Type : Type locality:"Challenger" Station 23, off Sombrero Island, West Indies, $18{ }^{\circ} 24^{\prime} \mathrm{N} 63028^{\prime} \mathrm{W}, 450 \mathrm{fms}$ [$=823 \mathrm{~m}$], bottom pteropod ooze. Female holotype in BM, No. 88.22 (in alcohol, condition fair); paratype in BM (only fragments).

Geographical Distribution : West Indian region (Straits of Florida, off Yucatan, east of Nic aragua, off Sombrero Island. and off Grenada) (Fig. 36).

Fig. 36
Habitat and Biology : Deep-sea species from 640 to 1054 m depth. Bottom very flat, of soft mud (ooze). Possibly a burrowing species.

Size : Total length 10 to 16 cm .
Interest to Fisheries: So far none. Only 7 specimens have so far been taken, there are no indic ations that they ever could be caught in commercially interesting quantities.

Literature : Bate, 1888:47, text fig. 40, pl. 6, pl. 7 fig 1; Holthuis, 1974:1729, fig. 1.

Tha umastoc helopsis Bruce, 198
THAU Thaup
Thaumastochelopsis Bruce, 1988, Invertebrate Taxonomy, 2:903.
Type Specie : by original designation and monotypy: Thaumastochelopsis wardi Bruce, 1988. Gender feminine.
Genus with a single known species.

Tha uma stoc helopsis wardi Bruce, 1988, Invertebrate Taxonomy, 2:909, figs 1-7.
FAO Names : En - Austra lian pincer lobster.
Type : Type locality:"Marian Plateau, off Townsville," Queensland, Australia,"590.05.00’S [error for 19005.00’S], $149{ }^{\circ} 26.75^{\prime} \mathrm{E}, 425 \mathrm{~m}$ ". Holotype female, and allotype male, Northem Teritory Museum, Darwin, Australia, no. Cr.
004231.

(after Bruce, 1988)

Fig. 37
Geographical Distribution : NE Australia (Fig. 38). Only known from the type locality.

Habitat and Biology : Taken at a depth of 425 m .
Size : Total length approximately 7.7 cm (female), 5.7 cm (male); carapace legnth 2.5 cm (female), 1.9 cm (male).

Interest to Fisheries: Ina smuch as only two specimens are known of this species nothing can be stated on this aspect, but it is not likely that the species ever will become of commercial interest.

Literature: Original description.

Fig. 38

Nephropinae Dana, 1852, ProceedingsAcademy Natural Sciences, Philadelphia,6: 15.
Synonyms: Homa ridae Huxley, 1879. The grammatic ally incorrect spelling Nephropsidae hasfrequently been used for the present family name.

The family Nephropidae is divided into three subfamilies: Neophoberinae, Nephropinae and Thymopinae. A key to these subfa milies is provided on pages 20 and 21.

SUBFAMILY NEOPHOBERINAE G la essner, 1969

Neophoberinae Glaessner, 1969, in R.C. Moore, Ireatise of Invertebrate Paleontoloay, R(2):459.
Synonyms: Phoberinae Mertin, 1941.
The subfa mily contains only a single genus.

Acanthac aris Bate, 1888

NEPH Ac ant

Ac antha c a ris Bate,1888, Report Voya aeChallenger,Zool. 24:171,929,pl.21.Genderfeminine.
Type Species: by monotypy: Ac anthac aris tenuimana Bate, 1888.
Synonyms : Phoberus A. Milne Edwards, 1881, Annales Sciences Naturelles, Paris, (Zool.), (6)1 I(4): 1 (not Phoberus MacLeay, 1818); type species, by monotypy: Phoberus caecus A. Milne Edwards, 1881; gender masculine.

Neophoberus Glaessner, 1969, in R.C. Moore, Treatise of Invertebrate Paleontoloav, R(2):460, replacement name for Phoberus A. Milne Edwards, 1881; gender masculine.

Key to Species:

1a. Fingers of first cheliped about as long as palm (Fig.

39a).Atla ntic
A. caeca
(Fig. 40)
1b. Fingers of first cheliped distinctly longer than palm (Fig. 39b). Indo-West Pacific \qquad A. tenuimana (Fig. 42)

b. A. tenuimana

Fig. 39

NEPH Ac ant 1

Phoberus caec us A. Milne Edwards, 1881, Annales Sciences Naturelles , Pa ris,(Zool.), (6)1 1(4):1.
Synonyms: Neophoberus caecus-G la essner, 1969.
FAO Names : En - Atlantic deep-sea lobster; Fr-Langoustine arganelle; Sp-Cigala de fondo.

Type : Type locality: "Blake" Station 264, off Grenada, West Indies, 12ㅇ03'15"N 61048'30"W, 761 m deep, bottom grey ooze. Holotype in MCZ

Geographical Distribution : Gulf of Mexic o, Caribbean Sea, Straits of Florida (Fig. 41).

Habitat and Biology : A deepsea species from 293 to 878 m depth (mostly between 550 and 825 m). Lives on soft mud bottoms in burrows.

Size: Maximum total length 40 cm ; carapace length 2 to 17 cm .

Interest to Fisheries : Not actually fished for at present, Exploratory deep-sea trawling showed the species to be present in quantities that might be of commercial interest; also interesting because of its relatively large size.

Local Names: USA: Blind deep sea lobster (Florida).
literature : Holthuis, 1974:741, fig. 4-8; Fischer (ed.), 1978:vol. 6.

Fig. 41

Acanthacaris tenuimana Bate, 1888
Acanthacaris tenuimana, Bate, 1888, Report Voyage Challenger , Zool.,24:171,929,pl. 21.

Synonyms : Phoberus tenuimanus Bate, 1888; Phoberus caec us sublevis Wood-Mason \& Alcock, 1891; Acanthacaris opipara Burukovsky \& Musy, 1976; Phoberus brevirostris Thung \&Wang, 1985.

FAO Names : En - Prickly deep-sea lobster, Fr Langoustine spinuleuse; Sp-Cigala raspa.

Type : Type locality of Acanthacaris tenuimana: "Challenger" Station 191, "lat. 5041'S., long. 134ㅇ́'30" E., south of New Guinea; depth, 800 fathoms [= 1463 m]; bottom, green mud". Holotype in BM, no. 88.22 (in alcohol, condition fair).

Type locality of Phoberus caecus sublevis: "Investigator""Station 105, 740 fathoms" (= "Laccadive Sea, off Goa coast, lat. 15002 ' N, long. 72 ㅇ34' E., 740 fms [= 1353 m]. Grey ooze, coral mud, and 12.5 per cent Foraminifera"). Holotype in ZS, preserved in alcohol, condition poor.

Type locality of Acanthacaris opipara: "South-west part of the Indian Ocean" near "Durban; 29057'6"2952'5"S., 31으'2"-31052'5"E, depth 830-850 m". Depository of holotype unknown.

Type locality of Phoberus brevirostris: " 2900' 30^{\prime} N, 127000'-30'E, 300-900 m deep, East China Sea". Holotype male (no. 81015) and 2 paratype males (nos. 81016 and 81006) in Donghai Fisheries Research Institute, Shanghai, and Biological Department of Hangzhou University, Hangzhou, China.

Geographical Distribution : Indo-West Pacific area (Natal, Mozambique, Madagascar, Laccadive Islands, Japan, Philippines, South China Sea, Indonesia, New Caledonia) (Fig 43)

Habitat and Biology : Deep sea, from 600 to 1670 m. Muddy bottom.

Size : Maximum known total length 40 cm , carapace length 2-21 cm; ovigerousfemales, cl. 1 119cm.

Interest to Fisheries: So far none. The species is taken incidentally in trawls, but so far too rarely and in too small quantities to be of commercial interest. The large size of the specimens might make fishing economically attractive, once the appropriate gear and proper localities where suffic ient qua ntities occur have been found.

Local Names: MOZAMBIQUE: Lagosti m espinhoso.

Literature : Fischer \& Bianchi (eds), 1984:vol: 5; Macpherson, 1990:293.

Fig. 42

NEPH Ac ant 1

Fig. 42

Fig. 43

Remarks: The taxonomy of the species is not clear. It is possible that 2 forms may have to be distinguished: A. sublevis Wood-Mason, 1891 (with a synonym A. opipara Burukovsky \& Musy, 1976) from the Indian Ocean, and A. tenuimana s.s from the eastem part of the present range. More material will have to decide this question.

SUBFAMILY THYMOPINAE Holthuis, 1974
Thymopinae Holthuis, 1974, Bulletin Marine Science, University Mia mi, 24(4):753.

This subfa mily consists of four genera, viz., Nephropides,
Nephropsis, Thymops a nd Thymopsis. Three of these genera include a single species, namely all, except Nephropsis. None of them has any commercial value at present, but some may be of potential interest to fisheries.

Key to Genera

1a. Second and third maxillipeds without exopods (Fig. 44a). Pleura of second abdominal somite wide and overlapping both the pleura of the first and third somites (Fig. 44b). Lower margin of rostrum with teeth

Thymopsis
1b. Second and third maxillipeds with exopods (Fig. 45a). Lower margin of rostrum without teeth

2a. Pleura of abdominal somites broadly overlapping (Fig. 45b). Exopod of second maxilliped without flagellum \qquad Thymops

2b. Pleura of abdominal somites na row, hardly if at all overlapping. Lateral margin of telson unarmed, but for the posterolateral spine. Exopod of second maxilliped with a distinct flagellum

a. second and third maxilliped
(from Holthuis, 1974)

a. second and third maxilliped
(from Holthuis. 1974)
abdominal somites

b. abdomen (lateral view)

Thymopsis
Fig. 44

b. abdomen (lateral view)
(after Zarenkov \& Semenov, 1972)

3a Eye not pigmented. Body granular and hairy, but not covered with evenly placed large pearly tubercles (Fig. 46a). Pleura of second abdominal somite ending in a long sharp point (Fig. 46b) Nephropsis

3b. Eye with pigmented, although small, comea. Body entirely covered by conspicuousrounded pearly tubercles (Fig. 47a). Pleura of second abdominal somite broadly trapezoid, distal margin obliquely truncate, ending in a blunt posterior tooth (Fig. 47b) \qquad Nephropides

Nephropsis
Fig. 46

a. carapace (dorsal view)
(from Mannmg, 1969)

Nephropides Manning, 1969, Crustaceana, 17:303. Gender masc uline.
Type Species: by original designation and monotypy: Nephropides caribaeus Manning, 1969.
A single species known so far.

Fig. 48

Nephropides caribaeus Manning, 1969, Crustaceana, 17:304, text-fig. 1 pt. 1
FAO Names: En - Mitten lobsterette.
Type : Type locality: Off Caribbean coast of "Nic aragua, $122^{2} 25^{\prime} \mathrm{N}$ 82 ${ }^{\circ} 15^{\prime} \mathrm{W}$; depth $546-582 \mathrm{~m}$ ". Holo-type in USNM, no. 113741; paratypes in USNM, RMNH.

Geographical Distribution : Extreme westem Caribbean Sea off the coasts of Central Americ a a nd northem South America, from Belize to Colombia, 16058^{\prime} to $9024^{\prime} \mathrm{N}, 76031.5^{\prime}$ to $87{ }^{\prime} 53^{\prime} \mathrm{W}$ (Fig. 49).

Fig. 49
Habitat and Biology : Deep sea, 511 to 728 m ; .on mud bottom.

Size : Total length 15.6 to 17 cm , carapace length 5 to 6 cm .

Interest to Fisheries: So far none, but the size of the specimens might make the exploitation profitable if good fishing grounds are found.

Fig. 48

Literature : Manning,. 1969:304, text-fig. 1 pl. 1;
Holthuis, 1974:806-I 0, figs 22,23.

Nephropsis Wood-Ma son, 1873

NEPH Nephps

Nephropsis Wood-Ma son, 1873, AnnalsMaaazine naturalHistorv, (4)12:60. Gender feminine. Name placed on the Offic ial List of Generic Namesin Zoology in Opinion 559 (published in 1959).

Type Species : by monotypy : Nephropsis steward Wood-Ma son, 1873.
At present, 13 species of the genus Nephropsis are known, 5 from the Atlantic, 7 from the Indo-West Pacific, and one from the eastem Pacific region. None of these species are curently being fished on a commercial scale, but some are of potential interest.

The taxonomic status of several species is not clear, a nd therefore the following key to spec ies must be considered as provisional; several new species can be expected.

Key to Species:

1a Rostrum without lateral teeth. A strong post-supraorbital spine present behind the supraorbital spine (Fig. 50a). Abdominal somites 3 to 6 with a median dorsal carina (Fig. 50b). Anterior margin of pleura of second abdominal somite without spines (Fig. 51a). Telson without media-dorsal spine (Fig. 52a). Indo-West Pa cific \qquad N. ensirostris
(Fig. 71)
1b. Rostrum with lateral teeth: Other characters mentioned under la present or absent

2a Rostrum with one pair of lateral teeth (one tooth on either margin) (Fig. 53). Anterior margin of pleuron of second abdominal somite without a spine, although the pleuron itself may end in a sha p , sp ine-like tip (Fig. 51a)

3a. An erect dorsal spine placed in the middle of the basal part of the telson (Fig. 52b). Post-supraorbital spine absent or replaced by one or more spinules. Abdominal somites 2 to 6 with a median dorsal carina. Exopod of uropod with a diaeresis (Fig. 60a)

4a Carapace smooth. Rostrum less than half as long as the rest of the carapace. Anterior margin of pleuron of second abdominal somite strongly convex. Eastem Pacific \qquad N. occidentalis
(Fig. 76)
4b Carapace with numerous small granules. Rostrum more than half as long as the rest of the carapace. Anterior margin of pleuron of second abdominal somite only slightly convex. IndoWest Pacific \qquad N. acanthura
(Fig. 61)
3b. Telson without an erect dorsal spine on its ba sal part (Fig. 52a)

a. carapace (dorsal view) b. abdomen (lateral view)
N. ensirostris

Fig. 50

no spine
a. N. ensirostris

b N. agassizii
abdomen (lateral view)
Fig. 51

a. Nephropsis sp.

b. \mathbf{N}. occidentalis

5a. Abdominal somites without any trace of a mid-dorsal carina. No post supraorbital spine on carapace. The distance between the supraorbital spines and the gastric tubercle is lessthan half the distance between the gastric tubercle and the cervical groove (Fig. 53). Exopod of uropod with a diaeresis (Fig. 60a). IndoWest Pacific \qquad N. stewarti
(Fig. 80)
5b. Abdominal somites 2 (or 3) to 6 with a median longitudinal carina

6a. A post supraorbital spinule is present. The distance between the supraorbital spines and the gastric tubercle is about $2 / 3$ of the distance between the gastric tubercle and the cervical groove (Fig. 54). Exopod of uropod with a diaeresis (Fig. 60a). Westem Atlantic . . N. rosea
(Fig. 78)
6b. No post supraorbital spinule behind the supraorbital spine. The distance between the supraorbital spines and the gastric tubercle is about half or less than half the distance between the gastric tubercle and the cervic al groove (Fig. 55)

7a. Median dorsal carinae on third to sixth abdominal somites, but not on second (Fig. 56a).Indo-West Pacific N. ca penteri
(Fig. 69)
7b. Median dorsal carinae on second to sixth abdominal somites (Fig. 56b). Westem Atla ntic
N. aculeata
(Fig. 63)

abdomen (dorsal view)
Fig. 56

N. stewarti carapace (dorsal view)

Fig. 53

N. rosea
carapace (dorsal view)
Fig. 54

N. ac uleata

Fig. 55

2b. Rostrum with two pairs of lateral teeth (Fig. 57a). Anterior margin of second abdominal somite with or without spines

8a. Pleura of second abdominal somite without any spine on the anterior margin (Fig. 57b). A strong post supraorbital spine present on carapace. Gastric tubercle situated slightly behind the post-supraorbital spines (Fig. 57a). A median carina on the second to sixth abdominal somites. Exopod or uropod with a diaeresis (Fig. 60a). Telson without dorsal erect spine in the basal part. Westem Atlantic \qquad . N. neglecta
(Fig. 74)
8b. Pleura of second abdominal somite with one or more spines on the anterior margin (Fig. 51b,

9a. Abdomen with a dorsomedian canina on the second to sixth somites. Exopod of uropod with a diaeresis (Fig. 60a). Rostrum with two pairs of lateral teeth in the basal part. The supraorbital spine is followed by a post supra orbital spine. Anterior margin of pleura of second abdominal somite with one or two spines in the basal half. Telson without mediodorsal spine in the basal part

10a. Median groove of rostrum reaching distinctly beyond anterior pair of lateral rostral teeth. Distance between supraorbital spine and gastric tubercle is half the distance between gastric tubercle and postcenvical groove (Fig. 58). IndoWest Pacific N. sulcata
(Fig. 84)
10b. Median groove of rostrum failing to reach the anterior pair of lateral rostral teeth. Distance between supraorbital spine and gastric tubercle about two thirds the distance between gastric tubercle and postcervic al groove (Fig. 59) Eastem Atlantic N. Atlantica
(Fig. 67)

N. neglecta

Fig. 57

9b. Abdomen without mediodorsal carina
11a. Exopod of uropod with a diaeresis (Fig.60a). IndoWest Pacific \qquad N. malhaensis

11b Exopod of uropod without diaeresis (Fig. 60b)
12a. Atlantic species \qquad N. agassizii (Fig. 65)

a. Nephropsis sp.

b. N. suhmi
tail fan
Fig. 60

Nephropsis acanthura Macpherson, 1990, Mémoires Muséum National d'Histoire naturelle. Paris, (A) 145:311, figs. 5d, 9d-f, 11 a ,b, 16d

FAO Names: En - Spineta il lobsterette.
Type : Type locality: Philippines, $13053.7^{\prime} \mathrm{N}$ 119056.3'E, 970 m. Holotype male, MP no AS 546.

anterior part of carapace (dorsal view)

Geographical Distribution : Indo-West Pacific region: Madagascar, Philippines, Australia (E. of Queensland), Chesterfield Islands, New Caledonia (Fig. 62).

Habitat and Biology : Deep sea between 850 and 1250 m.

Size : Carapace length, including rostrum: 1.6 to 3 cm (male), 1.5 to 3 cm (female).

Interest to Fisheries: None so far.

Literature: Mac pherson, 1990:311-312.

Fig. 62

Fig. 63
NEPH Nephps 1

Nephropsis aculeata S.I. Smith, 1881

Nephropsis aculeatus S.I. Smith, 1881, Proceedings United States National Museum, 3:431.

FAO Names : En - Florida lobsterette; Fr Langoustine de Floride; Sp-Cigala de Florida.

Type : Type locality:"Fish Hawk" Station 873, off Martha's Vineyard, Massachusetts, USA, 400ㅇ́n 70057 'W, depth 182 m , bottom soft stic ky mud. Lectotype (no. 20923) and 3 paralectotypes in USNM.

abdomen (lateral view)
(after Holthuis, 1974)

dorsal view
Fig. 63

Geographical Distribution: Westem Atlantic from off Massachusetts and Bermuda to French Guiana and Suriname, including the entire Gulf of Mexico and Caribbean Sea (Fig. 64).

Habitatand Biology : Deep sea between 137 and 824 m, mostly between 200 a nd 600 m. Bottom: mud orfine sand.

Size : Maximum total length about 145 cm Carapace length 1.5 to 7 cm .

Interest to Fisheries: Potential. Exploratory fishing in the Gulf of Mexico (off the mouth of the Mississippi, and off East Florida) showed the presence of considerable quantities of the species; with a 65 foot trawl, catches of up to $40 \mathrm{~kg} / \mathrm{h}$ were obtained.

Literature : Holthuis, 19741776, figs 15, 16A,B; Fisc her (ed.), 1978:vol. 6.

Nephropsis agassizii A. Milne Edwards, 1880

Fig. 64

NEPH Nephps 2

Nephropsis agassizii A. Milne Edwa rds, 1880, Annales Sciences naturelles, Paris, (Zool.), (6) 9 (2): 1

FAO Names : En- Prickly lobsterette; Fr Langoustine epineuse; Sp-Cigala de grano.

Type : Type locality: "détroit de Floride, a 1500 metres de profondeur" cited by A. Milne Edwards (1880) probably is erroneous and should be "Blake" Station 33, north of Yucatan Bank, 24001’N 88058'W, 2560-2870 m (see Holthuis, 1974:799-800). Whereabouts of type specimen unknown.

Geographical Distribution : Westem Atlantic: Ba hama Islands, Gulf of Mexico, Caribbean Sea, Tobago and off São Paulo, Brazil (Fig. 66).

Habitatand Biology : Deep sea between 878 and 2560 m , most common between 1100 and 1900 m .

Size : Maximum total length about 12 cm (carapace length 5.6 cm); adults with carapace length usually between 4 and 5 cm .

Interest to Fisheries: Hardly potential. The species is taken occasionally during exploratory tra wling, but never in great quantities. This, plus the fact that the spec ies is relatively small and lives at very great depths make it unlikely that it ever will form the subject of a fishery.

Local Names: USA: Agassiz's lobsterette.
Literature : Holthuis, 1974:796, figs 19,20; Fischer, (ed.),

Fig. 66

Nephropsis attantica Norman, 1882
Fig. 67

NEPH Nephps 4

Nephropsis atlantica Noman, 1882, Proceedings Royal Soc iety Edinburah, 11:684.
FAO Names: En - Sc a rlet lobsterette.

Type : Type locality: ""Knight Errant" August 10, 1880. Station 4; in 555 fathoms (Noman, 1882). Norman evidently made an error in the station number, as the date and depth given by him are those of Station 30 and not Station 4. The position of Station 30 in the Fa eroe Cha nnel is 59033' N 7014 ' W , $555 \mathrm{fms}=1015 \mathrm{~m}$, bottom mud. Whereabouts of type unknown, not in BM.

Geographical Distribution : Eastem Atlantic between 610N and 24오 (Faeroe Islands to Namibia) (Fig. 68). Rec ords of the species from the Indo-West Pacific region refer most probably to N. sulcata.

Habitat and Biology : Deep sea from 470 to 1804 m, mostly between 900 and 1400 m ; bottom mud.

Size : Maximum total length 10.3 cm ; ovigerous females are 8 to 10 cm long.
Interest to Fisheries: Only potential. The fact that the species is rather small and inhabits great depths makes its suita bility for a fishery unlikely, although sometimes it is taken in numbers (RV J. E. PIШSBURY took respectively 16 and 31 specimens at a single station off respectively the Ivory Coast and Liberia).

anterior part of Fig. 67b carapace (dorsal view) (from Macpherson, 1990)

Literature : Selbie, 1914:48, pl. 7 figs 1-13; Holthuis, 1974:801, fig. 21.

Fig. 68

Nephropsis capenteri Wood-Mason, 1885
Fig. 69
NEPH Nephps 5
Nephropsis capenteri Wood-Ma son, 1885, ProceedinqsAsiatic Society Bengal, 1885:71.
FAO Names: En - Ridge-back lobsterette.
Type : Type loc ality:"Investigator" Station 162. Bay of Bengal, 1351' $12^{\prime \prime} \mathrm{N} .80{ }^{\circ} 28^{\prime} 12{ }^{\prime \prime} \mathrm{E}, 145-250 \mathrm{fms}$ [$=265-457 \mathrm{~m}$], brown mud. Holotype in ZSI, no. 4251/7, in alcohol, condition poor.

Geographical Distribution : Indo-West Pacific region Arabian Sea, Bay of Bengal, Japan (Fig. 70)

Fig. 70

Habitat and Biology : Depth range between 200 and 500 m .
Size : Total length 9 to 12 cm .
Interest to Fisheries: So far none. There are as yet no indications of fishing grounds with a sizea ble population Of this species.

Literature : Alcock \&Anderson, 1896, pl. 27, fig. 2; Alcock, 1901:160; Ma cpherson, 1990:316, figs 5f, 1 1e,f,12, 16 f.

Fig. 71
NEPH Nephps 6
Nephropsis ensirostris Alc ock, 1901, Descriptive catalogue of Indian deep-sea Crustacea Macrura and Anomala: 162, pl. 1 fig. 2.

FAO Names: En - Gladiator lobsterette.

Type : Type locality:I Investigator" Station 177, "Arabian Sea, north of the Laccadives 636 fathoms" [=13047' 49 " N 73 ㅇㄱ'E, 1163 m, green mud]. Type material, ZSI, no. 3892/10; 2 specimens preserved in alcohol, condition poor, probably are types.

Geographical Distribution : Indo-West Pacific region: Gulf of Aden, Arabian Sea, Bay of Bengal, Andaman Sea, Philippines and Indonesia (Fig. 72).

Fig. 72
Habitat and Biology : Deep sea from 580 to 1160 m, bottom mud or sandy mud.

Size : Total length about 6 cm .

(after Alcock, 1901)
Fig. 71

Interest to Fisheries: So farnone. The species has been rarely caught, while also the fact that it is rather small and lives in the deep sea makes its commercial value less likely.

Literature : Alcock, 1901:162, pt. 1 fig. 2; Alcock \& McArdle, 1902:pl. 58 fig 1; Macpherson, 1990:303, figs 5a,6,8a,b, 16a.

Nephropsis malhaensis Borrada ile, 19 10, Iransactions Linnean Society, London, Zoology, 13(2):262.
FAO Names: En - Saya de Malha lobsterette.
Type : Type locality:"dredged in 300 fms off Saya de Malha", Westem Indian Ocean. Holotype in ZMC in alcohol, condition good.

Geographical Distribution : Only known from the type locality (Fig. 65).

Habitat and Biology : Deep sea, in 550 m .
Size : Total length of holotype, only specimen known, 7.75 cm .
Interest to Fisheries: None. The species, being only known from the holotype, is mentioned here solely for completeness' sake. There are no indications that it ever will have commercial possibilities.

Literature : Borradaile, 1910:262; Macpherson, 1990:317, figs $13 a, b, 14 c, d$.

Remarks: The original description is short and not accompanied by a figure. Macpherson (1990) gave an additional illustrated description of the holotype.

Fig. 73

Nephropsis neglecta Holthuis, 1974
Fig. 74

NEPH Nephps 8

Nephropsis neglecta Holthuis, 1974, Bulletin Marine Science, University Miami, 24:792, fig. 18.
FAO Names: En - Ruby lobsterette.

a. carapace (dorsal view)

b. cheliped

c. abdomen (lateral view)

Type : Type locality: "16-20 miles s. of Dry Tortuqas, Florida [USA], 1065 m". Holotype in USNM, no. 136690 paratypes in USNM; UMML, RMNH, MCZ

Geographical Distribution : Westem Atlantic from Florida (USA) to the Guianas, including the Caribbean Sea and the LesserAnlilles (Fig. 75).

Habitatand Biology : Deep sea between 655 and 1234 m, most catches between 800 and 1300 m ; substrate sand or mud, sometimes with rubble.

Size : Carapace length between 1.5 and 3.5 cm , corresponding with a total length of about 3 to 7.5 cm .

Interest to Fisheries : So far none. The fact that the species is relatively small, usually taken singly or in pairs, and inhabits the deep sea, makes it not likely that it ever will be exploited commercially.

Literature: Original desc ription

Fig. 75

Nephropsis occidentalis Faxon, 1893

Fig. 76
NEPH Nephps 9
Nephropsis occidentalis Faxon, 1893, Bulletin Museum comparative Zoology. Harvard Colleae, 24: 195.
FAO Names: En - Pacific lobsterette; $\mathbf{F r}$ - Langoustine du Pacifique; Sp-Cigala del Pacifico.

(after Faxon, 1895)
Fig. 76

[^2]Geographical Distribution : Eastem Pacific from Baja Califomia, Mexico (279N) to Valparaiso, Chile (ca. 320S) (Fig. 77). As Manning (1970:868) pointed out, the records from the Galapagos and Marion Islands are erroneous.

Habitat and Biology : Deep sea between 300 and 1200 m; muddy or sandy bottom.

Size : Total length 5 to 13 cm ; carapace length 3,8-5. 1. A published record giving the maximum length as 25 cm is clearly erroneous.

Interest to Fisheries : Retamal (1977: 17) remarked that the species is commonly found in commercial catches of the shrimp Heterocarpus reedi Bahamonde in Chilean waters, and that with the right gearand a betterknowledge of the habitat and habits of the species a commercial fishery might be feasible off Chile.

Local Names: CHILE: Camarón gigante, Camarón gigante de profundidad,

Fig. 77

Literature : Faxon, 1895:127, pl. 0 fig. 1-16; Manning, 1970:865-70, fig. l-3; Macpherson, 1990:308, figs 5c, 8e,f, $9 \mathrm{a}-\mathrm{c}, 16 \mathrm{c}$.

Nephrupsis rosea Bate, 1888
Fig. 78
NEPH Nephps 10
Nephropsis rosea Bate, 1888, Report Voyage Challenger, Zool., 24: 178, text-fig. 39, pl. 23 figs 1,2, pl. 24 fig. 1
FAO Names: En - Two-toned lobsterette; Fr-Langoustine bicolore.

Fig. 78

Type : Type loc ality: "Challenger" Station 57, off Bermuda, 32으1'7"N 6503'20"W; 1262 m. Holotype in BM, now completely disintegrated.

Geographical Distribution : Westem Atlantic from Bermuda ($32^{-} \mathrm{N}$) to northem South America (Guiana, 7ㅇN), including the Bahama Islands, the Gulf of Mexico and the Caribbean Sea (Fig. 79).

Habitat and Biology : Deep sea between 420 and 1260 m, mostly between 500 and 800 m . On muddy or sandy bottoms.

Sze : Carapace length between 1 and 6 cm , coresponding to a total length of about 2 to 13 cm .

Interest to Fisheries: Potential. The species is not rare and some of the hauls reported conta in several specimens. With proper gear and a better knowledge of its habits and habitat, it may perhaps be possible to fish it commercially.

Literature: Holthuis, 1974:787, figs 16C,D, 17.

Fig. 79

Fig. 80
NEPH Nephps 3
Nephropsis stewarti Wood-M a son, 1872
Nephropsis stewarti Wood-Mason, 1872, Proceedings Asiatic Society Benqal, 1872: 151. Specific name placed on the Official List of Specific names in Zoology in Opinion 559 (published in 1959).

FAO Names : En - Indian Ocean lobsterette; Fr Langoustine indienne; Sp-Cigala del Oceano Indico.

Type : Type locality: "dredged in from 260 to 300 fathoms [$=476550 \mathrm{~m}$] about 25 miles off Ross Island on the eastem coast of the Andamans", Andaman Sea, India. Holotype in ZSI, no. 1404, in alcohol, condition poor.

Fig. 80

Geographical Distribution : Indo-West Pacific region from the Gulf of Aden and East Africa to Japan (Sagami Bay to Tosa Bay), Taiwan, the Philippines, Indonesia and Westem Australia (Fig. 81).

Habitat and Biology : Deep sea between 170 and over 1060 m, usually between 500 and 750 m . On soft muddy substrates.

Size : Maximum body length 15 cm , common around 10 cm . Carapace length: male $2.2-7.1 \mathrm{~cm}$; female $1.4-7 \mathrm{~cm}$; ovigerous females $4.2-7 \mathrm{~cm}$.

Interest to Fisheries: So far none, but perhaps of potential interest. Crosnier \& J oua nnic (1973: 13) reported small catches in exploratory trawling off Madagascar($1 / 2 \mathrm{~kg}$ perhour orless), but consider that the species "parait presenter peu d'intérêt" for commercial fishery.

Fig. 81

Local Names: AUSTRALA: Stewart'sscampi; J APAN: Okina-ebi (=old gentleman); MOZAMBIQ UE: Lagostim indiano.
Literature : Fischer \& Bia nchi (eds), 1984:vol.5; Mac pherson, 1990:312, figs 5e, 10, 1 lc , d, 16e.

Nephropsis suhmi Bate, 1888
Fig. 82
NEPH Nephps 11
Nephropsis suhmi Bate, 1888, Report Voya ae Challenger, Zoology, 24: 181, pl. 23 fig. 3, pl. 24 fig. 2.
Synonyms: Nephropsis orientalis Bate, 1888: 171, 175 (a na me that Bate evidently origina lly intended forthe species, and which on p. 171 and 175 he forgot to change to $\mathbf{N} . \operatorname{suhmi}$, of which it is to be considered an objective synonym).

FAO Names: En-Red and white lobsterette.

anterior part of carapace (dorsal view)
(from Macpherson, 1990)

tail fan

Fig. 82
 Islands, Indonesia]; depth 800 fathoms [= 1463 m]; bottom green mud". Holotype in BM, no. 88.22 (in alcohol, condition fair).

Geographical Distribution : Indo-West Pacific region: westem Indian Ocean (Gulf of Aden, Arabian Sea), Madagascar, Indonesia (Makassar Strait, Aru Islands), Australia (E. of Queensland), New Caledonia (Fig. 83).

Habitatand Biology : Deep sea between 786 and 2029 m, most catches between 1600 and 1900 m . Substrate: mud.

Size : Total length between 2 and 11 cm , carapace length between 0.8 and 5.9 cm .

Interest to Fisheries: So farnone. A better knowledge of its biology and occurrence may show the speciesto be of potential interest. The soft substrate on which it lives indicates that it could best be obtained by trawling, but the efficiency of this and other gear should be tested experimentally.

Fig. 83

Literature: Orig inal description; Alcock, 1901: 163; Macpherson, 1990:306, figs 5b, 7d-f, 8c ,d.

Nephropsis sulcata Ma cpherson, 1990
Fig. 84

NEPH Nephps 13

Nphropsis sulcata Macpherson, 1990, Mémoires Museum National Histoire naturelle, Paris, (A) 145:319, figs.13e-g, 14a,b, 15a, b, 16g .

FAO Names: En - Grooved lobsterette.
Type : Type loc a lity: Philippines, 13053.7'N 119056.3'E, 865 m. Holotype male, MP no. AS 523.

Geographical Distribution : Indo-West Pacific: South Africa (Natal), Madagascar, Laccadive Sea, South China Sea, Philippines, Australia (E. of Queensland), Chesterfield Islands, New Caledonia (Fig. 85)

Fig. 85

(from Macpherson, 1990) Fig. 84

Habitat and Biology : Deep sea between 750 and 1115 m . Muddy bottom.
Size : Carapace length, including rostrum: male 1.5 to 3 cm ; female 1.8 to 3.4 cm , sma lest ovigerous female 2.6 cm .
Interest to Fisheries: So far none.
Literature: Original description.
Remarks: The species has often been confused with \mathbf{N}. atlantica and most, if not all, records of \mathbf{N}. atlantic a from the Indo-West Pacific region pertain to the present species.

Thymops Holthuis, 1974
NEPH Thym
Thymops Holthuis, 1974, Bulletin Marine Science, Universitv Miami, 24(4):763. Gender masculine.
Type Species : by original designation and monotypy: Nephropides birsteini Zarenkov \& Semenov, 1972.
The genus so far is known to have a single species.

Thymops birsteini (Zarenkov \& Semenov, 1972)

Fig. 86
NEPH Thym 1

Nephropides birsteini Zarenkov \& Semenov, 1972, Zoolooicheski Joumal Moscow, 51:599, figs 1-6

FAO Names: En-Patagonian lobsterette.
Type : Type locality: "Akademik Knipovich" Station 1021, $49000.8^{\prime} \mathrm{S} 57007.6^{\prime} \mathrm{W}, 515-525 \mathrm{~m}$. Holotype male in Zoological Museum, University of Moscow.

Geographical Distribution : Continental shelf of southem tip of South America, on the Atlantic side (Argentina) south of $37{ }^{\circ} \mathrm{S}$;on the Pacific side (C hile) south of $51-5$; including the area north, east and southeast of the Falkland/Malvinas Islands, and east of South Georgia. The entire area lies between $37^{\prime \prime}$ and $57{ }^{\circ}$ S and $35^{\prime \prime}$ and 76으 (Fig. 87).

Fig. 87

(from Holthuis 1974)

Habitat and Biology : Deep sea between 122 and 1400 m , mostly between 122 and 900 m .
Size : ‘Total lengthreported from8to 25 cm ;carapacelengthfrom2to 10 cm (mostlybetween3and 6 cm).Ovigerous females with cl 3 4to 7.4 cm .

Interest to Fisheries: According to Boschi, Ino \& Fischbach (1982:233) the species would be of potential interest off the Argentine coast if large concentrations could be detected.

Local Names: ARGENTINA: Langosta de aguas profundas.
Literature : Holthuis, 1974:764, figs 13, 14.

Thymopsis Holthuis, 1974
Thymopsis Holthuis, 1974, Bulletin Marine Science, University Mia mi, 24(4):754. Gender feminine.
Type Species : by original designation and monotypy: Thymopsis nilenta Holthuis, 1974.
A single species is known in this genus.

Thymopsis nilenta Holthuis, 1974
Fig. 88

NEPH Thymop 1

Thymopsis nilenta Holthuis, 1974, Bulletin Marine Science, University Miami, 24(4):756, fig. 10-12.
FAO Names: En - Nilenta lobsterette.

Type : Type locality: "Eltanin" 22 Station 1555, * S of South Georgia, 6004'S-60008'S, 35059'W-36004' W, 1976-2068 m". Holotype female in USNM, no. 141257; paratypes in USNM, RMNH.

(from Holthuis 1974)
Fig. 88

Geographical Distribution : So uthem Atla ntic. ,So far only known from two localities: southeast of the Falkland/ Malvinas Islands (55001'-5510'S 39055' - 3946'W) and south of South Georgia (6004' - 600.0'S 3559' 3604'W) (Fig. 89).

Habitat and Biology : Deep sea between (1976-J 2068 and 2886 (-3040) m.

Size : Total body length about 15 cm , carapace length (without rostrum) 5 to 6 cm .

Interest to Fisheries: None so far. Until now only 4 specimens have been collected of this species. Its sc a rcity and the very great depths at which it is found, make it an unlikely candidate for a fishery, notwithstanding its relatively good size.

Literature: Original description.

Fig. 89

SUBFAMILY NEPHROPINAE Da na, 1852

Nephropinae Dana, 1852, ProceedingsAcademy Natural Sciences, Philadelphia, 6: 15.
This, the typical subfamily of Nephropid lobsters, contains the following 5 genera. Eunephrops, Homarus, Metanephrops, Nephrops and Thymopides.

All spec ies of Nephropinae are of present or potential commercial interest, and all are listed here.

Key to Genera:

1a. Left and right first chelipeds unequal, one a crushing claw, the other a cutting claw. Antennal spines without a strong posterior carina (Figs 90,91) First abdominal stemite of the male without a median spine

2a. Palm of first chelipeds smooth, without ridges. Subdorsal carinae without spinules. Abdominal somites smooth, without grooves;no carinae separating the tergites from the pleura (Fig. 90) \qquad Homarus

2b. Palm of first chelipeds with distinct longitudinal grooves, ridges a nd rows of spines. Subd orsal carinae spinulate. Abdominal somites dorsally with distinct transverse grooves, a blunt carina separatesthe tergites from the pleura (Fig. 91).

Nephrops

Fig. 91

1b. Left and right chelipeds of the first pair similar in site and shape. Antennal spine in most species followed by a strong carina. A distinct carina separates the abdominal tergites.from the pleura. First abdominal stemite of the male with a median spine (this character not known from Thymopides)

3a. Antennal spine not followed by a strong carina. Palm of'first chela as wide aslong. Abdomen with a blunt median carina (Fig. 92).

3b. Antennal spine followed by a strong carina. Palm of first chela distinc tly longer tha n wide

Fig. 92

4a. Supraorbital spine followed by a strong toothed ridge which extends almost to the postcervical groove. Posterior part of carapace with several longitudinal carinae (Fig. 93)

Fig. 93

4b. Supraorbital spine followed by a single post-supraorbital spine, no supraorbital carina is present. The posterior part of the carapace is evenly granulate, without longitudinal caninae (Fig. 94)

Eunephrops S.I. Smith, 1885
NEPH Euneph
Eunephrops S.I. Smith, 1885, Proceedings United States National Museum, 8: 167. Gender ma sc uline.
Type Species : by monotypy: Eunephrops bairdii S.I. Smith, 1885.
The genus is restricted to the Westem Atlantic and hasthree known species, all of which inhabit the deep sea. They are of potential interest for fishery.

Key to Species:

1a. Carapace with submedian postcervical spines. No spine at the base of the scaphocente (Fig. 95). Second pereiopod with the fingers slightly less than half as long as the palm (Fig 96a)
E. bairdii
(Fig. 98)
1b. Carapace without postcervical spines. A spine on the antennal peduncle near the base of 'the scaphocente. Second pereiopod with the fingers less than $1 / 3$ as long as the palm (Pig. 96 b, c)

2a. Abdominal somites with distinct longitudinal median carina(Fig. 97a). Scaphocerite reaching to the base of the ultimate segment of the antennal peduncle. Third pereiopod with the fingersabout $1 / 3$ of the length of the palm \qquad E. cadenasi
(Fig. 100)
2b. Abdominal somites with a single transverse groove, which is intemupted in the middle; no median carina is present (Fig. 97b). Scaphocerite small, failing to reach the middle of the penultimate segment of the antennal peduncle. Third pereiopod with the fingers about $1 / 5$ of the length of the palm \qquad . E. manningi
(Fig. 102)

E. bairdii

(after Holthuis, 1974)

b. E. cadenasi

chelae of second pereiopod
(from Holthuis, 1974)

a. E. cadenasi

b. E. manningi

Eunephrops bairdii S.I. Smith, 1885
Fig. 98
NEPH Euneph 1

Eunephrops bairdii S.I. Smith, 1885, Proceedings United States National Museum, 8: 167.

FAO Names : En- Red lobster, Fr - Langoustine rouge; $\mathbf{S p}$ - Cigala colorada.

Type : Type locality: "Albatross" "Station 2143, March 23, 1884; Gulf of Darien; north latitude 9030'45", west longitude 76025'30"; 155 fathoms [=284 ml; green mud". Female holotype in USNM, No. 6937.

Geographical Distribution : Westem Atlantic: southwest Caribbean Sea off Colombia and Panama (Fig. 99).

Fig. 99

Fig. 98

Habitat and Biology : Depth range between 230 and $360(-400) \mathrm{m}$. Soft substrate (mud or coralfine rubble).
Size : Carapace length between 4 and 9 cm . Maximum total length about 20 cm .
Interest to Fisheries: The species has been ta ken occa sionally during explora tory commercial fishing. Its la rge size makes it an attractive fishery subject, but the fact that it seems to be scarce a nd lives in great depths detracts from its possible commercial value.

Literature: Holthuis, 1974:842, figs 27-29; Fischer (ed.), 1978: vol. 6.

Eunephrops cadenasi Chace, 1939, Memorias Sociedad Cubana Historia natural, 13:40.

FAO Names: En - Sculptured lobster.
Type : Type locality: "Nicholas Channel south of Cay Sal Bank, Lat. 23021 ‘N, Long. 79058’ W, 300-315 fathoms [= 550576 m]". Holotype female in MCZ

Geographical Distribution : Westem Atla ntic: off Bahama Islands and Dominica; Caribbean Sea nearJ amaica and Colombia (Fig. 101).

Fig. 101

Habitat and Biology : Depth range between 434 and 591 m.
Size : Maximum total body length (males) about 30 cm . Carapace length $5-14 \mathrm{~cm}$ (males), $4-5 \mathrm{~cm}$ (females).

Interest to Fisheries: The large size, that the species may atta in, makes it of potential interest to fisheries. Its a pparent sc arcity and the fact that it inhabits great depths, however, are important obstacles.

Fig. 100

Literature : Holthuis, 1974:849, figs 30-32.

Eunephrops manningi Holthuis, 1974, Bulletin Marine Science, Universitv of Miami, 24(4):854, figs 33-35.
FAO Names: En - Banded lobster.

Type : Type locality: "Florida Straits, 550 m, Silver Bay stat. 2483" [= 26025.5'N 79ㅇ́'W]. Male holotype in USNM no. 139626; paratypes in USNM, RMNH.

Geographical Distribution : Westem Atlantic: Florida Straits and northwest of Anguilla (Fig. 103).

Fig. 103

Habitat and Biology : Depth range between (393-) 451 and 550 m Substrate: mud.

Size : Maximum total body length about 15 cm , carapace length 4 to 7 cm .

Interest to Fisheries: Since so far only three specimens of this species are known, nothing concrete can be said about its fisheries potential. Its size is attractive, but the depth range and low abundance are negative factors.

(after Holthuis, 1974)

Fig. 102

Literature: Original description.

Homarus Weber, 1795, Nomenclator entomologic us: 94. Gender masculine. Name placed on the Offic ial List of generic Names in Zoology, in Opinion 104 (published in 1928).

Type Species: selected by Fowler, 1912, Annual Report New Jersev State Museum, 1911:333: Astac us marinus Fabric ius, 1775 (= Cancer gammarus Linnaeus, 1758).

Synonyms: Homarus Guérin Méneville, 1825, Encyclopédie méthodique, Histoire naturelle, Insectes, 10:768. Type species by original designation and monotypy: Cancergammarus Linnaeus, 1758. Gender masculine.

Homarus H. Milne Edwards, 1837, Histoire naturelle des Crustacés, 2:333. Type spec ies, selected by E. Desmarest, 1858, in Chenu, Encyclopédie Histoire naturelle (Crustaces. Mollusges. Zoophytes): 38 : Homarus vulgaris H. Milne Edwards, 1837. Gender masculine.

The name Homarus has been independently chosen forthis genus by three different authors.Notwithstanding the fact that these three homonyms all have different nominal species as their types, they still are objectively synonymous, as these three different nominal species are objectively synonymous themselves.

The genus Homarus has three species, two of which belong to the economic ally most important lobsters in the world. The importance of the genus is well expressed by Herrick (1895:6), who in his monograph "The Americ an Lobster" stated that the lobster "may be nightfully called the King of the Crustacea".

Key to Species :

1a. Palm of first chelipedscovered with hairs, especially near the lower margin (Fig. 104a). Small species, attaining a total body length of 10 cm . Found only off South Africa south of 30 S \qquad H.capensis
(Fig. 108)
1b. Palm of first chelipeds naked, without hair cover (Fig. 104b). Large species, attaining lengths of 40 to 65 cm . Found in the northem Atlantic, north of $30 \div \mathrm{N}$

2a Rostrum without ventral teeth (Fig. 105a). Found in the eastem Atlantic (Norway to Morocco)
H. gammarus
(Fig. 110)
2b. Rostrum as a rule with one or more ventral teeth (Fig. 105b). Found in the westem Atlantic (Newfoundland, Canada to North Carolina, USA)
H. americanus
(Fig. 106)

a. H. gammarus
b. \boldsymbol{H}. americanus

Homarus americ anus H. Milne Edwards, 1837
Homarus americanus H. Milne Edwards, 1837, Histoire naturelle des Crustacés, 2:334.

Synonyms : Astacus marinus Say, 1817 (non Fabric ius, 1775); Astacos americ anus - Stebbing, 1893; Homarus mainensis Berill, 1956.

FAO Names: En - Americ an lobster, Fr-Homard améric ain; Sp - Bogavante americano.

Type : Type loc a lity of \mathbf{A}. marinus Say and \mathbf{H}. americanus H . Milne Edwards: "Long-branch, part of the coast of New Jersey" (Say, 1817: 166), USA. Lec totype, if extant, in ANSP (not located in 1989); paratype(s) in MP.

Type locality of H. mainensis: "Maine waters". No types indicated.

Geographical Distribution : Westem Atlantic: Atlantic coast of North America between Newfoundland (Canada) and North Carolina (USA) (Fig. 107).

Habitat and Biology : Sublittoral to 480 m depth, most common between 4 and 50 m . Hard bottom (hard mud, rocks). As the females camy their eggs for 10 to 11 months, ovigerous females are found throughout the year. Migration does not occur, or only on a limited scale.

Size : Maximum total body length 64 cm , usually a round 25 cm or less. This probably is, with Jasus vemeauxi, the largest known Decapod species as far asbody length is concemed.

Interest to Fisheries: The species is the subject of one of the most important Crustacea fisheries in the northwest Atlantic. According to FAO statistics, the catches in 1987 and 1988 amounted to 60096 and 62457 tons, respectively. The animals are mostly caught with traps, but in recent years trawling proved to be commercially feasible, especially in the southem part of the range of the species. These lobsters are sold fresh or frozen. The meat is also canned.

Local Names: CANADA: Lobster (English), Homard (French); USA : American lobster, Maine lobster, Northem lobster

Literature : Herrick, 1895; Hemick, 191 1; Fischer (ed.), 1978:vol. 6; Williams, 1984: 168, fig.119; Squires, 1990:326, figs 172-174.

Fig. 106
NEPH Hom 2

Fig. 106

Fig. 107

Homarus capensis (Herbst, 1792)
Fig. 108
Cancer (Astacus) capensis Herbst, 1792, Versuch einer Naturgeschichte der Krabben und Krebse, 2:49, pl. 26 fig. 1.

Synonyms : Astacus fulvus Fabricius, 1793; Homarus fulvus - Weber, 1795; Astacus capensis - Latreille, 1802; Cancer (Astacus) fulvus - Turton, 1806.

FAO Names: En - Cape lobster, Fr- Homard du Cap; Sp - Bogavante del Cabo.

Type : Type loc ality of Cancer capesis: "aus dem Kap." (= Cape of Good Hope, South Africa). Holotype in collection L. Spengler, Copenhagen; present whereabouts unknown, but the possibility exists that the specimen is identic al with the holotype of Astacus fulvus Fabr. (see next paragraph).

Type locality of. Astacus fulvus: "in Oceano". Holotype (possibly also holotype of Cancercapensis Herbst) in UZM.

Geographical Distribution : South Afric a, from Table Bay

Habitat and Biology : Shallow coastal waters, rock pools, etc. The extreme rarity of the species is the cause that very little is known about its habitat and biology. Old records, reporting that it is found in fresh water, are definitely incorrect.

Size : Total body length 8 to 10 cm ; carapace length 4 to 5 cm.

Interest to Fisheries: None. The species is extremely rare. Although It lives in shallow water and in a well explored region of the globe (the marine fauna of South Africa is better known than that of any other Afric an country), and although it is almost 200 years since it was first described, so far only 14 spec imens (13 males and 1 female) are known to exist in collections. Gilchrist (1918:46) remarked that the species "is not even known to Cape fishermen".

Literature : Holthuis, 1986:243, fig. 1

NEPH Hom 3

(after H Milne Edwards, 1851)

fig. 109

Homarus gammarus (Linna eus, 1758)
Cancer gammarus Linnaeus, 1758, Systema Naturae, (ed.10) 1:631. Name placed on Official List of Specific Names in Zoology in Direction 51 (published in 1956).

Synonyms: Astacus marinus Fabricius, 1775; Astacus gammarus - Pennant, 1777; Homarus marinus - Weber, 1795; Astac us europaeus Couch, 1837; Homarus vulgaris H. Milne Edwards, 1837.

FAO Names : En - European lobster; Fr - Homard européen; Sp - Bogavante.

Type : Type locality of Cancer gammarus, Astacus marinus, Astacus europaeus and Homarus vulgaris: Marstrand, west coast of Sweden, about 57053' 11 을' E . Lectotype selected by Holthuis (1974:820); lectotype and paralectotypes now lost.

Geographical Distribution : Eastem Atlantic from northwestem Norway (Lofoten Islands) south to the Azores and the Atlantic coast of Morocco. Also along the northwest coast of the Black Sea. and in the Mediterranean (but lacking in the extreme eastem part, east of Crete). Not present in the Baltic Sea (Fig. 111).

Habitat and Biology : Continental shelf between 0 and 150 m depth; usually not deeperthan 50 m . Found on hard substrates: rock or hard mud. The animals are noctumal and teritorial, living in holes or crevices. Females with eggs are found almost throughout the year. The eggs are laid around July and carried for 10 or 11 months.

Size : Maximum total body length about 60 cm (weight 5 or 6 kg), la rge size spec imens usually 23 to 50 cm .

Interest to Fisheries : The European lobster is a highly esteemed food source and isfished throughout its range, fetching very high prices. It is mostly taken with lobster pots, although it occasionally tums up in trammel nets and dredges. Bait (usually pieces of octopus or cuttle fish) tied to lines can tempt them out of their burrows, after which they are caught by hand or with nets. In some areas captured specimens are kept alive in enclosures. The species is sold fresh, frozen or either canned or in powdered form. According to FAO statistics the annual catch of the species was 2124 tons in 1987 and 2052 tons in 1988 from the northeastem Atlantic (Fishing Area 27). Experiments in aqua culture of the species are underway in France and Spain.

Local Names : DENMARK: Hummer: FRANCE: Homard; GERMANY: Europä isc her Hummer, GREECE: Astakós; ITALY:Astice (official name), Elefante di mare, Lupicante, Lupo di mare; MALTA: Liunfant; MONACO; Leguban; MOROCCO: Taroucht (Chleuh language); NETHERLANDS: Zeekreef-t; NORWAY: Hummer; PORTUGAL: Lavagante, Labugante, Navegante; SPAIN: Bogavante (official name), Abric anto, Homar, Llangant, Lubricante; SWEDEN: Hummer, TUNISIA: Saratan il bahr; TURKEY: Istakoz, Stacoz; U.K.: Common lobster, Lobster, USSR: Omar, YUGOSLAVIA: Hlap.

Literature : Rolland, 1881:234 (loc al French names); Palombi \& Santa relli, 1961:366,367 (local Italian names); Fischer, Bianchi \& Sc ott (eds), 1981 :vol. 5; Fisc her, Ba uc hot \&Sc hneider (eds), 1987:301.

Metanephrops J enkins, 1972

NEPH Metan

MetanephropsJ enkins, 1972, Crustaceana, 22(2): 161. G end er ma sc uline.
Type Species: by original designation: Nephrops japonicus Tapparone-C anefri, 1873.
All of the tropical westem Atlantic and Indo-West Pacific lobsters fomerly assigned to the genus Nephrops, a re now placed in Metanephrops. The known species of that genus now number 17, not including the fossil species.

Most of the known species are of good size and all are considered either of present or potential commercial importance and therefore, all are enumerated here

Key to Species (after Chan \& Yu, 1987, and Chan\& Yu, 1991) :

1a. Carapace smooth, between the ridges and large spines (Fig. 112)

2a. Chelae of first pereiopods hea vily ridged and spinulose (Fig. 113a)

a. M. binghami
b. M. boschmai first pereiopod

Fig. 113

3a. Surface of abdominal tergites smooth (Fig. 114). Westem Atla ntic \qquad ("binghami" group)

4a. Spinules present behind postrostral carinae. Intermediate carina smooth (Fig. 112a). SW. Atlantic \qquad M. rubellus
(Fig. 150)
4b. Spinules absent behind postrostral carinae. Intermediate carina spinulose (Fig. 112b). West Indian region \qquad M. binghami
(Fig. 136)
3b. Surface of abdominal tergites conspic uously sculptured (Fig. 115). Indo-West Pacific \qquad ("japonicus" group)

5a. Fifth abdominal somite with a distinct spine on the carina that separates the tergite from the pleuron. Dorsomedian carina of sixth abdominal somite with one ortwo pairs of submedian spines (Figs 116, 117). A prominent basal spine on outer edge of movable finger of large chela (Fig. 120a).

6a. Raised portions of dorsal surface of abdomen subdivided. First abdominal somite with a dorsomedian canina (Fig. 116) (J apan) . M. japonicus
(Fig. 144)
6b. Raised parts of dorsal surface of abdomen smooth, not subdivided. No raised dorsomedian carina on first abdominal somite (Fig. 117) (Taiwan) \qquad M. armatus
(Fig. 132)
5b. Fifth abdominal somite without distinct spines on carina separating tergite from pleuron. Dorsomedian canina of sixth abdominal somite without submedian spines.

Fig. 116

M. binghami
abdomen (dorsal view) Fig. 114

M. andamanicus abdomen (dorsal view)

Fig. 115

M. armatus abdomen (dorsal view)

Fig. 117

7a. Chela of first pereiopod with large spines. A prominent basal spine on outer edge of movable finger of large chela (Fig. 120a). Abdomen without dorsomedian carina (Fig. 118) (Taiwan) \qquad M formosanus
(Fig. 142)
7b. Chela of first pereiopod without large spines. No prominent basal spine on outer edge of movable finger of large chela (Fig. 120b, c) Abdomen with dorsomedian carina

8a. Postrostral carinae with 3 to 5 (rarely 3) teeth (119a). Spine in the middle of the lateral margin of sixth abdominal somite long, reaching to posterolateral groove of the somite (119b). Inner margin of merus of first pereiopod heavily spinulose (Fig. 120b) (J apan, Taiwan) M. sagamiensis
(Fig. 152)
8b. Postrostral carinae with never more than 3 teeth. Spine in the middle of the lateral margin of sixth abdominal somite short, tip far from the posterolateral marg in of the somite (Fig. 121). Inner margin of merus of first pereiopod weakly spinulose (Fig: 120c).

a. anterior part of carapace (dorsal view)

b. last two abdominal somites (dorsal view)
M. sagamiensis

Fig. 119

a. M. formosanus

b. M. sagamiensis

c. M. andamanicus

9a. Raised parts of the abdominal somitescoarse and pubescent (Fig. 121) (Philippines, W. Australia) \qquad M. velutinus
(Fig. 160)
9b Raised parts of dorsal surface of abdominal so mites smooth and naked (Fig. 122)

10a. Second to fifth abdominal somites with marked dorsomedian canina, flanked by a pair of conspicuous longitudinal grooves (Fig. 115). Indian Ocean, South China Sea \qquad M. andamanic us
(Fig. 128)
10b. Dorsomedian carina of abdomen almost level with the dorsal surface of the somite, without grooves at either side (Fig. 122). S.E. Africa, Madagasc ar .. M. mozambic us
(Fig. 146)
2b. Chelae of first pereiopods weakly ridged and finely granular (Fig. 113b.c). Indo-West Pacific \qquad ("thomsoni" group)

11a. Transverse grooves present on abdominal tergites 2 to 5
12a. No transverse groove present on first tergite (Fig. 123) (J apan, China, Philip pines) M. thomsoni

Fig. 158)
12b. Transverse groove present on first tergite (Fig. 124). China Sea \qquad M. sinensis
(Fig. 156)
11 b. Transverse grooves absent from abdominal tergites 2 to 5

Fig. 123

M. velutinus
abdomen (dorsal view) Fig. 121

M. mozambicus
abdomen (dorsal view)
Fig. 122

M. sinensis abdomen (dorsal view)

Fig. 124

13a. Longitudinal spinulose cardiac ridge absent (Fig. 125a) (New Zealand) \qquad M. challengeri
(Fig. 140)
13b. Longitudinal spinulose cardiac ridge present (Fig. 125b)

14a. Distinct spine present in the middle of inner margin of merus of first pereiopod (Fig. 113b) (Australia) ... M. boschmai
(Fig. 138)
14b. No distinct spine present in the middle of inner margin of merus of first pereiopod (Fig. 113c) (Indonesia, Australia) \qquad M. sibogae.
(Fig. 154)
1b. Carapace rather uniformly spinulose (Fig. 126a, b) \qquad ("arafurensis" group)

15a. Region between postrostral carinae heavily spinulose (Fig. 126a). S China Sea, Australia
M. neptunus
(Fig. 148)
15b. Region between postrostral carinae smooth (Fig. 126b)

16a. Longitudinal furrows present on abdominal tergites (Fig. 127a) \qquad M. arafurensis
(Fig. 130)
16b. Longitudinal furrows a bsent from abdominal tergites (Fig. 127b) \qquad M. australiensis
(Fig. 134)

carapace (dorsal view)
Fig. 125

carapace (dorsal view)
Fig. 126

Metanephrops andamanic us (Wood-Ma son, 1891)
Fig. 128
NEPH Metan 2
Nephrops andamanic us Wood-M a son, 1891, llustrations of the Zoology of H.M.S. Investigator. Crust. 1 :pl. 4.

Synonyms: Nephrops thomsoni andamanicus -
FAO Names : En - Andaman lobster; Fr Langoustine andamane; Sp-Cigala de Andamán.

carapace (lateral view)

Type : Type locality:"Investigator" Station 115, Andaman Sea, 1 1ㅇ31'40"N 92으́'40"E; 188-220 fathoms ($=344-402 \mathrm{~m}$), green mud. Holotype male in ZSI, no. 5812/10, in alcohol, condition poor (not labelled as type).

Geographical Distribution : Indo-West Pacific region: East Africa, the Andaman Sea, the South China Sea, and Indonesia (Fig. 128). Records of M. andamanicus from S.E. Afric a and Madagascar pertain to M. mozambicus, those from Australia to M. velutinus. A record from Madang, Papua New Guinea (King, 1988: 109) needs verific ation.

Habitat and Biology : Depth range from 250 to 750 m , but mostly between 300 and 450 m . Substrate of hard mud; the species possibly lives in burrows.

Size : Total body length up to 20 cm , most common between 15 and 18 cm ; carapace length about 4.5 to 6 cm .

Interest to Fisheries : Longhurst (1970:286) mentioned the species 'as a potential fishery resource off Hong Kong. It is well possible that the same is true in other parts of its range.Its size and the fact that the species lives on trawlable bottoms are in favour of this supposition. Records of commerc ial catc hes of M. andamanic us off SE. Africa and Madagascar refer to M. mozambicus; such records from Australia are actually based on material of \mathbf{M}. velutinus.

Literature : Fischer \& Bianchi (eds), 1984: vol. 5; Chan \& Yu,1991:32 pls 2a, c, 4a, c, 6a, 7d.

Fig. 127

Fig. 128

Metanephrops arafurensis (De Man, 1905)
Fig. 130
NEPH Metan 3
Nephrops arafurensis De Man, 1905, Iijdschrift Nederlandsche Dierkundiae Vereeniging, (2)9: 587.
FAO Names: En - Arafura lobster.

Type : Type locality: Arafura Sea, Indonesia, "Siboga" Expedition "Station 262. Lat. 5053.8'S., long. 132으․8. E . Depth $560 \mathrm{M"}$. Only known from mutilated holotype male in ZMA, no. DE 102.670, condition fair, apart from the original damage.

Geographical Distribution : Indo-West Pacific region: Indonesia; only known from type locality (Fig. 131).

Habitat and Biology : Found at 560 m depth; bottom solid bluish grey mud overlaid by softer brown mud.

Size: C arapace length; including rostrum, 5.5 cm ; total body length about 12 cm .

Interest to Fisheries : As the species is known only from a single specimen, nothing can be said about its potential commercial value.

Literature : De Man, 1916:107, pl. 3 fig. 16.

Fig. 131

carapace and,first three abdominal somites
(after De Man, 1916)
Fig. 130

Metanephrops armatus Chan \& Yu, 1991
Fig. 132
NEPH Metan 15
Metanephrops armatus Chan \& Yu,1991, Crustaceana, 60(1):25, pls Ib, 3b, 5b,d, 7b, 9a,b.
FAO Names: En - Armoured lobster
Type : Type locality: "north-eastem Taiwan, Su-Ao, I-Lan County. fish market, 300-400 m (from fishemen)". Holotype male, NTOU no. 90-3-9H. Paratypes, NTOU, RMNH, TFRI. All type material in good condition, in alcohol.

Geographical Distribution : Indo-West Pacific region: off north-east and south-west Taiwan (Fig. 133).

Fig. 133

Habitat and Biology : At depths of 200 to 450 m , mostly more than 300 m . On a more rocky bottom than the other Taiwan lobsters.

Size: C arapace length 1.7-5.7 cm (males), 1.4-4.8 (females), 3.94.4 cm (ovigerous females).

Interest to Fisheries: The species is sold on the Taiwan markets and fetches better prices than the other Taiwan lobsters as the specimens are larger. However, it is less common in the markets than the other species.

Local Names: TAIWAN: Amoured lobster.
Literature: Original description.
Remarks: Before 1991 specimens of this species were considered to belong to M. japonicus.

(after Chan \& Yu, 1991)

Fig. 132

Metanephrops australiensis (Bruce, 1966)
Nephrops australiensis Bruce, 1966, Crustaceana, 10:245, pls 25-27.
FAO Names: En - Northwest lobster.
Type : Type locality: "N.E. of Port Hedland, northem Westem Australia, approximately 8.5 miles east of Mermaid Reef, 170ㅇㅇ́S 119048'E; depth 434 metres". Holotype male in WAM (no. 1 l-64).

(after Bruce, 1966)
lateral view

Geographical Distribution : Indo-West Pacific region. So far the species has only been found off the northwest coast of Westem Australia near Port Hedland, at $17^{\circ} 05^{\prime}$ S $119^{\circ} 48^{\prime} \mathrm{E}$ and $180^{2} 6^{\prime} \mathrm{S}$ 117034'E (Fig. 135).

Fig. 135

(after Bruce, 1966)
dorsal view
Fig. 134

Habitat and Biology : Depth range from 418 to 500 m , on a bottom of Globigerina ooze.
Size : Total body length to 18 cm ; carapace length 4 to 7 cm , average 5 cm .
Interest to Fisheries : Potential. At the type locality, 39 specimens were obtained by trawl in a single haul. Proper equipment and better knowledge of itsoccurrence, habitat and habits may show the species to be of economic interest. George (1983: 16) counted this species among the 5 of which off Port Hedland the "commercial prospects... are probably the most encouraging". Wallner \& Phillips (1988:36) indic ated that off N.W. Australia, 38% of the Metanephrops catch wasformed by this species. In 1984, Davis \& Ward (1984:42) gave the catch percentages by weight of the trawling off northwest Australia as follows: 50% shrimps, 32.5% M. australiensis, 12.1% M. velutinus, and 5.4% M. boschmai.

Local Names: AUSTRALIA: Northwest scampi.
Literature: Original description.

Nephrops binghami Boone, 1927, Bulletin Binaham Oceanographic Collection, 1(2):91, figs 18-20.

FAO Names : En - Caribbean lobster, Fr - Langoustine caraibe; Sp - Cigala del Caribe.

Type : Type locality: "from north to Glover Reef, in 484 fa thoms of water". The exact type locality and depth are not certa in (see Holthuis, 1974:835), but it probably is 16049 ' 38 "N $87058^{\prime} 15$ "W, 384 fms [= 703 m]. Holotype male in YPM, no. 4380; 4 paratypes in YPM, nos. 4381-4384 (all type material in alcohol and in excellent condition).

Geographical Distribution : Westem Atlantic region: from the Bahama Islands and southem Florida (USA) to French Guiana, including the Gulf of Mexico and the Caribbean Sea (Fig. 137).

Fig. 137

Fig. 136

Habitatand Biology : Depth range from 230 to 700 m , most common between 300 and 500 m ; on a substrate of sand ormud.

Size : Total body length to 17 cm , usually a round 12 cm .
Interest to Fisheries: The species is not a ctively fished for at present, but it was ta ken in commercially attractive quantities during exploratory trawling operations in the westem Caribbean Sea (about $10 \mathrm{~kg} / \mathrm{h}$).

Local Names : USA: Caribbean lobsterette.
Literature: Holthuis, 1974:827, figs 25,26; Fisc her (ed.), 1978:vol. 6.

Nephrops boschmai Holthuis. 1964, Zoologische Mededelingen Leiden, 39: 72, fig. 1.

FAO Names: En - Bight lobster.
Type : Type locality: "Great Australian Bight, 126.5E, S. W. of Eucla, .130-190 fathoms [= 238, 348 ml". Holotype male in AMS, no. E3673 (a female paratype under the same number); paratypes in AMS, USNM, RMNH.

Geographical Distribution : IndoWest Pacific region: off the west and south coasts of Westem Australia from Port Hedland to Eucla (Fig. 139).

Habitat and Biology : Depth range from 300 to 460 m ; on substrates of mud, or mud and rubble.

Size : Total body length to 18 cm ; carapace length about 3 to 5 cm .

Interest to Fisheries : George (1983: 17) observed that off Port Hedland, Westem Australia, the commercial prospects of the 4 species of Metanephrops and one of Puerulus occuming there "are probably the most encouraging" and that of the 4 Metanephrops species, M. boschmai is there the most common one. Wallner \& Phillips (1988:36) remarked that off north-west Australia " M. boschmai, which is smaller [than M. velutinus and M. australiensis] and therefore less marketable, has not been exploited to a ny extent" More exploration remains necessary.

Local Names : AUSTRA $\triangle A$: Bight scampi; Boschma's scampi.

Literature: Original description.

Fig. 138

Fig. 139

Metanephrops challengeri (Ba lss, 1914)
Fig. 140
NEPH Metan 6
Nephrops challengeri Balss, 1914, Abhandlungen Baverischen Akademie Wissenschaften (mathematisch-physikalische Klasse), (suppl.2)10:84.

FAO Names: En - New Zealand lobster.

lateral view
(from Yaldwyn, 1954)

Type : Type locality: "Challenger" Station 166, between Australia and New Zealand, 38050'S 169020'E, 275 fathoms [$=503 \mathrm{~m}$], bottom Globigerina ooze. Two syntype females in BM, no. 88.22 (in alcohol, condition good).

Geographical Distribution : Indo-West Pacific region. New Zealand waters: continental shelf around both North and South Islandsasfareast as Chatham Islands (Fig. 141).

Habitat and Biology : Depth range from 140 to 640 m ; substrate mud or sandy mud, firm enough for burrowing.

Size : Total body length to 25 cm , mostly between 13 and 18 cm .

Interest to Fisheries : Potential. Longhurst (1970:301) reported the species as having "been found in promising quantities in deep water". Wear (1980:25) considered the (still remote) possibility of culture of the species.

Local Names : NEW 飞્ALAND: New Zealand scampi, Deep-water scampi.

Literature: Yaldwyn, 1954:721-732, figs 1,2.

(combined from Bate, 1888 and Yaldwyh, 1954)
Fig. 140

Fig. 141

Metanephrops formosanus Chan \& Yu, 1987, Crustaceana, 52: 173, 184, text-fig. 1,2, pls 1, 2.

FAO Names: En - Formosa lobster.
Type : Type locality: "Ta-Chi, I-Lan Country", off north east coast of Taiwan, 180-400 m, bottom mud or sand. Holotype male and paratypes in NTOU; paratypes in RMNH.

Geographical Distribution : Indo-West Pacific region. Only known so farfrom the north-east and the south coasts of Taiwan (Fig. 143).

Fig. 143

Fig. 142

Habitatand Biology : Depth range from 150 to 400 m, mostly a round 250 m; bottom: mud or sand. Spawning time seems to be in late autumn.

Size : The known maleshave a total body length of 5 to 12 cm , the females, 5 to 9.5 cm ; an ovigerous female measured 8.5 cm . Most specimens are 6 to 9 cm long. C arapace length: 1.8-4.1 cm (males), 1.7-4.8 cm (females), 3.1-4-0 cm (ovigerous females).

Interest to Fisheries: The species is "mainly caught by baby shrimp trawlers" (Chan \& Yu, 1987: 183) a nd sold fresh at the local markets where the price is rather high. The animals are caught throughout the year, but the catch is unstable and not large.

Local Names: CHINA (Taiwan): Te-Chia Shia (=a moured prawn); also used forotherspecies of the genus.
Literature: Original desc ription; Chan \& Yu, 1991:27, pls 1c, 3c, 6d.

Nephrops japonic us Ta ppa rone-Ca nefri, 1873, Memorie Reale Accademia delle Scienze Torino (2)27:326, pl. 1.

FAO Names: En - J a panese lobster.

carapace (lateral view)
(from Holthuis, 1974)

Type : Type locality: "proveniente dal Giappone". Holotype in MZT, no.Cr. 1062.

Geographical Distribution : Indo-West Pacific region: off the Pacific coast of Japan from Choshi, Chiba prefecture, Honshu to east coast of Kyushu (Fig. 145).

Habitat and Biology : Depth range from 200 to 440 m , usually between 200 and 300 m ; bottom mud.

Size : Total body length 9 to 12 cm . Carapace length: 3.7 cm (males), $3-6 \mathrm{~cm}$ (females).
interest to Fisheries: The species is fished throughout its range mostly by trawlers. It is highly esteemed as gourmet food and sold fresh and frozen. In Tosa Bay, the fishing season is between September and April, the catch of this species being smaller there than that of \mathbf{M}. sagamiensis.

Local Names: JAPAN: Akaza, Akata-ebi.
Literature : Baba et al., 1986:280; Chan \& Yu, 1991:22, pls la, 3a, 5a, 7 a .

dorsal view
Fig. 144
(combined afterTapparone-Canefri, 1873 and Chan \& Yu. 1991)

Fig. 145

Fig. 146
NEPH Metan 16

(combined after Macpherson, 1990 and Chan \& Yu, 1991)

Fig. 146

Fig. 147

Fig. 148
NEPH Metan 9
Nephrops neptunus Bruce 1965, Crustaceana, 9:274, pls 13-15.
FAO Names: En - Neptune lobster.

Type : Type locality: ""Cape St. Mary", Cr[uise]. 1/64, Station 26, Tra wl 131 [South China Sea, south of Hong
 Agassiz Trawl, depth 400-435 fmi [=732-796 m]". Holotype female in BM, no. 1964.9.28.1; allotype in RMNH (both types in alcohol, condition good).

Geographical Distribution : Indo-West Pacific region: South China Sea and off westem Australia (Fig. 149).

dorsal view
Fig. 148
(after Bruce, 1965)

Fig. 149
Habitat and Biology : Depth range from 300 to 800 m . Bottom temperature $5 \div \mathrm{C}-11.90 \mathrm{C}$. Substrate unknown.
Size : Total body length 18 to 25 cm .
Interest to Fisheries: Potential. George (1983:16) counts the present species a mong the five lobsters off Westem Australia for which the "commercial prospects \qquad are probably the most encouraging".

Local Names: AUSTRA
Literature: Original description.

Metanephrops rubellus (Moreira, 1903)
Fig. 150 NEPH Metan 10

Nephrops rubellus Moreira, 1903, La voura. Boletim da Socied ade nacional de Agricultura Brazileira, 7:62.

FAO Names: En-Ungavian lobster.

front end of carapace (lateral view)
(from Moreira, 1905)

Type : Type locality: E.S.E. of llha Rasa at the entrance of the Bay of Rio de Janeiro "á distancia de 30 a 35 milhasda costa entre 430 e 43030^{\prime}; W. Greenwich e 6 profundida de de 60 a 100 metros". Syntypes in MNRJ, and USNM, no. 29328.

Geographical Distribution : Westem Atlantic region: off the east coast of South America between 23° (off Rio de Janeiro, Brazil) and 380S (off Buenos Aires Province, Argentina) (Fig. 151).

Habitat and Biology : Found in waters between 50 and 150 m deep.

Size : Total body length of adult specimens between 11 and 18 cm ; carapace length between 5 and 8 cm .

Interest to Fisheries: So far none. The species is rather rare ("se encuentra raramente en nuestrascostas" Barattini \& Ureta, 1960:49) and certainly does not at present form the subject of a fishery.

Local Names : BRAZL: Lagostim, Langostinha, Langostinha do Mar.

Literature : Moreira, 1905:128, pl.3; Ramos, 1950 :83-91, figs l-3; Holthuis, 1974:836-839.

dorsal view (after Moreira 1905)
Fig. 150

Fig. 151

Metanephrops sagamiensis (Pa risi, 1917)
Fig. 152
NEPH Metan 11

Nephrops sagamiensis Parisi, 1917, Atti Società Italiana Scienze naturali, 56: 15.

Synonyms: Nephrops intermedius Balss, 1921.
FAO Names: En - Sculpted lobster.
Type : Type locality Nephrops sagamiensis: "Baia di Sagami" (=Sagami Bay, Honshu, Japan); two paralectotypes in Museo Civico di Storia Naturale, Milano, Italy, no. 12-13 (ex 1494). Type localities of both Nephrops intermedius and \mathbf{N}. sagamiensis: "Misaki und Aburatsubo, Sagamibai, Sammlung Doflein, Nr. 2490"; and of N. sagamiensis (possibly also of N. intermedius): "Station 9, Sa gamibai $\left[=200^{\prime} 10^{\prime} 30 " \mathrm{~N} 139033^{\prime} \mathrm{E}\right]$, 250 m Tiefe, Sammlung Doflein". Through the lectotype selection for both species (see Remarks below), the type locality of both is now restricted to "Aburatsubo, Sagamibai, Japan" [= Aburatsubo near Misaki, Kanagawa Prefecture, Honshu, J apanj; lec totype is the specimen shown on pl. 1 fig. 2 of Balss's (1914) paper, it is preserved in ZSM under no. 33/5, the condition of the alcohol specimen is good; one lot of 3 paralectotypes (of both \boldsymbol{N}. intermedius and \boldsymbol{N}. sagamiensis) from "Sagamibai, Misaki, J apan" is also preserved in ZSM, it has no. $33 / 1$, and is preserved in alcohol in a good condition. The lectotypes and paralectotypes of \boldsymbol{N}. intermedius all were collected by F. Doflein in 1904-1905, the lectotype bearing his collecting number 2490. Six lots (10 specimens) of Metanephrops japonicus from Sagami Bay in the collection of ZSM (nos. 33/1, $33 / 2,33 / 3,33 / 4,33 / 6$ and $36 / 1$) are paralectotypes of N. sagamiensis (not quite certa in for $33 / 1$ and $33 / 3$) but not of \boldsymbol{N}. intermedius.

Geographical Distribution: Indo-West Pacific region: from east coast of J a pan near Sagami Bay to Taiwan (Fig. 153).

Habitat and Biology : Depth range from 300 to 400 m, mostly around 350 m .

Size : Carapace length 3 to 6 cm (males) and 4.5 to 6 cm (females), corresponding to a total body length of 6 to 14 cm (males) and 10 to 14 cm (females).

(after Balss.1914)
Fig. 152
Interest to Fisheries: Very little information is available on this species. Baba et al. (1986:280) observed that "in Tosa Bay [Shikoku Isla nd, J apan], the fishing season for \boldsymbol{M}. sagamiensis as well as for \boldsymbol{M}. japonicus, is between September and April, the catch of \boldsymbol{M}. sagamiensis being greater".

Local Names: J APAN: Sagami akaza-ebi.
Literature : Baba et al., 1986:280; Chan \& Yu, 1991:30, pls 1d, 3d, 5c, 7c.

Remarks : Balss (1914:84, pi. 1 fig. 2), under the name Nephrops japonicus, dealt with several males and females as well as with a juvenile, no exact numbers being given. Later he (Balss, 1921:176) found that this material consisted of two distinct species, and that the specimen figured by him in 1914 was not the true N. japonicus and belonged to a species that he named Nephrops intermedius; again he did not indicate the exact number of specimens of either species before him. Dr. Ludwig Tiefenbacher of the Munich Museum was so kind to inform me that in the collection of his museum there are two

Fig. 153
lots (4 specimens) labelled \boldsymbol{N}. intermedius a nd which form part of the Doflein collection; one of these specimens could be identified as the specimen figured by Balss (1914). All four specimens thus a re syntypes of \boldsymbol{N}. intermedius and the figured specimen is now selected as the lectotype of that species. In addition the Munich Museum holds five lots of Metanephrops japonicus, all labelled Nephrops japonicus and all from Sagami Bay. Three of those lots (5 specimens) definitely form part of the material dealt with by Balss (1914), as one of them was collected in 1904 by Doflein and two others were collected in 1903 (one by K.A. Haberer, of the other the collector is not indicated but this could well be Haberer also). The two remaining lots only camy the indications "Sagamibai, Japan", but may well have belonged to Balss' (1914) material. Finally there is one lot of Metanephrops japonicus collected in Sagami Bay by Doflein, a nd thus certainly part of the 1914 material;however, this lot (1 specimen) bears in Balss' handwriting the incorrect label "Nephrops sagamiensis Parisi" it is not clear whether or not this is a syntype of Nephrops intermedius, most likely it is not.If it were, however, then the type series of Nephrops intermedius would consist of two species and a lectotype selection is required.

Parisi (1917), when describing his new N. sagamiensis included in it all of Balss' (1914) Nephrops japonicus material; therefore all of Balss' specimens, both those of \boldsymbol{N}. intermedius and those of \boldsymbol{N}. japonicus are syntypes of \boldsymbol{N}. sagamiensis as are also the two specimens before Parisi. The type material of \boldsymbol{N}. sagamiensis thus is definitely heterogeneous and a lectotype should be chosen. The lectotype of N. intermedius is here chosen to be also the lectotype of N. sagamiensis; this action now definitely establishes the identity of the two species, at the same time making their names objectively synonymous.

Metanephrops sibogae (De Man, 1916)
Nephrops sibogae De Man, 1916, Siboga Expedition monograph, 39(a2): 102, pl. 4 fig. 18.

FAO Names: En - Siboga lobster
Type : Type loc ality: Near the Kai Islands, Indonesia, " $5^{\circ} 40^{\prime}$ S., $132^{2} 26^{\prime} \mathrm{E}$., 310 m . Bottom fine, grey mud". Syntypes (5 males, 4 females) in ZMA, no. De 104.197, condition fair.

Geographical Distribution : Indo-West Pacific region: Indonesia (type locality only) and Australia (Coral Sea north east of Cape York, and north west of Melville Island, Westem Australia) (Fig. 155).

Fig. 155

Fig. 154
NEPH Metan 12

Fig. 154

Habitat and Biology : Depth range from about 300 to 310 m ; bottom: soft sediments, like fine grey mud. Ovigerous females found in December.

Size : Total body length 11.5 to 18 cm ; ovigerous females 13 and 13.5 cm .

Interest to Fisheries : Potential. The size of the specimens, the fact that they are not solitary (the type haul contained 9 specimens) and that they live on trawlable bottoms, makes them of potential interest for commercial fisheries. But too little is known about the habits and a ctual habitat of the species.

Local Names: AUSTRALA: Siboga's scampi.
Literature: Original description.

Metanephrops sinensis (Bruce, 1966)
Fig. 156
NEPH Metan 13

Nephrops sinensis Bruce, 1966, Crustaceana, 10: 155, pls 10-12.

FAO Names : En - China lobster.
Type : Type locality: South China Sea, "Cape St.Mary"'"Sta. 63, Trawl 54, $15053.0^{\prime} \mathrm{N}$ 109026.0'E to $15053.7^{\prime} \mathrm{N}$ 109025.3'E (approx.)... depth 155 fms [=283.5 m] (and deeper)". Holotype female in BM, no. 1964.9.28.2; allotype in BM, no. 1964.9.28.3 (both in alcohol, condition good); paratypes in RMNH, ZSI, and Fisheries Research Station Hong Kong.

Geographical Distribution : IndoWest Pacific region. Only known from the four localities in the South China Sea mentioned in theoriginal description, all situated between $15053^{\prime} \mathrm{N}-16000^{\prime} \mathrm{N}$ and. 109025.3'E 109으́'E (Fig. 157).

Fig. 157

Habitatand Biology : Depth range from (205-) 260 to 373 (-390) m. Bottom:' mud, sometimes with shells. Ovigerous females were obtained in September.

Size : Total body length 6 to 15 cm .
Interest to Fisheries: One of the type lots was obtained with a commercial Granton trawl and consists of no less than 137 specimens (including 47 ovigerous females). Two otherlots(also taken with a Granton trawl) contained 4 and 11 specimens, and the fourth (with Agassiz trawl) 5 specimens. The size of the specimens, their gregariousness and the configuration of the substrates where they are found, indic ate that the speciesmay be of commercial interest.

Literature: Original description

Metanephrops thomsoni (Bate, 1888)
Nephrops thomsoni Bate, 1888, Report Voyage Challenger. Zool., 24: 185, pl. 25 fig. 1, pl. 26 figs. 1-9.

FAO Names: En - Red-banded lobster.
Type : Type locality: "Challenger" "Station 204A, .. lat. $120^{\circ} 43^{\prime} \mathrm{N}$. , long. $122^{\circ} 9^{\prime} \mathrm{E}$.; between Samboangan [= Zamboanga] and Manila; depth, 100 fathoms [= 182 m]; bottom, green mud". Male lectotype in $B M$, no. 88.22 (in alcohol, condition good).

Geographical Distribution : Indo-West Pacific region: Korea (Korea Strait), China (Yellow Sea, East China Sea, South China Sea), Japan (from Tosa Bay on the east coast of Shikoku Island, and the west coast of Kyushu south to the Ryukyu Islands), Taiwan, and the Philippines (off Tablas) (Fig. 159).

Fig. 159

Fig. 158
NEPH Metan 14

Fig. 158

Habitatand Biology : Depth range from 50 to 500 m , on sandy mud bottom. Ovigerousfemales are generally caught in the East China Sea from the middle of September to the middle of April. The larval development has been described by Uchida \& Dotsu (1973:23-35).

Size : Maximum total body length about 15 cm , usually not more than 12 cm .

Interest to Fisheries : In Korea the species is offered for sale at the Busan markets. According to Uchida \& Dotsu (1973:23) the species "is usually caught in the East China Sea by trawl net fishing and used asfood". In Taiwan the species is sold in markets, and its price is higher than that of \mathbf{M}. formosanus, which is found in greater quantities (Chan \& Yu, 1987:183); it is sold there throughout the year, but is "not valuable" (Chang, 1965:48). Motoh, Dimaano \& Pution (1978:22) mention that "a kind of red shrimp (probably Nephrops thomsoni)" is caught by a bobo ("a kind of baited trap") "at deeper water exceeding to 40 m ", in Mindanao, Philippines.

Local Names: JAPAN: Minami akaza-ebi ; CHINA (Province of Taiwan): Te-Chia Shia (also used for other species of the genus).

Literature : Baba et al.. 1986:280.

Metanephrops velutinus Chan \& Yu, 1991
Metanephrops velutinus Chan \& Yu, 1991, Crustaceana, 60(1):35, pls 2b,4b, 6c, 8a , c,d.

FAO Names: En - Velvet lobster.
Type : Type locality: "Philippines, 13051 'N 120030 ' E , $300-330 \mathrm{~m} "$. Male holotype, NTOU no. PM 1. Paratypes MP, RMNH, USNM, WAM.

Geographical Distribution : Indo-West Pacific region: Philippines (south-west of Luton), Westem Australia (Cape Leveque to Eucla) (Fig. 161)

Fig. 161

Fig. 160
NEPH Metan 17

Fig. 160

Habitat and Biology : Depth range 238 to 702 m , most common at 350 to 450 m . Substrate hard mud.
Size : Carapace length: 3-8.6 cm (males), 2-7.4 cm (females), 4.7-8.2 cm (ovigerous females).

Interest to Fisheries :"M. velutinus, which appears slightly larger than \boldsymbol{M}. armatus, is fished commercially on the North West Shelf of Australia since 1985 (Wallner \& Phillips, 1988, under the name of M. andamanicus). Its price is higher than that of the spiny lobsters in Australia and many are used forexport; however, the demand of the local marketshas greatly increased recently (Bremner, 1985; Ward, Phillips pers.comm.). However, probably due to the low recovery rate of this lobster and the fact that the fishing gear is more selective forovigerousfemales, the catch of the species has fallen signific antly in the last few years (Wallner \& Phillips, 1988)" (Chan \& Yu, 1991:38).

Literature : Chan \& Yu, 1991:35, pls 2b, 4b, 6c , 8a, c, d.
Remarks : Until 1991 spec imens of this spec ies were, often with some doubt, identified as M. andamanicus.

Nephrops Leach, 1814
Nephrops Leach, 1814, Brewster's Edinburah Encyclopaedia, 7:398, 400. Gender masculine. Name placed on the Official List of Generic Names in Zoology in Opinion 104 (published in 1928).

Type Species: by monotypy: Cancer norvegicus Linnaeus, 1758.
Although previously several Indo-West Pacific and tropic al West Atlantic species have been assigned to this genus, at present it contains a single north east Atlantic species only. All other species are now placed in the genus Metanephrops.

The single true Nephrops species, \boldsymbol{N}. norvegicus, is of considerable economic interest.

Nephrops norvegicus (Linnaeus, 1758)
fig. 162
NEPH Neph 1
Cancer norvegicus Linnaeus, 1758, Systema Naturae, (ed. 10)1:632. Name placed on the Offic ial List of Specific Names in Zoology, in Direction 36 (published in 1956).

Synonyms : Astacus norvegicus - Fabric ius, 1775; Homarus norvegicus - Weber, 1795; Astacus rugosus Rafinesque, 1814; Nephropsis cornubiensis Bate \& Rowe, 1880; Nephrops norvegicus meridionalis Zariquiey C enarro, 1935.

FAO Names : En - Norwa y lobster, Fr - Langoustine; Sp - Cigala.
Type : Type locality for Cancer norvegicus: "in Mari Norvegico",restricted by lectotype selection by Holthuis (1974:824) to Kullen Peninsula in southem Sweden, $56{ }^{\circ} 18^{\prime}$ N 12028'E: Lectotype a nd paralectotypes lost.

Type locality for Astacus rugosus: Sic ily. Type no longer extant.
Type loc ality for Nephropsis cornubiensis: "off the Dudman" [= Dodman Point, Comwall, UK, 5013'N 4ㅇ48’W]. Type specimen supposed to be deposited "in the museum of the Athenaeum at Plymouth", but probably no longer extant.

Type locality of Nephrops norvegicus meridionalis: Spain (both the Atlantic coast:Huelva, San Sebastian and Coruña, and the Mediterranean coast: Rosas, Barcelona, Alicante; and Spanish Morocco: Melilla). Type material in Zariquiey collection of the Instituto de InvestigacionesPesqueras, (at present: Instituto de Ciencias del Mar), Barcelona.

Geographical Distribution : Eastem Atlantic region: from Iceland, the Faeroes and northwestem Norway (Lofoten Islands), south to the Atlantic coast of Morocco; westem and central basin of the Mediterranean; absent from the eastem Mediteranean east of 250E; also absent from the Baltic Sea, the Bosphorus and the Black Sea. A record from Egypt is doubtful (Fig. 163).

Fig. 163

Habitat and Biology : Depth range from 20 to 800 m ; the species lives on muddy bottoms in which it digs its burrows. It is noctumal and feeds on detritus, crustaceans and worms. Ovigerous females are found practically throughout the year, the eggs laid a round July are camied forabout 9 months.

Size : The total body length of adult animals varies between 8 and 24 cm , usually it is between 10 and 20 cm .
interest to Fisheries: The species is of considerable commercial value and is fished for practically throughout its range. According to FAO statistics 59767 tons were caught in 1987, 62382 tons in 1988, mainly in
 the northeastem Atlantic (Fishinq Area 27). The species is fished mostly in spring and summer. On the continental shelf, the fishery is most effic ient in the very early moming, at twilight of in nights with full moon; on the continental slope, however, the fishery is most productive in daytime. It is caught mostly by trawling, more rarely with lobster pots. Sold fresh and frozen; also canned, either as plain peeled tails or prepared as "bisque de langoustines". Under the Italian name Scampi (plural of Scampo) it was sold all over Europe asa highly esteemed food; but soon the name Scampi became also used for large Penaeid shrimps.

Local Names : DENMARK: Bogstavhummer; FRANCE: Langoustine, Cacahouete; GERMANY: Norwegischer Hummer, Buchstabenkrebs, Kaisergranat, Kaiserhummer, GREECE: Karavida; ICELAND: Letur humar; ITALY: Scampo, Scampolo; MONACO: Lengustina; MOROCCO: Azeffane, La ngoustine; NETHERLANDS: Noorse kreeft; NO RWAY: Bokstavhummer, Keiserhummer, Sjskreps; PORTUGAL: La gostim; SPAIN: Cigala, Escamarlanc, Maganto; SWEDEN: Kejsarhummer, Havskrafta; TUNISIA: Jarradh el bahr, UK: Norway lobster, Dublin bay prawn, Dublin prawn; YUG OSLAVIA: Skamp.

[^3] 1981:vol.5; Fischer, Bauc hot \& Sc hneider (eds), 1987:302.

Thymopides Burukovsky \& Averin, 1977

NEPH Thy
Thymopides Burukovsky \& Averin, 1977, Crustaceana, 32:216. Replacement name for Bellator Burukovsky \& Averin, 1976 (non Bellator jordan \& Evermann, 1896). Gender ma sc uline.

Type Species: by original designation and monotypy for Bellator Burukovsky \& Averin: Bellator grobovi Burukovsky \& Averin, 1976.

Synonyms : Bellator Burukovsky \& Averin, 1976, Zoolooicheskii Zhumal. Moscow, 55:296. Type species, see under Thymopides. Gender masculine.

So far only one species of this genus is known; it may be potentia lly of economic value.

Thymopides grobovi (Burukovsky \& Averin, 1976)
Fig. 164
NEPH Thy 1

Bellator grobovi Burukovsky \& Averin, 1976, Zoolooischeskii Zhumal, Mosc ow, 55:296, figs 1-4.

FAO Names : En - Bellator lobster.
Type : Type locality:"in the Herd [= Heard] Island region [near Kerguelen] at a depth of 1,010 m", 51응́S 6937' E. Holotype male in ZSL.

abdomen (lateral view)
(from Eurukovsky \& Averin, 1976)

Geographical Distribution : Southem Indian Ocean: area of Kerguelen Islandsand Heard Island (47으51.5ㅇㅇ 66으․75.5E) (Fig. 165).

Habitat and Biology : Depth range from 560 to 1220 m, on muddy substrate.

Size : Total body length between 3 and 11 cm , mostly between 6 and 11 cm .

Interest to Fisheries: The size of the a nimals and the fact that they occur in relatively great numbers (see Ledoyer, 1979) suggest that the species might be of potential commercial value. So far, however, this possibility has not been tested experimentally.

Literature : Led oyer, 1979: 123, figs 1,2.

Fig. 165

2.2 INFRAORDER PAUNURIDEA La treille, 1802

Palinurini Latreille, 1802, Histoire naturelle générale et particulière des Crustacés et des Insectes. 3:31.
This infraorder consists of 3 superfamilies: Eryonoidea De Haan, 1841, Glypheoidea Zttel, 1885, and Pa linuroidea La treille, 1802. Only the last of these conta ins species that are of commercial interest.

Key to the recent representatives of the three Superfamilies of Palinuridea

1a. Pereiopods 1 to 4 (or all) with true chelae, the first pair very slender, more than twice as long as the second pair. Eyes immovable, not protruding above surface of carapace, and without pigment. Telson tria ngular, pointed posteriorly (Fig. 166) \qquad Eryonoidea
1b. Pereiopods 1 to 4 without true chelae, the first pair sometimes with a subchela. Eyes distinct, movable, comea with pigment. Telson posterionly broadly rounded (Figs 167, 168).

2a. Epistome large, 1.5 times as long as wide and about $1 / 3$ of carapace length, its posterior margin about level with cervical groove of carapace. Endo- and exopod of the uropod firm throughout; exopod with a diaeresis. Rostrum well developed, reaching to the base of comea. Eyes inserted on a median elevation of the cephalon, which reaches to about middle of the rostrum, with which it is partly fused. First pereio pods very strong, spiny a nd subchelate, the second somewhat similar, but sma ller and with fewer spines (Fig. 167) \qquad Glypheoidea

2a. Epistome small, wider than long, not reaching much behind level of eyes. Endo- and exopod of the uropods (as well as the telson) soft and flexible in their posterior half, being strongly chitinized only in the basal part. Rostrum usually very small or absent. Eyes not implanted on a median elevation of the cephalon Fig. 168) ... Palinuroidea
eyes unpigmented

telson triangular
Eryonoidea
Fig. 166

Eyonidea De Haan, 1841, in P.F. von Siebold, Fauna Japonica, (Crustacea) (5): 148, 149.
This superfa mily consists of four families, three of which conta in only fossil species. The fourth, Polyc helidae WoodMason, 1875, is the only one with recent representatives.

2.2.1
 FAMILY POLYCHEUDAE Wood-Ma so n, 1875

Polychelidae Wood-Mason, 1875, Annals Maqazine natural History, (4)15: 132

This fa mily has several genera a nd numerous species. All species inhabit the deep sea and none are of commercial value. Although some of them atta in good sizes, they seem to have relatively little meat and for that reason are of no economic interest. However, some species can be caught in considerable quantities. During the 1964 cruises of R.V. JOHN ELUOT PIШSBURY the catch of Stereomastis sculpta talismani (Bouvier, 1917) (Fig. 169), at one of the stations off West Africa, was so large that most of it had to be shoveled overboard.

Notwithstanding all this, none of the numerous (more than 35) species appears ever to have been brought to the fish markets, or sold as food or bait. Therefore this group is not further considered here. The taxonomy of the Polychelidae, especially of the generic level, is still very unsettled.

(from S.I. Smith, 1882) Fig. 169

SUPERFAMILY GLYPHEOIDEA Zttel, 1885

Glyphaeidae Zttel, 1885, Handbuch der Paläontoloqie, 1(2):689
This superfamily has three families, two of which are exclusively fossil. The third, Glypheidae Zttel, 1885, next numerous fossil taxa, contains a single recent genus with a single species.

Zttel (1885) cited Winkler (1881:73) as the a uthor of the name Glyphaeidae. However, Winkler (1881) although dealing extensively with the genus Glyphea did not establish a family name based on this generic na me, he at most used the expression "les glyphees". Zttel (1885) therefore must be considered the author of the family name; Zttel used the incorrect spelling Glyphaea and Glyphaeidae for the genus and family, respectively.
2.2.2

FAMILY GLYPHEIDAE Zttel, 1885
GLYPH

Glyphaeidae Zttel, 1885, Handbuch der Paläontologie, 1(2):689.
The only recent genus is the following:

Neoglyphea Forest \& De Sa int Laurent, 1975
GLYPH Neog
Neoglyphea Forest \& De Saint Laurent, 1975, Comptes-Rendushebdomadaires seances l'Académie Sciences, Paris, (D) 281: 155. Genderfeminine.

Type Species: by original designation (gen.nov., sp.nov.) and monotypy: Neoglyphea inopinata Forest \& De Saint Laurent, 1975.

A single species.

Neoglyphea inopinata Forest \& De Sa int Laurent, 1975
Fig. 170

GLYPH Neog 1

Neoglyphea inopinata Forest \& De Saint Laurent, 1975, Comptes-Rendus hebdomadaires seances l'Académie Sciences, Paris, (D)281 : 155, pls 1,2.

FAO Names: En - Fenix lobster.

Type : Type locality: "Albatross, Station 5278 ... $140^{\circ} 00^{\prime} 10 "$ Nord; 120이'15"Est; $185 \mathrm{~m} "$,south west of entrance of Manila Bay, Philippines. Holotype male, in USNM, no. 152650.

Geographical Distribution: Indo-West Pacific region. The species is known only from 14 specimens all trawled south west of the entrance of Manila Bay in a small area between 13059.0'- $14^{\circ} 08.0^{\prime} \mathrm{N}$ and $12015.8^{\prime}-120020.5^{\prime} \mathrm{E}, 186-189 \mathrm{~m}$, and from 3 specimens taken in the Timor Sea, $9046^{\prime} \mathrm{S} 130000^{\prime} \mathrm{E}, 240-300 \mathrm{~m}$ (Fig. 171).

Habitat and Biology : Depth range from 186 to 300 m ; firm substrate with mud

Size : Total body length between 7 and 14.9 cm , carapace length between 3 and 6.7 cm .

Interest to Fisheries : The scarcity of the species (only 17 specimens known) and its probably very restricted range, do not make it a likely subject for a fishery.

Fig. 171

Palinurini Latreille, 1802, Histoire naturelle générale et particulière des Crustacés et des Insectes, 3:31.
Three families make up this superfamily, namely the Palinuridae (spiny lobsters), Synaxidae (fury lobsters) and Scyllaridae (slipper lobsters), they will be dealt with in this order.

Key to Families

1a. Antennal flagellum reduced to a single, flat, plate which forms the sixth and final segment of the antenna. The shovel-like appearance of the antennae is responsible for the names shovel-nose lobster and bulldozer lobster also used for the a nimals of this group (Fig. 172)

Scyllaridae
1b. Antennal flagellum long and consisting of numerous small artic les, whip-like or spear-like

2a. Rostrum absent or visible as a small spine on anterior margin of carapace. Carapace with a pair of frontal homs above the eyes, and usually with spines on the dorsal surface; hairs on carapace, if present, few and scattered (Fig. 173) \qquad Palinuridae

2b. Rostrum a large, broad and flat triangular or rounded plate between the eyes. Carapace without frontal homs or other spines. Body covered only with granules and a rather dense fur of short ha ir (Fig. 174)

Synaxidae

Palinuridae
Fig. 173

Fig. 172

Fig. 174

Palinurini Latreille, 1802, Histoire naturelle générale et partic ulière, des Crustacés et des Insectes, 3:31. Name placed on the Offic ial List of Fa mily Names in Zoology, in Opinion 519 (published in 1958).

This family, known best as spiny lobsters or langoustes, consists of eight genera (Jasus, Justitia, Linuparus, Palinurus, Palinustus, Panulirus, Projasus and Puerulus). Several of these genera are of great economical value, others are of minor or only potential importance. All known species of the fa mily are dealt with in this catalogue.

Key to Genera:

1a. First pair of legs enlarged in males, ending in subchelae, with wide, red crossbands; carapace omamented with a strong, scale-like sculpture; abdomen brick red, with 4 or 5 conspic uous transverse grooves on each somite and with yellowish spots a nd stripes (Fig.175) \qquad Justitia

1b. First pair of legs not enlarged, with no trace of a pincer, without crossbands; carapace without a scale-like sculpture; abdomen variously coloured, smooth or with at most 2 transverse grooves per somite

2a Frontal homs fused to a broad 2- or 4-spined median projection on the anterior margin of the carapace between the eyes; antennal flagella straight, inflexible (Fig. 176) ...Linuparus

2b. Two distinct, widely separated tooth-like frontal homs, between which the anterior margin of the carapace is visible; antennal flagella although large and firm, quite flexible

3a. Flagella of antennulae long, whip-like, longer than peduncle of antennules (Fig. 177) \qquad Panulirus

3b. Flagella of antennules short, shorter than last segment of a ntennular pedunc le

anterior part of carapace

Fig. 175

4a. Abdominal segments usually with squamiform sculpturation before transverse groove; no distinct antennular plate between bases of antennae (Fig. 178) \qquad Jasus (Jasus)

4b. Abdominal segments with a sometimes intemupted transverse groove, but without squamiform sculpturation; antennular plate between bases of antennae distinct or absent

5a. Frontal homs truncated with anterior margin crenulate; first segment of antennular peduncle reaching beyond antennal peduncle (Fig. 179) \qquad Palinustus

5b. Frontal homs tapering to a shap point; first segment of antennular peduncle not over-reaching a ntennal peduncle

Fig. 178

Palinustus
Fig. 179

6a. Anterior margin of carapace between frontal homs with about 10 small, sharp teeth (Fig. 180a); pleura of second to fifth abdominal somites with a strong anterior tooth followed by a lobe denticulated on the posterior margin (Fig. 180b) \qquad Palinurus (Fig. 180c)

6b. Anterior margin of carapace unarmed between frontal horns, except for the presence, in some species, of a small triangular rostrum and a small denticle near the base of the frontal homs (Fig. 181a). Pleura of second to fifth abdominal somites ending in two simple, strong, sharp teeth without denticles (Fig. 181 b); only in Sagmariasus the second tooth is replaced by a denticulated lobe

7a Antennular plate distinct, a stridulating organ present (Fig. 181a). Carapace with a median ridge behind the cervical groove, often with spines or tubercles, but without submedian rows (Fig. 181 c) \qquad Puerulus

7b Antennular plate hardly if at all, visible in dorsal view. Stridulating organ absent. Carapace behind cervical groove without a median ridge, but with two submedian ridges, each bearing a row of large, sharply, pointed teeth or numerous spinules (Fig. 182)

Fig. 180

Palinurus
b. pleura of second to fifth abdominal samites c. dorsal view

c. dorsal view
(after Ramadan. 1938)

8a. A large single median tooth before the cervical groove. Apart from two submedian and two lateral longitudinal rows of spines the posterior half of the carapace is smooth and without spinules (Fig. 182). Abdominal pleura ending in two single sharp teeth (Fig. 181 b) \qquad Projasus

8b. Two large median teeth before cervical groove. Posterior half of carapace closely set with numerous sharp spinules (Fig. 183). Abdominal pleura ending in a sharp anterior tooth and a broad, distinctly denticulate posterior lobe \qquad Jasus (Sagmariasus)

Projasus
(trum Webber \& Booth. 1988)

Fig. 183

Jasus Parker, 1883, Nature,London, 29:190. Gendermasc uline. Name placed on the Offic ial List of Generic Names in Zoology in Opinion 612 (published in 1961).

Type Species : by selection by Holthuis (1960; Bulletin Zoological Nomenclature, 17:193): Palinurus lalandii H. Milne Edwards, 1837.

Synonyms : Palinosytus Bate, 1888, Report Vovaqe Challenaer, Zool., 24:93. Type species, by selection by Holthuis (1960, Bulletin of Zoological Nomenclature, 17:193): Palinurus lalandii H. Milne Edwards, 1837. Gender masc uline. Name placed on the Official Index of Rejected and Invalid Genus-G roup Names in Zoology in Opinion 612 (published in 1961).

Palinostus Bate, 1888, Report Vovage Challenger. Zool., $24: 56,76,85$. An inc orrect original spelling of Palinosytus Bate, 1888, a nd therefore una vailable. Name placed on the Official Index of Rejected and Invalid Genus-Group Names in Zoology in Opinion 612 (published in 1961).

The genus consists of seven species, all of which are of commercial interest, a nd live in restricted zones in the temperate area of the southem hemisphere.

The genus Jasus can be divided into two subgenera: the nominate subgenus, Jasus or "scalloped rock lobsters", includes all but one of the species, and is characterized by the scalloped sculpturation of the upper surface of the abdominal somites. The other subgenus is Sagmariasus nov. subgen. and includes as type and only species the Packhorse rock lobster, Jasus verreauxi (H. Milne Edwards). It is characterized by that the abdominal somites do not show any scalloped sculpturation.

Subgenus Jasus Parker, 1883
Six species are known in this subgenus.

Key to Species:

1a. Large spines of carapace broad and flattened, about as wide as long, and much larger than the small spines (Fig. 184a). Sculpturation of abdomen wide, with relatively few squamae, and with an extensive smooth area on the anterior part of each somite (Fig. 185a,b,c). Eastem Pacific, South Central Atlantic, Westem Indian Ocean (exclusive of South Africa) \qquad "frontalis" subgroup

2a. First abdominal somite without any squamiform sculpturation. The following somites with only a single transverse row of large squamae before the transverse groove of the somite, sometimes with some very small squamae just before or just behind it Posterior half of the abdominal somites behind the transverse groove without squamiform structures (Fig. 185a) (Juan Femandez Island) \qquad J. frontalis
(Fig. 189)
2b. First and following abdominal somites with a transverse row of squamiform sculpturation behind the transverse groove (Figs 185 b,c)

Fig. 184

3a. Indian Ocean area (St. Paul and Amsterdam Islands, ra rely at Ker-gueien). Frontal homs almost equilaterally triangular, shorter and broader than in J. tristani. Squamiform sculpturation of the abdomen with the squa mae na rrower and more numerous than in \boldsymbol{J}. tristani (Fig. 185b) \qquad J. paulensis
(Fig. 195)
3b South Atlantic Ocean area (Tristan da Cunha Archipelago, Gough Island, Vema Seamount). Frontal homs with the upper margin slightly more convex than the lower, more slender than in J. paulensis. Squamiform sculpturation of the abdomen coarser than in J. paulensis with the squamae fewer and wider (Fig. 185c). \qquad J. tristani
(Fig. 197)
1b. The large spines of the carapace are na rrow, often 3 or 4 times as long as wide and not very different from the small spines (Fig. 184b). The sc ulpturation of the abdomen is more dense, with relatively smaller squamae and a na rower smooth anterior area (Fig. 186a,b,c). South Africa, Australia, New Zealand \qquad "lalandii" subgroup

Anterior half of first abdominal somite with a squa miform sculpturation both anterionly and posterionly of the transverse groove (Fig. 186a). South Afric a J. lalandii
(Fig. 191)
4b. Anterior half of first abdominal somite before the transverse groove entirely smooth, without sculpturation

5a. South and East Australia, Tasmania. The squamiform sculpturation on the posterior half of the second to fifth abdominal somites (behind the transverse groove) dense and covering the entire surface, the squamae arranged in 4 or 5 transverse rows (Fig. 186b) \qquad J. novaehollandiae
(Fig. 193)
5b New Zealand. The squamiform sculpturation on the posterior half of the second to fifth abdominal somites (i.e. the part behind the transverse groove) less dense, with larger squamae, which are a rranged in 2 or 3 transverse rows (Fig. 186c) \qquad J. edwardsii
(Fig. 187)

c. J. tristani
abdomen (dorsal view)
Fig. 185

a. J. Ialandii

b. J. novaehollandiae abdomen (dorsal view) Fig. 186

2 or 3 transverse rows

c. J. edwardsii

Jasus (Jasus) edwardsii (Hutton, 1875)
Patinurus edwardsii Hutton, 1875, Iransactions Proceedings New Zealand institute, 7:279.

Synonyms : No synonyms known. The species for a long time has incorrectly been synonymized with J. lalandii (H. Milne Edwards).

FAO Names : En - Red rock lobster.
Type : Type locality: "Otago Heads" near Dunedin, South Island, New Zealand. Syntypes supposedly in DMW, now lost, at least not located in 1988

Geographical Distribution : All coasts of New Zealand, from Three Kings Islands (north west of-the northem tip of North Island) south to the Auckland Islands, also found at the Chatham Islands; most common off the south west part of South Island, and the east coast south of East Cape (Fig. 188).

Fig. 188

(from Kensler, 1967) Fig. 187

Habitat and Biology : The species lives in crevic es of the rocky shores and among algae at depths between 5 and 200 m . Soft shelled specimen are occasionally caught in December and J anuary.

Size : Ma ximum total body length is 58 cm (males), and 43 cm (females); maximum carapace lengths 23.5 cm (males), 18 cm (females); minimum legal carapace lengths 10 cm (males), and 9 cm (females).

Interest to Fisheries: The species is usually caught with baited lobster pots, sometimes obtained by trawling and by diving. Protective laws have been introduced, like size limits, prohibition of some gear, prohibition of taking ovigerous females or soft specimens, bag limits for sports fishemen, etc. The specimens are sold as frozen tails (mostly to the USA) and whole live specimens (mainly to Japan). According to FAO statistics, 5000 tons were caught in 1987 and 1242 tons in 1988. According to Kensler (1969:516) this species sustains "New Zealand's main and most valuable export fishery". It represents 99% of the total lobster fishing in the a rea (the other 1% is formed by J. verreauxi). In 1988 the species represented the fourth most valuable fishery of New Zealand, after the fishes Orange Roughy (Hoplostethus atlanticus), Hoki (Macruronus novaezelandiae), and squid (Booth, in litt.). Since 1965, the species is also commercially fished at the Chatham Islands. The Chatham fishery expanded rapidly since 1966 and in 1967 provided about 50% of the total New Zealand catch.

Local Names : NEW 正ALAND: Red crayfish, Red spiny lobster, Common crayfish, Marine spiny crayfish, Rock lobster, Southem crawfish, Spiny crayfish; Koura (Maori language).

L̇terature : Kensler, 1968:81-89; Kensler, 1969:506-517; Williams, 1986: 13, figs 26,78d-e.

Fig. 189

Palinurus frontalis H. Milne Edwards, 1837, Histoire naturelle des Crustaces, 2:294.

Synonyms : Palinostus frontalis - Bate, 1888. The spec ies has often, inc orrectly, been synonymized with J. lalandii.

FAO Names: En - Juan Femandez rock lobster; Fr Langouste Juan Femandez; Sp - Langosta de Juan Femandez.

Type : Type locality: "Habite le Chili", now restricted to J uan Femandez Archipelago, Chile. Type material in MP, no longer extant (not found in 1989).

Geographical Distribution: The range of the species is restricted to: (1) the waters around the Juan
 Isla Robinson Crusoe (= Isla Más a Tierra), Isla Marinero Selkirk (= Isla Alejandro Selkirk, = Isla Más Afuera) and Isla Santa Clara, and (2) the waters around the Islas Deswentura das, 26으' -26022'S 7950'-806' W: Isla San Felix and Isla San Ambrosio (Fig. 190).

Habitat and Biology : A species inhabiting a rocky and partly sandy environment at depths of 2 to 200 m . Water temperature between $13^{\prime \prime}$ and $19^{\circ} \mathrm{C}$. Eggs spawned between August and November and camied for about 11 months. Although there is some migration to deeper waters from the end of September onwards, the species never disappears completely from the coast. In January, the migration back to shallow waters starts. The food consists of algae, smaller a nd larger mollusc s a nd crusta ceans, and dead a nimal matter of a ny kind. The species is predated by various fishes.

Size : Maximum body length 48 cm (males) and 46 cm (females), carapace length 22 cm (males) and 19 cm (females). Reports of total body lengths of $60-70 \mathrm{~cm}$ have to be considered with much resenve.

Interest to Fisheries: The early navigators who visited Juan Femandez like Jacob Roggeveen in 1722 and George Anson in 1741 already mentioned that the lobsters were found there "in such abundance near the water's edge [of Isla Robinson Crusoe] that the boat-hooks often struck into them, in putting the boats to and from the shore" (Wafter, 1776: 125, 126), also their excellent quality as food was commented upon. Molina (1808: 144; English translation of Molina's original (1782) Italian edition) mentioned that "Lobsters. are also found in such quantities that the fishermen have no other trouble to take them, than to strew a little meat upon the shore, and when they come to devour this bait, as they do in immense numbers, to tum them on their backs with a stick. By this simple method many thousands are taken annually, and the 'tails which are in high estimation, dried and sent to Chili" Albert (1898:6) mentioned that the species was usually fished at depths between 7 and 14 m . Skottsberg (1956: 178), almost 50 years later, stated that "nowadays the best catch is made in depths from 40 to 80 meters". Evidently, the intensity of fishing drove the species to deeper water, and the easy method of picking them by hand was replaced by lobster pots.

Fig. 190

By the end of the 19th century, canning lobstertails was tried without too much success; canned a nd live lobsters were then exported to Chile. In 1970, the main gear for catching the lobsters were lobster pots and they perhaps still are. Evidently, most lobsters are exported live to the mainland. According to FAO statistics, the annual catch of the species was 36 tons in 1987 and 29 tons in 1988. The fishery is of the greatest importance in the Archipelago and gives employment to a large part of the population. Experimental work on reproduction and development in captivity of this species is being conducted in Chile.

Protective measures are in force and well adhered to: (1) the minimum legal size is a carapace length of 11.5 cm , (2) ovigerous females have to be put back Into the sea, (3) the season is closed from 15 May to 30 September.
local Names: CHILE: Langosta de Juan Femandez, Langosta de tiempo (for larger forms).
Literature : Holthuis \& Sivertsen, 1967:25-32, pl. 5; Arana Espina et al., 1971-1973; Pita rro et al., 1974; Pavez Ca rrera et. al., 1974; Retamal, 1977:13-14, fig. 5; Willia ms, 1986:13, fig. 27.

Jasus (Jasus) lalandii (H. Milne Edwards, 1837)
Fig. 191
PALIN Jas 4

Palinurus lalandii H. Milne Edwards, 1837, Histoire naturelle des Crustacés, 2:293. Name placed on the Official List of Specific Names in Zoology in Opinion 612 (published in 1961).

Synonyms : Palinostus lalandii - Bate, 1888; Palinosytus lalandii - Stebbing, 1893. The question whether the specific name should be written lalandii or lalandei (named for Pierre de la Lande) has been definitely settled in favour of lalandii by the International Commission on Zoological Nomenclature in their Opinion 612. The specific name lalandii has, at times, been used for other species of the subgenus Jasus.

FAO Names: En - Cape rock lobster; Fr - Langouste du Cap; Sp - Langosta del Cabo.

lateral view (from Paterson, 1968)
dorsal view
Fig. 181

Type : Type locality: "Habite les côtes du cap de Bonne-Espérance" ($=$ Cape of Good Hope, South Africa). Type material in MP: 2 dry syntypes, the larger $(410 \mathrm{~mm})$ in good, the smaller (370 mm), in reasonable condition. The larger, no Pa. 437, chosen as the tectotype; the smaller, no. Pa.433, then becomes paralectotype.

Geographical Distribution : Restricted to southem Africa from Cape Cross, South West Africa (Namibia) at 21043'S 13058'E; around the Cape of Good Hope to Algoa Bay, Cape Province at 33050'S 25050'E (Fig. 192).

Habitat and Biology : The species lives in coastal waters at depth between 0 and 46 m , on rocky bottoms, sometimes with patches of sand and mud. The males moult between September and December. In the females, moulting occurs in April or May, after which copulation takes place. Ovigerous females are found from May to October.

Fig. 192

Size : Maximum total body length 46 cm , carapace length 18 cm .

Interest to Fisheries: The fishery for Jasus lalandii is of great importance throughout its range. According to FAO statistics, the catches amounted to 6689 tons in 1987 and 6820 tons in 1988. The fishery is camied out with lobster pots a nd hoop nets. The catch is sold fresh or cooked in local markets. Tails are exported frozen in the shell, orpeeled and canned.Experimental work on culture techniques for this species are underway in South Africa.

Protective measures for the species include a size limit (carapace length 8.5 cm), a closed season from 1 J uly to 31 October, bag limits for sportsfishemen (2 spec imens per day), a nd the prohibition of taking ovigerous females or softshelled specimens.

Local Names: FRANCE: Langouste du Cap; GERMANY: Kaplanguste, Afrika nisc he Languste, Rote la nguste; SOUTH AFRICA: Cape crawfish, Cape crayfish, Cape spiny crayfish, Cape rocklobster, Cape spiny lobster (English); Kaapse kreef, Kreef (Suidafrika ans); UK: South Afric an rock lobster, Cape spiny lobster.

Literature: Bamard, 1950:538-540, fig. 101a b; Willia ms, 1986:12, figs 24, 78a-b.

Jasus novaehollandiae Holthuis, 1963, Proceedings Koninklike Nederlandse Akademie Wetenschappen, (C)66:56.
Synonyms: In the literature prior to 1963 the species was usually indicated as Jasus lalandii, as it was not distinguished from the Cape rock lobster.

FAO Names: En - Southem rock lobster;
Type : Type locality: "Off the coast of New South Wales near Ma roubra, Sydney", east c oast of Australia. Holotype male in RMNH, no. D10642; paratypes in AM.

Geographical Distribution : Australia: from Cape Na tura liste, Westem Australia (at about 33ㅇㅇ; with a few records as far north as Dongara at 29015'S), along the entire coast of South Australia, Tasmania and Victoria to southem New South Wales (with a few records as far north as Sydney (33053 'S) and Port Stephens (at 32은'5) (Fig. 194).

Habitat and Biology : Depths range from 0 to 90 m (seldom 150 m); on a rocky substrate, especially on rocky onshore and offshore reefs with suffic ient hiding places. Mating and egg-laying occurs from May to July after the moult of the female; hatching between July and December or even later. The puenuli settle between May and September. The species is gregarious and noctumal. It is camivorous and feeds on small crustaceans, molluscs and echinoderms.

Size : Maximum total body length about 51 cm , maximum carapace length about 20 cm . Ovigerous femalesabout 5 to 16 cm carapace length.
(from McCoy, 1887)

Fig. 193
interest to Fisheries: The spec ies is fished for throughout its range. Before 1916, a bout 90% of the a nimals were caught in depths less than 20 m , while in 1925 fishing wascaried out in depths of 65 m . Around 1966 the annual catch of the species was about 5500 tons.Recent FAO statistics do not mention the species and it is likely that its catches have been mistakenly added to those of J asus wemeauxi (q.v.). Fished mostly with baited traps (lobster pots, beehive pots, or cray pots) and hoop nets. The animals are marketed fresh on local markets, cooked whole orastailson markets farther away, and exported as frozen tails. mainly to the USA

Local Names: AUSTRALA: Southem rock lobster (official Australian name), Cray, Red lobster, Southem crawfish, Southem (ma rine) c rayfish, Southem spiny lobster, Ta sma nian crayfish, Ta smanian lobster, Melboume crayfish (name given to the species by the fishmongers; see McCloy, 1887:142).

Literature : McCoy, 1887:(15)189-93, pls 149, 150 (as Palinurus lalandi); Hale, 1927:65-70, figs 62-7; Williams, 1986:13, figs 25,78c

Fig. 195
PALIN Jas 1
Palinurus paulensis Heller, 1862, Verhandlungen zoologisch-bota nisc hen Gesellsc haft Wien, 12:525.
Synonyms : The species has often been synonymized with Jasus lalandii, and reported upon under that name (or as Palinurus lalandii).

FAO Names : En - St.Paul rock lobster, Fr - Langouste de St. Paul; Sp - Langosta d‘e St. Paul

Type : Type locality: "St. Paul", [=St Paul Island in the southem part of the Westem Indian Ocean, at $38^{\circ} 44^{\prime} \mathrm{S} 77{ }^{\circ} 30^{\prime} \mathrm{E}$]. Syntypes in NMW.

Geographical Distribution : The species is restricted to St. Paul and Amsterdam Isla nds in the southem Indian Ocean (Fig. 196). A report of the catch of a single lobster in Kerguelen Islands by Aubert de la Rue (1954: 119) seems very reliable and is well documented (the specimen was brought up with algae entangled in the anchor of the ship "Lozere", a catch witnessed by A. Berland); but this evidently is a freak occurence, as no lobster catc hes have been reported from the Kerguelen eitherbefore or after this event.

Habitat and Biology : The species lives at depths between 0 and 60 m , on rocky orgravel bottom, being most numerousin the kelp zone between 10 and 35 m . Egg-laying starts in May, and ovigerousfemales have been observed until November, or exceptionally early December. Females are caught from May to October, while males dominate in most catchesfrom November to April The animals are noctumal and feed on plants and (dead) animal matter.

Size: The largest specimen ever recorded had a total body length of 37 cm . Males have been reported to attain total body lengths of 14 to 34 cm (carapace length 6 to 13 cm), and females, total body lengths of 9 to 24 cm (carapace lengths 4 to 9 cm). The average sizes are 21 to 28 cm (males), 19 to 21 cm (females). The specimens from Amsterdam Island on the average are slightly smaller than those from St. Paul Island.

Fig. 195

Interest to Fisheries: The fishing grounds are restricted to the islands of St. Paul and Amsterdam, the shorelines of which are respectively 12 and 27 km long, and the area in which the speciescan be fished is less than 1 km wide. Early visitors of the then uninhabited islands caught the lobsters by hand in very shallow water. In the crater lake of St. Paul, which is a bay opening to the sea, the lobsters could be brought to the hot springs in the craterbottom without taking them out of the water, and cooked there. In 1928, a rather large fishing enterprise was started with lobster pots. The settlement on St. Paul consisted of a canning factory and the houses for the fishermen and employees of the factory, about 120 people in all. In 1931, the project was abandoned because of health conditions (a beri-beri epidemic). Later attempts (1938-1 939, 1948-1949, 1949-I 950) with factory ships were also unsuccessful. In 1950, a new

Fig. 196 French factory ship, the SAPMER, equipped with deep-
freeze installations, operated near the islands. The lobsters were headed, washed and frozen on board. Six "campagnes" were camied out between 1950 and 1956, each providing between 214 and 255 tons of lobster tails (the equivalent of 5000 tons of whole lobsters). Fearfor overfishing made that several protective measures have been suggested.

Local Names : FRANCE: La ngouste australe; USA: St.Paul spiny lobster.
Literature : Grua, 1960:15-40, figs 1-4; Grua, 1963:1-35, figs I-2, 1-14; Holthuis \& Sivertsen, 1967:18-25, pl. 4; Fisc her \& Bianchi (eds), 1984:vol. 5; Willia ms, 1986:14, fig. 29.

Fig. 197

PALIN Jas 6

Jasus tristani Holthuis, 1963, Proceedings Koninklijke Nederlandse Akademie Wetenschappen, (C)66:57.
Synonyms: In older literature the species is sometimes referred to as J asus (or Palinostus, or Palinosytus) lalandii.
FAO Names : En - Tristan rock lobster, Fr-Langouste de Tristan; Sp - Langosta de Tristan.
Type : Type locality:"Tristan da Cunha", in net off beach. Male holotype in MT; paratypes in MT, RMNH.

Geographical Distribution : Southem Atlantic Ocean. On the shelf of the islands of the Tristan da Cunha group (viz., Tistan da Cunha, Inaccessible Isla nd, Nightingale Island, and Gough Island), as well as on Vema Sea Mount, 1680 km ENE of Tristan da Cunha (Fig. 198).

Habitat and Biology : Depth range from 0 to 200 m ; the greatest concentration of animalsoccursbetween 20 and 40 m . The spec ies is found on rocky bottoms, sometimes with gravel or shells, in the kelp zone. Ovigerous females were taken in September.

Size : Maximum total body length, 355 cm (males), and 27 cm (females); maximum carapace length, 14.5 cm (males) and 10 cm (females). Average carapace length, 8 to 9 cm . Pueruli are 2 to 3 cm in length.

Interest to Fisheries : Until about 1950, the fishery of the species was oriented, almost exclusively towards local consumption. But in 1949, a Tristan da Cunha Exploration (later. Development) Company wasfounded and the lobsterfishery was developed on a commercial basis, a cold storage and a canning plant were built, and one fishing vessel was operated.

Fig. 198

Diesel-powered dinghies were used to bring the catch to the mother vessel for.cold storage and subsequent delivery to the factory. The volc anic eruption of 1961 destroyed the shore installations and the company, which had not been very successful a nyhow, was liquidated in 1962. In 1963, a new fishing compa ny, the South Atla ntic Isla nds Development Comoration, started operations after the islanders had retumed to Tristan da Cunha. A harbour was built and in 1966 a new factory was established. Two fishing vessels with refrigeration facilities on board, worked with a number of dinghies, and resumed fishing operations in 1963. Later the largerfishing vessels were modemized, and the fleet was enlarged in 1971 to 4 vessels with facilities on board for heading the lobsters and freezing the tails. The number of vesselswasagain reduced in 1978, when there were aga in two. They were based in Cape Town and operated nearthe Inaccessible, Nightingale and Cough Istands. They used dinghies and latermotorboats to put out and retrieve the nets and traps. From Tristan da Cunha Island, the dinghies and motorboats worked from the shore, the catch being processed in the factory there.

The gear used in the early days was a piece of bait on a long string and weighted with a stone. The bait was lowered into the sea and aftera few minutes hoisted to the surface. The lobsters clinging to the bait (often like "a bunch of grapes") were then taken. Later, the dinghies and motorboats used hoop-nets and since 1967, metal trapson long lines. The inclement weather conditions allow only about 70 fishing days a year.

The yield in 1960-1961 was 52.5 tons of tails. Pollock (1981:49) estimated total annual yield at 500-800 tons. FAO statistics give the annual catch for 1987 as 405 tons, and for 1988 as 441 tons.

Local Names: TRISTAN DA CUNHA (UK): Crawfish, Tristan crawfish, Tristan da Cunha crayfish, Tristan da Cunha Spiny

Literature : Holthuis \& Sivertsen, 1967:7 18, text-figs 1,2, pls. 1-3; Roscoe, 1979:1-47, figs 1-3; Pollock, 1981:49-66, figs 1-11; Williams, 1986: 14, fig. 28.

Subgenus Sagmariasus nov.

Type spec ies : Palinurus vemeauxi H. Milne Edwards, 1851. Gender masculine.
This new subgenus of the genus Jasus differs from the nominotypical subgenus by the absence of any sculpturation on the abdomen: the characteristic scalloped pattem found in all species of Jasus s.s. is completely lacking here. Furthemore, the rostrum of Sagmariasus is as large and strong as the frontal homs and is of the same shape, forming with the frontal homs a tridentate plate. In Jasus s.s. the rostrum is a small spine, much smaller than the frontal homs and placed on a much lower level. In Sagmariasus the antennulae are much less slenderthan in Jasus s.s.

The new subgenus includesa single species, J asus (Sagmariasus) verreauxi (H. Milne Edwards, 1851), which is itstype.

Derivatio nominis the greek word Sagmarion, meaning packhorse, iscombined here with J asus. The name alludes to the vemacular name "Packhorse crayfish" given in New Zealand to large specimensof the type species. The derivation of the generic name Jasus has not been given by its author, but it may referto lasus, the latin name of a locality in Asia Minor west of the town of Milas in south west Turkey ($377^{\circ} 19^{\prime} \mathrm{N} 27^{\circ} 48^{\prime} \mathrm{E}$).

J asus (Sagmariasus) verreauxi (H. Milne Edwa rds, 1851)
Fig. 199

PALIN Jas 7

Palinurus vemeauxi H. Milne Edwards, 1851, Annales Sciences Naturelles, Paris, Zool., (3)16:255, 290, pl. 8 fig. 15.

Synonyms : Palinurus huegelii Heller, 1862; Palinurus tumidus Kirk, 1880; Palinurus giganteus Kirk, 1880; Jasus huegelii - Ortmann, 1891; Palinosytus huegelii Stebbing, 1893:

FAO Names: En - Green rock lobster; Fr-Langouste d'Océanie; Sp - Langosta de Oceania.

Type : Type locality of Palinurus vemeauxi: not mentioned in the original description but Gruvel (1911: 15) made clear that H. Milne Edwards' type material came from New South Wales, Australia and is in MP, evidently no longer extant (not located in 1989).

The type locality of Palinurus huegelii: "wurde von Baron Hügel im indischen Ocean gesammelt" (Heller, 1862:393). This information is obviously erroneous as the species does not occur in the Indian Ocean. Kar Alexander Anselm Freiherr von Hügel, baron of the Geman Empire (bom in Regensburg (= Ratisbon), Bavaria, 25 April 1795, died in Brussels, Belgium, 2 J une 1870) spent most of his youth in Austria and was in the service of the Austrian govemment until his retirement in 1867. Being much interested in horticulture and natural history, he travelled between 1830 and 1836 to England, France and India. He left India in September 1833 and then visited the Philippines, Malaysia, the NetherlandsEast Indies, the South Pacific but also "the Swan river, King George's Sound, and Sydney in Australia; Van Diemen's Land [=Tasmania], New Zealand, Norfolk Island" (A. von Hügel, 1903:73). His visits to New Zealand and Australia took place between September 1833 and 6 October 1834, at the last mentioned date he left Sydney for the Philippines, from where he retumed home via China, Malaysia and India. The type of Palinurus huegelii can originate either from the Sydney area orfrom New Zealand, as those are the two only localities visited by Von Hügel, where the species occurs. The type material, probably a holotype, is in NMW.

Fig. 199

Type loc ality of Palinurus tumidus (and P. giganteus): "Wha inga roa, a small ha rbour on the West Coast of the North Island", New Zealand (Kirk, 1880:313), collected in 1877 by J. Buchanan. Holotype male, dry in DMW, no. 5700.

Geographical Distribution : New Zealand (all around North Island, but most common on the north coast; rare in South Island waters, with a few records from the west, north and north east coast and one from the south point), Kermadec Islands (rare, Chilton (1911:549) reported on 2 specimens from Sunday (=Raoul) a nd Denham Islands, but no recordshave been published from the Archipelago since), Chatham Islands (Michael \& Booth, 1985:18). Australia (from southem Queensland to Victoria; a few records from Tasmania) (Fig. 200).

Habitat and Biology : The species usually occurs in depths between 0 and 155 m , but very few data on depth are published. Booth (1986:2212) indicated that specimens with a tail length of lessthan 21.6 cm occur at depths between 20 and 130 m , and that the ma in fishery takes place between 50 a nd 150 m . The substrate is said to be usually sand, gravel, or rocks. Smaller specimens seem to be more frequent on a rocky bottom. Females

Fig. 200 are ovigerous from late September to J anuary.

Size : The maximum total body length is 60 cm (carapace length about 25 cm). Ovigerous females with a total body length of 38 to 56 cm have been reported (carapace lengths 16 to 24 cm). This species, probably together with Homarus americ anus, is the largest known dec a pod as far as body length is concemed (see Ka estner, 1970:274).

Interest to Fisheries: The species is fished in the northem part of its range both in New Zealand and Australia. Eighty percent of the New Zealand catchesare taken on the north coast of North Island between Cape Maria van Diemen and North Cape; the rest of the catchescome mainly from the north coast between North Cape and Cape Runaway (Kensler, 1967:419). Booth (1986:2213) reported that "the species is caught most commonly along the north and east coasts of North Isla nd north of C ape Tuma ga in [$=40 \div 29^{\prime}$ S]. In Australia, the fishery for this species a lso is c oncentrated in the northem part of its range, na mely north and south of Sydney (Port Stephens, 32042'S, to Ba teman's Bay, 3545'S). Ogilby (1893:201) remarked that "so abundant is this C rayfish, and with proper legislative precautions, so apparently inexha ustible the supply, that at but little expense a great and profitable canning industry might with ease be established". Gruvel (1911:16) described the fishery for this spec ies near Sydney, ca ried out with motor boats with a crew of 2 to 4 men, putting out lobster pots a nd trammel nets among the rocks in coastal waters. Dakin, Bennett \& Pope (1969:183) mention that in New South Wales the species is mostly taken with lobster pots, but that it a lso "constantly falls a prey to the wiles of the spear-gun fisherman", while "we have seen an expert catch over a dozen with his hands in an hour ortwo while wading amongst the weed along the edge of a rock platform at low water". The same authors also mention that the animals a re preferably shipped alive to the markets, since by freezing and cooking much of the taste is lost. Kensler \& Skrzynski (1970:46-54) observed that in New Zealand lobster pots are used most, but that lobsters are also obta ined by trawling and with Danish seines. Asto protective measures, in New Zeala nd the size limit is 21.6 cm ta il length,or cara pace length 16.3 cm (males) and 15.5 . cm (females), while also the catch of ovigerous females is prohibited.

Asfarasthe commercial importance of Jasus vemeauxi in New Zealand isconcemed, this is dwarfed when compared to that of J. edwardsii; its a nnual catch being less than 1% of that of J. edwardsii (see Kensler \& Skrzynski, 1970:46). Between 1962 and 1966 these a nnual catches of J. vemeauxi in New Zealand varied between 23 and 66 tons, with an average of 36 tons. The FAO Yearbook of Fishery Statistics gives the following landings (in metric tons) for New Zealand:10 tons in 1987 and 6 tons in 1988. The annual landings (in tons) for the species in Australia are much higher, in Fishing Area 81 (=New South Wales) they totalled 200 in 1987 and in 1988, and in the area 57 (=Victoria, Tasmania, South Australia a nd Westem Australia) 5000 tons in both these years. Since J. vemeauxi is absent or scarce in fishing a rea 57 and asJ. novaehollandiae is not represented in the FAO statistics, it seems most likely that these Australian figures comespond to \boldsymbol{J}. vemeauxi and \boldsymbol{J}. novaehollandiae combined, and thus give a wrong impression.

Local Names: AUSTRALA: Eastem rock lobster (official Australian name), Australian crayfish, Common crayfish, Common Sydney crayfish, Eastem crayfish, Green cray, Green crayfish, Marine crayfish, New South Wales spiny lobster, Sea crayfish, Sydney crayfish; NEW ZEALAND: Pa ckhorse crayfish, Green crayfish, Green lobster, Pa ckhorse lobster, Smooth-tailed crayfish; Pawharu (Maori)

Literature : Kensler, 1967:207-10, pl. 1.
Remarks: The name Palinurus giganteus was only qualifiedly given by Kirk, 1880:313 ("although perhaps, giganteus, would be quite as appropriate"). It falls as an objective synonym of Palinurus tumidus Kirk.

J ustitia Holthuis, 1946,Iemminckia,7:113,115.Genderfeminine.
Type Species: by original designation: Palinurus longimanus H. Milne Edwards, 1837.
Synonyms : Nupalirus Kubo, 1955, LoumalTokyo University Fisheries, 41(2): 185. Type spec ies, by origina I designation and monotypy: Nupalins japonicus Kubo, 1955. Gender masculine.

The genus includes three species, none of which so far is of commercial importance; the possibility that they will ever be of interest to fisheries is very slim.

Key to Species:

1a. Frontal homs with three dorsal teeth Anterior margin of carapace between the small, spiniform rostrum and the frontal homs without teeth. Carapace without spines behind the cervical groove (Fig. 201a); 6 or 7 transverse grooves on the second to fifth abdominal somites, all reaching to the base of the pleura (Fig. 202a); Indo-West Pacific \qquad . japonica
(Fig. 203)
1b. Frontal homs with. two dorsal teeth. Anterior margin of carapace with several sha mply pointed small teeth between the small spiniform rostrum and the frontal homs. Carapace behind cervical groove with spines (Fig. 201 b); 4 or 5 transverse grooves on the second to fifth abdominal somites, not all reaching to the base of the pleura, and some intemupted dorsally (Fig. 202b)

2a. Atlantic species \qquad J. longimanus
(Fig. 205)
2b. Indo-West Pacific species.. J. mauritiana

a. J. japonica
carapace (dorsal view) (from Crosnier, 1977) Fig. 201

b. J. mauritiana
(Fig. 207)

1st and 2nd, and 5th and 6th abdominal
somites in lateral View (from Gordon, 1960)
Fig. 202

Nupalinus japonicus Kubo, 1955, Loumal Tokyo University Fisheries, 41(2); 185, pls. 12,13.

FAO Names: En - J apanese furrow lobster.
Type : Type locality: "about 8 miles off Shimokawaguchi (Shimizu city), Kôchi Pref., Japan". Holotype male "in the biological museum of Kôchi Prefecture Women's University"

Geographical Distribution : Indo-West Pacific region: Madagascar(N.W. coast near Majunga, and SE. coast nearFort Dauphin), Ma uritius, Reunion, J a pan (off Pacific coast of central and southem Japan from Kii Peninsula to the south coast of Shikoku Island; Bonin Islands) (Fig. 204).

Fig. 204

(after Baba et al, 1986)
Fig. 203

Habitatand Biology : Depth range from 40 to 200 m . According to Crosnier \& J ouannic (1973: 13) the spec ies seems to prefer rocky substrates.

Size : Maximum total body length 24 cm ; usually not more than 20 cm . Carapace length 6 to 9 cm .
Interest to Fisheries: At present none. Specimens are occasionally taken in lobster pots and trap nets; the habitat evidently is inaccessible to trawls. Sekiguchi \& Okubo (1986:21) reported an annual catch of 4 to 41 specimens (between October and April) of thisspecies in Mie Prefecture, Japan. Many of the specimenswere placed in the several public aquaria in Japan.

Local Names: JAPAN: Ryoma ebi
Literature: Gordon, 1960, pp. 296-305, figs l-6; Baba et al., 1986, pp. 154, 155,282, fig. 105.

Palinurus longimanus H. Milne Edwards, 1837 Histoire naturelle des Crustacés, 2:295.

Synonyms: Sometimes when used with-the generic name Justitia, the specific name is inc orrectly spelled longimana, probably beca use Justitia is a feminine name. However, as longimanus is a noun, its ending is not to be changed with the gender of the generic name (International Code, Art. 31(b)ii).

FAO Names : En - West Indian furrow lobster, Fr-Langouste caraibe; Sp - Langosta de muelas.

Type : Type locality: "Habite les Antilles". Type material in MP, no. Pa 421, dry in rather good condition. This type specimen, if not the holotype, is here selected the lectotype. Not located in 1989.

Geographical Distribution : Westem Atlantic region: Bermuda, S. Florida (USA), Caribbean arc from Cuba to Isla Margarita (Venezuela), Curaçao, and E. Brazil (Espinitu Santo State) (Fig. 206).

Habitat and Biology :Depth range from 1 to 300 m, usually between 50 and 100 m . Inhabits the outer parts of coral reef sopes.

Size : Maximum total body length a bout 15 cm , usually up to 10 cm .

Interest to Fisheries: Very slight. The species is not the object of a special fishery, but is sometimes caught inc identa lly in lobster pots at greater depths. Morice (1958:86) lists the species among the edible Crustacea of Martinique, and states that it is consumed locally by the fishemen, but appears hardly, if ever, on the ma rkets.

Fig. 205
Local Names: CUBA: Camarón de lo alto; CURACAO: Kreef di laman hundu (= deep sea lobster), Kreef diawa blau (= blue water lobster) (Papiamento language); GUADELOUPE: Criquet (St. Barthelemy); MARTINIQUE: Homard bresilien; USA: Long-armed lobster, Longarmed spiny lobster.

Literature: Fischer (ed.), 1978: vol. 6.

Fig. 206

Palinurus longimanus mauritianus Miers, 1882, Proceedings Zoological Society, London, 1882:540, pl. 36 fig. 1.

Synonyms: Justitia longimana mauritania - Holthuis, 1946.
FAO Names: En - G ibbon furrow lobster; Fr-Langouste gibbon.
Type : Type locality: Ma uritius,"in a fishing-net at a depth of 40 fathoms" (=73 m). Holotype male, in BM, no 81.12 (dry, condition fair).

Geographical Distribution : Indo-West Pacific region: Westem Indian Ocean (Mauritius, Reunion), Hawa iian Archipelago. Larvae supposed to be of this species have been reported from the Philippines, the Gilbert Islands and Tahiti (Fig. 208).

Fig. 208

(after Miers, 1882)

Habitat and Biology : Depth range from 30 to 200 m . The species seems to prefer rocky or coral substrates.
Size : Maximum total body length 16 cm , carapace length 6 cm ; average carapace length 4 to 5 cm .
Interest to Fisheries: The spec ies is not actively fished for. Experimental fishing with lobster pots a nd tra mmel nets nearReunion resulted in small catches. Its small size, a pparent sc arcity a nd habitat (rough bottom and relatively great depth) make it an unlikely subject for a fishery.

Local Names: USA: Long-handed spiny lobster, Ula (Hawaii).
Literature : Fischer \& Bianchi (eds), 1984:vol 5.

Linuparus White, 1847, List of the specimens of Crustacea in the collection of the British Museum: 70. Gender masculine. Name placed on the Official List of Generic Names in Zoology in Opinion 519 (published in 1958).

Type Species: by monotypy: Palinurus trigonus Von Siebold, 1824.
Synonyms : Podocratus Geinitz, 1849, Das Oua dersandsteingebirge oder Kreidegebirqe in Deutschland:96. Type species, by monotypy: Podocratus duelmense Geinitz, 1849; gender masculine.
Thenops Bell, 1858, A monograph of the fossil malacostracous Crustacea of Great Britain, (1):33; type species, by monotypy: Thenops scyllariformis Bell, 1858; gender masculine.
Avus Ortmann, 1891, Zooloaische J ahrbücher. Systematik, 6: 15,21; type species, by monotypy: Palinurus trigonus Von Siebold, 1824; gender masculine.
Eolinuparus Mertin, 1941, Nova Acta Leopold ina, (n.ser... 10(68):215; type spec ies, by original designation: Thenops catteri Reed, 1911; gender masculine.

Apart from a great number of fossil species, the genus Linuparus has three recent species, all are dealt with here.

Key to Recent Species (after Berry \& George, 1972: 18).

1a. Submarginal posteriorgroove of carapace much wider medially than laterally (Fig. 209a). Vestigial pleopods present on first abdominal segment of female \qquad L somniosus
(Fig. 211)
1b. Submarginal posterior groove of carapace as wide medially as laterally (Fig. 209b). No pleopods on first abdominal segment of female

2a. Epistomal ridges coarsely granulated, without an acute well developed anterior tooth (Fig. 210a). Chitinous margin of male genital aperture with toothed median border and entire lateral border L sordidus
(Fig. 213)
2b. Epistomal ridges feebly granulated, with an acute well developed anterior tooth (Fig. 210b). Chitinous margin of male genital aperture toothed throughout its length

L trigonus
(Fig. 215)

carapace (dorsal view)
Fig. 209

a. L sordidus

b. L trigonus

Linuparus somniosus Berry \& George, 1972
Fig. 211

Linuparus somniosus Bery \& George, 1972, Zoologische Mededelingen, Leiden, 46:18, text-fig-1, pls 1,2.

Synonyms: In older literature the species was sometimes incorrectly identified as L trigonus.

FAO Names : En- African spear lobster; Fr Langouste javelot d'Afrique; Sp - Langosta jabalina africana.

Type : Type locality: "N.E. of Bazaruto Island", Natal, South Africa, 234 m depth. Holotype female in BM, no. 1971: 120; 2 paratypes BM, no. 1971:121; 2 paratypes RMNH, nos D 27137 and D 27138 (all types in alcohol, condition good).
lateral view

antennal flagellum

Fig. 211

Geographical Distribution : Off the east coast of Afric a from Kenya to Natal, South Africa (Fig. 212).

Habitat and Biology : Depth range from 216 to 375; on rough substrate with sand and mud.

Size : Maximum total body length about 35 cm , carapace length 14 cm ; average carapace length about 10 cm .

Interest to Fisheries: At present very minor. The species is not fished commercially in most of its range, but according to Iva nov \& Krylov (1980:286) it supports a commercial fishery in Tanzanian waters, where, off Zanzibar, catc hes of over $10 \mathrm{~kg} / \mathrm{h}$ were taken by bottom trawls. The animals are mostly marketed fresh

Local Names : MOZAMBIQUE: Lagosta lanceira.
Literature : Fischer \& Bianchi (eds), 1984:vol. 5; Williams, 1986: 14, fig. 30.

Fig. 212

Linuparus sordidus Bruce, 1965, Zoologische Mededelingen, Leiden, 41(1): 1, text-fig.1, pls. 1,2.

FAO Names: En - Oriental spear lobster
Type : Type locality: "South China Sea, 19" 40.0^{\prime} N 1130 41. 0'E to 19039.5’N 113036.0’E, 182-172 fathoms [= 315-333 m], coarse sand". Holotype female in BM, no. 1965.5.21.1 (in alcohol, condition fair); paratype in RMNH, no D 21213 (in alcohol, condition good).

lateral view

Geographical Distribution : Indo-West Pacific region: Taiwan, South China Sea and N.W. Australia (off Port Hed land, Westem Australia) (Fig. 214).

Habitat and Biology : Depth range from 200 to 333 m; bottom mud and limestone rocks.

Size : The total body length (including the antennae) of the holotype is 38 cm , carapace length 7 cm .

Interest to Fisheries: None at present. However, the size of the specimens and the fact that they occur in not very deep water, suggest that, once the right fishing grounds have been found, the spec ies may be commercially exploited, like \mathbf{L} trigonus.

Local Names: AUSTRAபA: Spear lobster
Literature : Original description; George, 1983: 16-20; Willia ms, 1986.15, fig. 32.

dorsal view
Fig. 213

Fig. 214

Palinurus tigonus Von Siebold, 1824, De Historia Naturalis in Laponia statu: 15. Name placed on the Official List of Specific names in Zoology, in Opinion 519 (published in 1958).

Synonyms: Avus trigonus - Ortmann, 1891
FAO Names: En - Japanese spear lobster.
Type : Type locality: J apan, possibly neighbourhood of Naga saki; restric ted to Omura Bay nearNagasaki, Kyushu, Japan, by Holthuis (1966:265-266). Lectotype in RMNH; no. D 5611 (dry, condition good, paralectotypes in RMNH, BM, USNM).

lateral view

Geographical Distribution: Indo-West Pacific region: J apan, Korea, China, Taiwan, Philippines, eastem and westem Australia (Fig. 216).

Habitat and Biology : The species has been reported from depths between 30 and 318 m . The substrate on which it is caught is described as sand or mud, sometimes with shells; some older records indicate rocky environments.

Size : Maximum total length 47 cm ; carapace length 8 to 18 cm .
Interest to Fisheries: Already H. Burger around 1830, sa id that the species is scarce in Japan, but when caught, is used as food (Holthuis, 1966:266). Also in Korea and China the species is sold on the markets as food, but is nowhere plentiful. Chang (1964: 11) remarked that it is very scarce in Taiwan and on the markets it is pric ed cheaper than the other spiny lobsters because of its coarse flesh and thick shell. Motoh \& Kuronuma (1980:56) reported that in the Philippines the species" is rarely offered for sale in the market", and that it is caught there by commercial trawlers. George (1983: 17) remarked that in Westem Australia, off Port Hedland, Linuparus trigonus wastrawled with deepwater Engel trawls in 200 m of water "in sufficient quantities to provide occasional excellent meals for the crew and that in J apan this same species IS the basis for a small commercial enterprise". Off Townsville, Queensland, Australia, the species "occurs in densities high enough to support an occasional fishery. The fishery is confined to a small, well-defined area of the continental slope, about 70 km by 20 km , in depths of 200 to 250 m . Here \mathbf{L} trigonus is taken mainly by prawn trawlers during their off-season" (T.J. Ward, in press).
local Names: AUSTRALA: Spear lobster, Champagne lobster, Barking crayfish; J APAN: Hako-ebi (=box lobster), Ishi-ebi (= stone lobster); PHILPPINES: Uson (llongo).

Fig. 215

Pallinurus Weber, 1795, Nomenclatorentomologicus:94. Gendermasculine. Name emended underthe plenary power of the Intemational Commission on Zoologic al Nomenclature to Palinurus, and placed on the Official List of Generic Names in Zoology, in Opinion 519 (published in 1958).

Type Species: by monotypy: Astac us elephas Fabric ius, 1787
This is the oldest known among the Palinurid genera, and has a restricted distribution:it is found only in the Eastem Atlantic, Mediterranean, and off south east Africa. Five species are known, all of present or potential commercial interest.

Key to Species :

1a North-eastem Atlantic, from S. Norway to the Cape Verde Islands. Abdominal somites with a single distinct transverse groove (Fig. 217a)

2a. Propodus of first pereiopod of male with an anterodorsal spine (Fig. 218a). C olour dark brown or purple; abdominal somites 2 to 5 each with a distinct pair of large white spots, somite 6 with a single posteromedian white spot (Fig. 217a). Legs longitudinally streaked with brown and yellowish. Depth 0 to 70 m .
P. elephas
(Fig. 224)
2b. Propodus of first pereiopod of male without anterodorsal spine (Fig. 218b). Colour a pink or reddish marbled with white; abdominal somites iregularly marbled. Legs ringed with whitish a nd pink. Depth 40 to 600 m or more

a. P. elephas
a. P. elephas

b. P. delagoae abdomen (dorsal view)
b. P. mauritanicus
c. P. charlestoni

Fig. 218

3a. Frontal homs flat, their inner margins forming with the anterior margin of the carapace a sha llowly concave arc (Fig. 219a). Carapace in adult males strongly swollen. Ca apus of first leg without anterodorsal spine (Fig. 218b). Eastem Atlantic from W. of Ireland to S. Senegal, including the westem Mediterranean, depth from 40 to 600 m .
P. mauritanic us
(Fig. 228)
3b. Frontal homs with the innermargins and the anterior margin of the carapace forming a V -shaped line (Fig. 219b). Carapace in adult male not swollen. Capus of first male leg with an anterodorsal spine (Fig. 218c). Cape Verde Islands, 50 to 300 m
P. charlestoni
(Fig. 220)
1b. South and Southeast Africa (False Bay, South Africa, to Mozambique, S.E. Madagascar). Abdominal somites 2 to 5 with two transverse grooves (Fig. 217 b, c)

4a. Anterior groove of abdominal so mites 2 to 5 shorter and less distinct than the posterior groove (Fig 217b). Carapace before cervical groove naked. Merus of walking legs cylindric al and naked \qquad P. delagoae
(Fig. 222)
4b. Anterior groove of abdominal somites 2 to 5 very deep and as hairy as the posterior groove (Fig. 217c). Carapace in front of the cervical groove pubescent. Merus of walking legs triangular in transverse section, the flat outer surface pubescent
P. gilchristi
(Fig. 226)

a. P. mauritanicus

$$
\begin{aligned}
& \text { b. P. charlestoni } \\
& \text { anterior pat-t of carapace } \\
& \text { (dorsal view) }
\end{aligned}
$$

Fig. 219
-

Palinurus charlestoni Forest \& Postel, 1964
Fig. 220
Palinurus charlestoni Forest \& Postel, 1964, Bulletin Museum National d'Histoire Naturelle. Paris, (2)36: 100, 102, figs 2, 5, 7.

FAO Names: En - Cape Verde spiny lobster, Fr-Langouste de Cap Vert; Sp - Langosta de Cabo Verde.
Type : Type locality: "lles du Cap Vet-t, groupe nord, de St. Vincent à Sal, entre 180 et 200 m ". Holotype male in MP, no. Pa. 331; paratypes in MP, Pa. 84, Pa. 330; RMNH D. 19544. All type material in alcohol, in excellent condition.

Geographical Distribution : So far known only from Cape Verde Islands (Fig. 221).

Habitat and Biology : Depth range from 50 to 300 m , perhaps deeper, on an uneven rocky bottom, sometimes on steep slopes.

Size : Maximum total body length to 50 cm , average length to 40 cm .

Interest to Fisheries : Minor. In 1963 the first attempts were made for a commercial fishery, using lobster pots. In the most productive areas, two lobsters were caught per pot perday. Due to the rough bottom, the loss of pots was rather substantial. Longhurst (1970:277) reported actual la ndings of 10 to 20 tons.

Literature : Original description. Fischer, Bianchi \& Scott (eds), 1981:vol. 5; Williams, 1986: 16, fig. 36.

Fig. 220

Fig. 221

Palinurus delagoae Ba rna rd, 1926
Fig. 222
PALIN Palin 4
Palinurus gilchristi delagoae Ba ma rd, 1926, IransactionsRoyal Society SouthAfrica, 13: 123, pl. 11.
Synonyms : Palinurus gilchristi natalensis Ba mard, 1926.
FAO Names: En - Natal spiny lobster; Fr-Langouste du Natal; Sp - Langosta del Natal

Type : Type locality: of \boldsymbol{P}. gilchristi delagoae: off Delagoa Bay, S. Mozambique, "25058'S., 3305'E., 228 metres, sand and shell"; male type evidently lost, a neotype selected by Bery \& Plante, 1973:374; the neotype. locality is: "off Tongaat, Natal, 324 m", South Africa. Neotype male in SAM, no. A 13179 (in alcohol condition good).

Type locality of P. gilchristi natalensis: "Natal coast, from off Umkomaas River in the south as far north as off Tugela River and off Delagoa Bay, 100-260 fathoms [=183480 ml ";syntypes in SAM.

Geographical Distribution

Indo-West Pacific region: East coast of Africa from 170S (Mozambique) to 30ㅇ (Natal, South Africa), south east Madagascar (Fig. 223).

Habitat and Biology : Reported from 0 to 400 m depth, usually between 180 and 324 m . Off South Africa it is found, on muddy or sandy sub-strates, sometimes with coral fragments; off Madagascar it has been reported from a rocky substrate The species is gregarious and seems to migrate; it can sometimes be caught in enormous numbers.

Fig. 222

Size : Maximum total body length 35 cm , carapace length to 17 cm ; average carapace length about 10 cm .

Interest to Fisheries: Off south east Africa the species is taken by trawlers, while off Madagascar, lobster pots were used during experimental fishing. It is marketed frozen. The annual catch was 89 tons in 1987 and 25 tons in 1988 (FAO Yearbook of Fishery Statistics, 1990).

Local Names: MOZAMBIQUE: Lagosta de profundidae:
Literature : Bery \& Plante, 1973:374-7, text-fig.1, pl. 19; Fischer \& Bianchi (eds), 1984:vol.5; Williams, 1986: 15, fig. 33

Fig. 223

Palinurus elephas (Fa bric ius, 1787)
Astacus elephas Fabricius, 1787, Mantissa Insectonum, I :331. Name placed on the Official List of Species Na mes in Zoology in Opinion 519 (published in 1958).

Synonyms : Cancer elephas - Gmelin, 1789; Cancer locusta Wulfen, 1791 (not Cancer locusta Linnaeus, 1758) (= Gammarus locusta (L.)); Palinurus quadricornis Fabricius, 1798; Palinurus vulgaris Latreille, 1803; Palinurus locusta - Olivier, 1811; Palinurus langusta Rafinesque, 1814 (nom.nud.); Pagurus maculatus Bowdich, 1825 (not Pagurus maculatus Risso, 1827 (= Paguristes eremita (L., 1767)); Palinurus marinus Bate, 1868. "[Palinurus] adriaticus, Costa" was cited by Carus (1885:487) under Palinurus and treated as a good species of that genus. Stephensen (1923:77) treated "Palinurus adriaticus Costa" as a synonym of P. elephas (which he indic ated as P. vulgaris). However, there exists no Palinurus adriaticus Costa, as Costa never described such a species. He did describe Palaemon adriaticus in "Fauna del Regno di Napoli" (Crostacei; Pandalus):7 in 1844-1847. It is clearthat with Palinurus adriaticus Carus really meant Palaemon adriaticus Costa, since he cited textually Costa's diagnosis for that species. It is interesting that Carus (1885:474) listed Palaemon adriaticus Costa under the species incertae of the genus Palaemon, a ga in with the same diagnosis.

Fig. 224
anterior part of carapace (dorsal view)
FAO Names: En - Common spiny lobster, Fr - Langouste rouge; Sp - Langosta común.
Type : Type. locality of Astacus elephas Fabricius, 1787 (and Palinurus quadricornis Fabricius, 1798): the original statement of the type locality"Habitat in Americae meridionalis Insulis" is erroneous. As shown in Fabricius' description of the large supraorbital homs as dentate, and by his reference to Herbst's (1792:2(2): PI.29 fig.I), his specimen was the common European spiny lobster (in 1787 Fabricius referred to the then still unpublished figure by Herbst). Herbst gives as the loc ality of his material: 'im Mittellandischen Meer" and elaborates: "In Italien wird er... häufig gegessen und auf den Markten verkauft". We may therefore correct the type locality to "Italy". A syntype, originally preserved dry, but recently transferred to alcohol is kept in UZM, condition rea sonable. A second dry syntype is in $\triangle \mathrm{MB}$, no. 19649, condition good; this is the spec imen figured by Herbst, 1792.

Type loc a lity of Cancer locusta Wulfen: near Rovinj, Yugoslavia. The type was bought at the fish market of Trieste, Italy (for 2 florins) from a fisheman from Rovinj:"Non aliter, quam duorum florenorum pretio hunc mihi Tergestino in foro Cancrum pisc a tor vend id it Rovignensis" (Wulfen, 17911314); its present wherea bouts unknown.

Type locality of Palinurus vulgaris Latreille: "dans I'Ocean Asiatique et dans la Mediterranee". Types in MP no longer extant (not located in 1989).

Type locality of Palinurus marinus Bate, 1868. The name "marinus" probably is a lapsus for "vulgaris", but if the specific names isconsidered to be new, the type locality of the species is the south coast of Devon and Comwall, U.K. "mostly between Bigbury Bay [Devon] toward the east, and the Dodman [Comwall] toward the west"; wherea bouts of type material unknown.

Type locality of Pagurus maculatus Bowdich: Madeira. Types probably no longer extant.

Geographical Distribution : Eastem Atlantic, from southwestem Norway to Morocco, also in the Mediterranean, except the extreme eastem and south eastem parts (Fig. 225).

Fig. 225

Habitat and Biology : On rocky bottoms, rarely on sand, in depths from 5 to 160 m , mostly between 10 and 70 m . O vigerous females from September-October to February-March.

Size : Maximum total body length 50 cm , but usually not la rger than 40 cm .
Interest to Fisheries: The species is mostly caught with lobster pots, occasionally on hook-and-line and by spearing, rarely with trawls, tangles, or trammel nets. Longhurst (1970:260) reported the catching of this species "by full-time SC UBA divers off southwest England". In the central and westem Mediteranean the species is regularly found at fish markets, and in the eastem Atlantic, outside the Mediterranean, it is fished on a minor scale in England, and more intensively in France and Portugal. No catch statistcsare known, but probably the catc hes of Palinurus spp. reported in the FAO Yearbook of Fisheries Statistic scomespond partly to P. elephas and partly to P. mauritanicus (4921 tons in 1987 and 7869 tons in 1988).

Local Names: CYPRUS: Astakos; DENMARK: Langust; FRANCE: Langouste, Langouste commune, Langouste europeenne; GERMANY: La nguste, Europaische languste, Gemeine languste; GREECE: Astakis; ITALY: Aragosta mediterranea (official name), Aragosta, Aligusta, Arigusta; MALTA: Agusta; MONACO: Lengusta; MOROCCO: Azeffane, Bakhouche, Langouste; NETHERLANDS: Langoest, Hoomkreeft; NORWAY: Langust; PORTUGAL: Lagosta; SPAIN: Langosta, Lagosta; SWEDEN: Langust;TUNISIA: Jarradh el bahr, Jrad bharr, Sid; TURKEY: Bocek, Beudic; UK: Spiny lobster, Crawfish, Red crab, Sea crayfish; YUG OSLAVIA: Jastog.

Literature : Rolland, 1881:234 (for regional French names); Pa lombi \& Santarelli, 1961:369-370 (for regional Italian names); Fischer, Bianchi \& Scott (eds), 1981 :vol. 5; Fischer, Bauchot \&Schneider (eds), 1987:307-308.

Palinurus gilc hristi Stebb ing, 1900

Fig. 226

PALN Palin 5

Palinurus gilchristi Stebbing, 1900, South African Marine Fisheries Investigations, 1:31, pl. 1.
FAO Names : En - Southem spiny lobster; Fr - Langouste du Sud; Sp - Langosta del sur.
Type : Type locality: "False Bay",southem Cape Province, South Africa, and " 25 miles S.W. 1/4 w. from Cape St. Blaize" near Mosselbaai, Cape Province, South Africa; syntype male in SAM, no. A 970 (in alcohol).

Geographical Distribution : South Africa: south coast of Cape Province from False Bay to Port Alfred (from 18030' to 27으). Also reported from the Fort Dauphin area of Madagascar (Crosnier \& J ouannic, 1973:13) (Fig. 227).

Fig. 227
Habitat and Biology : The species has been reported from depths between 55 and 360 m ; it inhabits rocky a reas and shelters in the crevices of the rocks.

Size : Maximum total body length 16 cm (males) and 31 cm (females). The recorded carapace lengths vary from 3 to 13 cm , usually between 6 and 10 cm .

Fig. 226

Interest to Fisheries: Ac cording to Bery (1971:18) the species did not support a commercial fishery. But Pollock \& Augustyn (1982:57-73) reported that commerc ially exploitable densities of this species were disc overed near the edge of the continental shelf between Cape Agulhas and Port Alfred in about 110 m depth. The FAO Yearbook of Fisheries Statistics reports annual catches of 1820 metric tons in 1987 and 880 tons in 1988, all by South Africa. Near Fort Dauphin, Madagascar, Crosnier \& Jouannic (1973: 13) found only small qua ntities of lobsters in areas with rocky bottoms diffic ult to exploit with the gear available to them.

Local Names : SOUTH AFRICA: Gilchrist's crayfish (Ba mard, 1950:542).
Literature : Bery, 1971: I-23; Berry \& Plante, 1973:373-380, pls 19, 20; Pollock \& Augustyn, 1982:57-73; Williams, 1986: 15, figs 34,78 h-i.

Palinurus mauritanicus Gruvel, 1911

Fig. 228

PALIN Palin 3

Palinurus vulgaris mauritanicus Gruvel, 1911, Annaleslnstitutoceanoaraphiaue, Monaco, (3)4:22, pl. 1 fig. 4
Synonyms: Palinurus vulgaris inflata Gruvel, 1910 (not Palinurus inflatus Bduvier, 1895 (= Panulirus inflatus (Bouvier)); Palinurus thomsoni Selbie, 1914.

FAO Names : En - Pink sp iny lobster, Fr-Langouste rose; Sp - La ngosta mora.

Type : Type locality: (for P. v. inflata and P. v. mauritanicus)" sur toute la côte maunitanienne, du cap Barbas [= Cabo Barbas, westem Sahara, $22^{\circ} 18^{\prime}$ N, $46^{\circ} 41^{\prime}$ W] jusque un peu au nord de Saint-Louis [Senegal, $16^{\circ} 01^{\prime} \mathrm{N}, 16030^{\prime} \mathrm{W}$], par des fonds de 20 m à 50 m et souvent sur le sable coquillier". Syntypes in MP, no longer extant (not located in 1989).

Type locality of P. thomsoni: " 58 mls . W $\ 12 \mathrm{~N}$ of Blackball Head [SW. Ireland], 51020'N., 11030'W., 212229 fms [$=388-420 \mathrm{~m}$], sand" Holotype male in NMI, no. 104.1916, in good condition in alcohol.

Geographical Distribution : Eastem Atlantic from W. of Ireland ($53^{\circ} \mathrm{N}$) to southem Senegal ($14^{\circ} \mathrm{N}$), also in the westem Mediterranean, West of about 160E, not in the Adriatic (Fig. 229).

Habitat and Biology : Depth range from 180 to 600 m . In the westem Mediterranean mostly between 400 and 500 m . On rocky and coral substrates, as well as on mud. At times gregarious. Trawl hauls of 200 to 500 specimens have been recorded off N.W. Africa.

Size : Maximum total body length 50 cm ; a single record of a specimen of 75 cm needs confirmation. Usually the body length ranges between 20 and 40 cm .

Interest to Fisheries: The main commercial fishery of the species is off N.W. Africa. At its inception, this fishery was mainly operating by trawls, especially after 1954. From 1958 onwards, however, the lobster-pot fishery gradually replaced trawling. In the westem Mediterranean, the commercial importance of the species is not very high, but it is regularly taken by deep sea trawlers as a bycatch. It is brought to the markets in Spain and Italy, but it is far from frequent there. Sold mostly fresh, sometimes frozen. Catch statistics are not recorded for this species. However, the figures given for Palinurus spp. in the FAO Yearbook of Fishery Statistics most probably corespond to mixed catches of \mathbf{P}. elephas and P. mauritanicus (4921 metric tons in 1987 and 7869 tons in 1988).

Local Names: FRANCE: Langouste rose, Langouste du large; ITALY: Aragosta bianca, Aragosta mauntanica; MOROCCO: Azeffane, Bakhouche, Langousta; SENEGAL: Soum. Soumpe; SPAIN: Langosta rosada, Langosta roja.

Literature: Fischer, Bianchi \& Scott (eds), 1981:vol. 5; Fisc her, Bauc hot \&Sc hneider (eds), 1987:309-310.

Fig. 229

Palinustus A. Milne Edwards, 1880
PALIN Palinus
Palinustus A. Milne Edwards, 1880, Bulletin_Museum Comparative_Zooloav, Harvard College, 8(1):66. Gender masculine. Placed on the Offic ial List of Generic Names in Zoology in Opinion 519 (published in 1958).

Type Species : by monotypy: Palinustus truncatus A. Milne Edwards, 1880.
The genus is characterized by the shape of the frontal homs, that do not end in a sharp point but in a broad, bluntly truncated top that sometimes is crenulated; a strong spine is present on the outer margin of each hom.

Fourspecies have been described of thisgenus, none with any commercial value as the species all seem to be very scarce and all occur at considerable depths. The taxonomic status of some of the species is not yet clear.

From the data in the literature it seems most likely that almost all the specimens, other than the type material, that have been identified as Palinustus mossambicus do not belong to that species but must be assigned to Palinustus waguensis. This assumption, which still has to be proven by thorough study of an extensive material, has been adopted here, admittedly without sufficient basic data. However, this seems the best solution at the present time.

Tentative Key to Species:

1a. Anteriormargin of carapace between the frontal homs convex, with a single median spine; no other spines on this margin, but a single, small denticle on the inner margin of each hom (Fig. 230a). Epistome with 5 to 7 spines on the anterior margin, and small spines in the a nterolateral comer(Natal, South Africa) \qquad P. unicornutus
(Fig. 235)
1b. Anterior margin of carapace between the frontal homs straight or convex, with two or more spines. Epistome with spinules or tubercles on the anterior margin;anterolateral comers with a single spine or unarmed

2a. A strong median spine, in addition to several others, on the anterior margin of the carapace between the frontal homs. Inner margin of the homs without spines (230b). Epistome with 5 tubercles on the anteromedian margin; anterolateral comer with a strong spine. Westem Atlantic . P. truncatus
(Fig. 233)
2b. No median spine on anterior margin of carapace. Epistome with tubercles or spinules on anteromedian margin; anterolateral comer with a small spine or unarmed. Indo-West Pacific.

3a. Anterior margin of carapace between frontal homs with a single pair of strong submedian spines; rest of the margin as well as the inner margin of the horns unarmed or with 2 very small spinules (Fig. 230c). Deep sea (406 m), but also reported from 59 to 61 m . East Africa (Somalia, Mozambique) \qquad P. mossambicus
(Fig. 231)
3b. Anterior margin of carapace as well as inner margin of the frontal homs with several distinct spines (Fig. 230d). Shallow water form, 0 to 180 m . Indo-West Pacific region (India, Tha ila nd, Philip pines, J apan)
.P. waguensis

a. P. unicornutus

b. P. truncatus

c. P. mossambicus

d. P. waguensis
anterior margin of carapace (dorsal view)
fig. 230
(Fig. 237)

Palinustus mossambic us Ba rna rd, 1926
Palinustus mossambicus Bamard, 1926, Iransactions Royal Society South Africa, 13: 126, pl. 11.

FAO Names: En - Buffalo blunthom lobster.
Type : Type locality: Off Mozambique, " 25 " S., 3310'E., 406 metres, mud". This position cited by Bamard (1926) is definitely incorrect, as it would be on dry land; it is possible that a number of minutes has to be added to 25 " S. Holotype male in SAM, no. A 10684 (in alcohol; condition good).

anterior part of carapace (dorsal view) (from Barnard, 1950)

Geographical Distribution: The species has been reported from East Africa (Mozambique and Somalia) (Fig. 232).

Habitat and Biology: Found in deep water (406 m), but also in 59-61 m depth. Reported from a muddy substrate.

Size : Total body length 9.5 cm . Carapace length 3cm.

Interest to Fisheries: So far none. Very little is known of this species of which only very few specimens have been found.

Literature : Bamard, 1950:545, figs 102 a,b; Bemy, 1979:88,89, fig. 1A.

Remarks: Specimens reported under the name \boldsymbol{P}. mossambicus from India and the Philippines have here, provisionally, been assigned to \boldsymbol{P}. waguensis. The status of these two species, however, needs further investigation.

Fig. 231
PALIN Palinus 2

(after Bamard. 1926)

Fig. 232

Palinustus trunc atus A. Milne Edwa rds, 1880
Fig. 233
PALIN Palinus 1
Palinustus truncatus A. Milne Edwards, 1880, Bulletin Museum Comparative Zooloqy, Harvard College, 8:66. Name placed on the Official List of Specific Names in Zoology in Opinion 519 (published in 1958).

Synonyms: Palinurus truncatus - Gruvel, 1911.

FAO Names : En - American blunthom lobster; Fr - Langouste aliousta; Sp Langosta ñata.

Type : Type locality: "Blake" "Station No. 241. Profond. 163 brasses. Cariacou" (=off the Grenadines, $12028^{\prime} 22^{\prime \prime} \mathrm{N}, 61032^{\prime} 18^{\prime \prime} \mathrm{W}$, 163 fms ($=298 \mathrm{~m}$), sand and coral): type in MCZ

anterior part of carapace (dorsal view)

Geographical Distribution: Westem Atlantic: from Camiacou Island, Grenadines, to off the mouth of the Amazon River, Amapá and Pa rá States, Brazil (Fig. 234).

Habitat and Biology : The species has been taken in depths between 120 and 298 m , but there is a record from the littoral zone, and one from 4111-4122 m . The bottom is variously described as "sand and coral","sandy calcarenite", and "smooth, consisting of brown mud".

Size : Carapace lengths of 1.6 to 3.2 cm have been reported, the known maximum body length is 10 cm .

Interest to Fisheries :So far none. The species is evidently rare, and perhaps has a restricted range. Better knowledge of its occurrence and habits is required for deciding whether a future fishery will prove feasible.

Literature : Fischer (ed.), 1978: vol. 6.

Fig. 234

Pa linustus unic omutus Berry, 1979
Palinustus unicornutus Bery, 1979, Annals South African Museum, 78(3).93, figs 1,2,3G.

FAO Names: En - Unicom blunthom lobster.
Type : Type locality: "Due east of Boteleur Point, Natal (approximately 26057 'S $322^{\circ} 58^{\prime} \mathrm{E}$). Depth 390 m "; holotype ovigerous female in SAM, No. A 15880 (in alcohol, condition good); paratype in SAM, No. A 15881 (in alc ohol condition good).

Geographical Distribution : Off Natal, South Africa (off Boteleur Point, and off Park Rynie, ca. 30응ㅇ́S 30은'E) (Fig. 236).

Fig. 236

Fig. 235
PALIN Palinus 3

Fig. 235
(after Bery, 1979)

Habitat and Biology : Depth range from 305 to 390 m .
Size : The two known specimens (both females) have a total body length of 14.2 cm (ovigerousfemale) and 13.4 cm , corresponding to a carapace length of 4.8 and 4.4 cm .

Interest to Fisheries : Since only 2 specimens are known, captured in lobster pots,it is clear that so far there is no fishery for the species.

Literature: Original public ation.

Palinustus waguensis Kubo, 1963
Fig. 237
PALIN Palinus 4
Palinustus waguensis Kubo, 1963, Loumal Tokyo University Fisheries, 49(1):63, figs 1-3.
FAO Names: En - J apanese blunthom lobster.

Type : Type locality:"Shallow waters in the vicinity of Wagu, Mie Prefecture", Honshu, Japan; whereabouts of holotype male unknown.

Geographical Distribution : Indo-West Pacific region. The species so far is only known from Honshu Island, Japan, viz. from Wagu and Kii-nagashima, both Mie Prefecture, and from Sagami Bay. Sekiguchi \& Okubo (1986) mentioned 15 specimens from the east and south coast of Kii peninsula (Mie and Yamagata prefectures) without giving precise localities. What is believed to be this species has been reported under the name P. mossambicus from S-W. India and the Philippines (Sulu Sea). In the Zoological Museum at Copenhagen there is a juvenile (c 18 mm) from the Bay of Amboina (Moluccas, Indonesia). Specimens from the Andaman Sea near Ranong, Thailand, are present in Chulalongkom University, Bangkok and RMNH (Fig. 238).

Fig. 238

Fig. 237

Habitat and Biology : Reported from rather shallow water in J apan, where it sometimes is caught in lobstertrap nets. The specimens from India and the Philippines were taken in depths between 72 and 84 m , the juvenile from Amboina came from a depth of "ca. 100 fms " (about 180 m), from a stony bottom. Some data on the biology and body posture are published by Sekiguchi \& Okubo (1986).

Size : Total body length 5 to 10 cm , carapace length 0.8 to 3.2 cm .
Interest to Fisheries: In J apan there is no commercial fishery for this relatively rare species, but fishemen obtaining specimens in their lobster nets (which in J apan can only be legally used from October to April), often give or sell these specimens to the public aquaria on the J apanese east coast. George (1973), however, reported that the species, he had indic ated as P. mossambicus, has been obtained in large numbers from certain localities in India and that it may be the object of a fishery there (Kurian \& Sebastian, 1982: 162).

Local Names: J APAN: Wagu-ebi.
Literature : Bery, 1979:88,89, fig.3; Sekiguc hi \& Okubo, 1986: 19-26.
Remarks : The taxonomic status of this species vis à vis P. mossambicus is far from clear, and a closer study of the complex is highly desirable.

Panulirus White, 1847, List of the Crustacea in the collection of the British Museum:69. Gender masc uline. Name placed on the Official List of Generic Names in Zoology, in Opinion 507 (published in 1958).

Type Species: selected by Holthuis, 1956 (Bulletin of zoological Nomenclature, 12:55): Palinurus japonicus Von Siebold, 1824.
Synonyms: Phyllosoma Leach, 1817, in Tuckey, Narative of an expedition to explore the River Zaire: plate without number. Type species, selected by Holthuis, 1956 (Bulletin of zoological Nomenclature, 12:55): Phyllosoma commune Leach, 1817 (= Panulirus regius De Brito Capello, 1864). Gender neuter. Name suppressed under the plenary power of the Intemational Commission on Zoologic al Nomenclature in their Opinion 507 (published in 1958), and placed on the Official Index of Rejected and Invalid Names in Zoology.
Senex Pfeffer, 1881, Verhandlungen naturwissenschaftlichen Vereins Hamburg, 5:30. Replacement name for, and thereby objective junior synonym of Panulirus White, 1847; junior homonym of Senex Gray, 1838 (Aves). Gender masculine. Name placed on the Official Index of Rejected and Invalid Names in Zoology in Opinion 507 (published in 1958).

A circumtropical genus of large, often brightly coloured, spiny lobsters. All of the 19 species known are to a greater or lesser extent of commercial interest. All are treated below.

Key to Species:

1a. Abdominal somites with a distinct transverse groove, which may be intemupted in the middle. Third maxilliped with or without exopod

2a. Anterior margin of transverse groove of abdominal somites crenulated. Groove itself either complete or intemupted in the middle (Fig. 239b). Antennular plate with 4 equal, large, well separated spines, a ranged in a square with additional very small spinules scattered in between (Fig 239a). Exopod of third maxilliped absent. Colour. body dark green or reddish brown, finely spotted with white. No distinct bands of light colour on the abdomen. A light anterior spot at the base of the abdominal pleura. Antennulae banded. Legs rather uniform in colour, sometimes with faint, longitud inal streaks. Indo-West Pacific P. homarus
(Fig. 267)
2b. Transverse groove of abdominal somites with straight margins, not crenulated

3a. Antennular plate with 4 strong spines, which are fused at their bases, forming a single bunch of 4 diverging points; the anterior pair shorter than the posterior (Fig 240a). Exopod of third maxilliped present, with flagellum. Transverse grooves over the abdominal somites usually unintemupted (Fig. 240b). Colour: body greenish or reddish, ranging from yellowish green through brown green to blue-black or dark reddish brown; speckled on carapace and abdomen with tiny whitish spots. No transverse colour bands on abdomen, but two rather large whitish spots on first somite. Antennulae not banded. Legs with wider or narrower longitudinal yellowish lines or streaks on a dark (greenish or reddish) background. Indo-West Pacific \qquad P. penicillatus

b. abdominal somites (lateral view) P. homarus

Fig. 239

b. abdominal somites (lateral view)

3b. Antennular plate with 2 or 4 large spines, which are widely separated from each other

4a. Antennular plate with 2 large spines, sometimes with scattered small spinules behind these (Fig. 241)

5a. The transverse grooves of abdominal somites 3 and 4 do not join the groove along the anterior margin of the corresponding pleuron (Fig. 242)

6a. J apanese species. Exopod of third maxilliped present, with flagellum. Body of a uniform dark brownish red colour. No pale bands on abdominal somites. Antennulae not banded. Pereiopods with some narrow longitudinal yellowish lines. No conspicuous spots \qquad P. japonicus
(Fig. 273)
6b. Atlantic species (N.E. Brazil, Central Atlantic Islands from the Canary Islands to St. Helena). Exopod of third maxilliped reduced, without flagellum. Colour: body and especially the tail covered by distinct rounded whitish spots. Antennulae and legs streaked with yellowish or whitish longitudinal lines, not banded or spotted. \qquad P. echinatus
(Fig. 262)
5b. The transverse grooves of abdominal somites 3 and 4 join the groove along the anterior margin of the corresponding pleuron (Fig 243, 244)

7a Transverse groove of abdominal somite 2 does nol join the groove along the anterior margin of the corresponding pleura (Fig. 243). Exopod of third maxilliped present, with flagellum. Colour: body dark purple with some greenish, not speckled. Iregular pale bands along posterior margin of abdominal somites, sometimes with whitish spots mixed in with them; spots on basis of tail fan. Antennulae not banded. Legs with narrow pale longitudinal streaks. Only known from Easter and Pitcaim Islands \qquad P. pascuensis
(Fig. 283)
7b Transverse groove of abdominal somite 2 confluent with groove along anterior margin of corresponding pleura (Fig. 244)

8a Anterior margin of pleuron of abdominal somite 2 with distinct teeth (Fig. 244). Exopod of third maxilliped present, with flagellum. Colour: carapace with yellowish, reddish and brownish colour, not spotted. Abdomen bright to dark purple with a very conspicuous transverse yellow band over the middle of each somite. Legs rather uniform in colour, with a few spots, but not streaked. Antennulae rather uniform in colour. Upper surface of abdomen pubescent in the grooves only Hawaiian Archipelago.
P. marginatus
(Fig. 279)

antennular plate P. longipes

Fig. 241

anterior groove of pleuron
abdominal somites (lateral view)
P. japonicus

Fig. 242

abdominal somites (lateral view)
P. pascuensis

Fig. 243

abdominal somites (lateral view)
P. marginatus

Fig. 244

8b. Anterior margin of pleura of abdominal somite 2 without distinct teeth. Colour: abdomen without a transverse light coloured band (although sometimesthe hairs of the transverse groove may give the impression of such a coloured band), but with more or less distinct light spots. Legs with longitudinal streaks or with spots

9a. Abdominal somites with the grooves pubescent; a pubescent area on the dorsal surface of somitesalong the posterior margin (Fig. 245). Exopod of third maxilliped present and with flagellum. Colour: pale to dark purplish brown. Abdomen with widely scattered small pale spots, which sometimes are, hardly noticeable. Antennulae uniform in colour or with a pale longitudinal streak. Legs pale or dark brown with longitudinal streaks. Westem Australia
P. cygnus
(Fig. 259)
96. No pubescent area on the abdominal somitesbehind the transverse groove. Colour: abdomen dark purple with numerous very conspicuous rounded whitish spots

10a Indo-West Pacific. Exopod of third maxilliped present, with flagellum. Colour: body, a nd especially the abdomen covered with numerous distinct round spots. Legs with light longitudinal streaks, which sometimes end just before a single pale spot. Antennulae with longitudinal streaks .. P. longipes
(Fig. 277)
10b Westem Atlantic. Exopod of third maxilliped reduced, without flagellum. Body, especially abdomen with numerous distinct rounded pale spots. Also the legs spotted on carpus, merus and isc hium, without streaks there; propodus longitudinally striped \qquad P. guttatus
(Fig. 265)
4b. Antennular plate with 4 large spines arranged in a square (Fig. 246); scattered small spinules may be present in addition

11a. Eastem Pacific. Exopodite of third maxilliped present, with flagellum. Transverse grooves of abdominal somites wide, abruptly intemupted in the middle (Fig. 247). Colour: body and abdomen dorsally rather uniformly brownish red, without light bands or spots. Legs brownish red with one or more pale longitudinal streaks. Califomia (USA) and Baja Califomia (Mexico)
P. intemuptus
(Fig. 271)
11b Atlantic. Transverse grooves of the abdomen, where interrupted, gradually na rrowing towards the middle of the body, not ending abruptly. Colour: abdominal somites 2 and 6 , or abdominal somites 2 to 6 , with a single, large, white eyespot, surrounded by dark colour, on each half above the base of the pleuron

abdominal somites (lateral view)
P. Cygnus

Fig. 245

antennular plate
P. ornatus

Fig. 246

Fig. 247

12a. Ea stem Atlantic. Third maxilliped without exopod. Colour. abdominal somites greenish with a very distinct white transverse band along the posterior margin and separated from that margin by a dark band. A distinct eyespot (white or yellowish surrounded by an open dark ring) above the bases of the pleura of somites 1 to 6 ; those of the posterior pleura smaller and more elongate than those of the anterior (Fig. 248). Tail fan rather uniformly greenish or brownish in colour \qquad P. regius
(Fig. 289)
12b. Westem Atlantic. Third maxilliped with an exopod provided with a fla gellum. Colour: abdominal somites reddish or brownish, sometimes greenish, without transverse colour bands. A large eyespot of whitish or yellowish, surrounded by a dark colour is placed over the anterior end of the base of the pleura of abdominal somite 2 , a similar, even slightly larger one in the anterolateral parts of somite 6. Tail fan with a broad transverse reddish band along orjust before the posterior margin (Fig. 249) \qquad P. argus
(Fig. 257)
1b. Abdominal somites smooth, without transverse groove. Third maxilliped without exopod

13a. Abdominal somites 1 to 6 with a distinct unintemupted white transverse band along the posterior margin

14a. Antennular plate with 2 strong spines (Fig. 250a). Surface of abdominal somites naked and smooth. Colour: abdominal somites 2 to 5 with a white transverse band along the posterior margin which, however, is not set off by dark bands(Fig. 250b). C olour of body a nd abdomen usually greyish green without spots. Tailfan of a rather uniform colour. Legs irregula ly spotted, not distinctly streaked. Indo-West Pacific \qquad P. polyphagus
(Fig. 287)
14b Antennular plate with 4 strong spines arranged in a quadrangle (Fig. 252a). The whitish transverse bands along the posterior margin of the abdominal somites very distinct because they have a dark band in front and just behind them (Fig. 251,252b)

Fig. 250

tail fan uniform
abdomen (dorsal view) P. regius Fig. 248

tailfan banded
abdomen (dorsal view) P. argus Fig. 249

abdomen (dorsal view) P. gracilis

Fig. 251

15a. Eastem Pacific. Colour. carapace brownish or bluish green, almost uniform in colour or slightly and iregularly mottled. Antennae with the basal segments greenish, the flagella bluish green \qquad P. gracilis
(Fig. 263)
15b. Indo-West Pacific. Colour. carapace whitish with well defined, sharply delimited areas of bluish black, which contrast very conspicuously with the light background. Antennal peduncles pink, the flagella white \qquad P. versic olor
(Fig. 293)

13b. Abdomen without distinct transverse bands on all somites, sometimes there is a line of pale spots there, or a narrow line is present on somites 1 to 3 , but on somites 4 and 5 this is replaced by a row of spots. Antennular plate with 4 spines

16a. Abdominal somites 1 to 3 with a na rrow transverse whitish line just before the posterior margin; somites 4 to 6 with a transverse row of rather large whitish spots there. Surface of abdominal somites smooth and naked (Fig. 253). Eastem Pacific \qquad P. inflatus
(Fig. 269)
16b. Abdominal somites 1 to 6 without tra nsverse whitish bands; if a row of spots is visible a long the posterior margin, these spots are very minute and the rows are found on all somites

17a. Westem Atlantic. A line of very small spots along the posterior marg in of the abdominal somites, the rest of the upper surface of the abdomen not spotted. Pleura and hard part of tail fain with numerous very distinct spots in addition to a largereye spot nearthe base of the pleura (Fig. 254). Frontal homs spotted
P. laevic auda
(Fig. 275)
17b. Indo-West Pacific. No line of small spots along the posterior margin of the abdominal somites. Colour of the abdominal pleura and of the hard part of the tail fan similar to that of the dorsal surface of the abdomen. Frontal homs with iregular transverse bands above, whitish below

P. laevicauda

Fig. 254

b. abdomen (dorsal view)
P. versicolor
Fig. 252

abdomen (dorsal view)
P. inflatus

Fig. 253

18a. Abdominal somites with a large pubescent area on each half of the dorsal surface (Fig. 255). The nomal eyespot is present in the anterior half of the abdominal somites above the base of the pleura, but this spot is not ac companied by a light streak. Pleura without spots, but with a white line along the posterior margin. Tail fan of the same colour as the rest of the abdomen. Carapace without a peculiarmarbling near the bases of the frontal homs. Legs longitudina lly steaked \qquad P. stimpsoni
(Fig. 291)
18b. Abdominal somites smooth and naked. Colour of abdomen brownish or greenish grey with at most minute indistinct speckles. The usual large eyespot in the anterior half near the base of the pleura is accompanied by an oblique pale streak placed somewhat mediad of the eyespot. The pleura have the tips white, sometimes this white colour extends slightly up the anterior and posterior margins (Fig. 256). Carapace with a peculiar and very characteristic marbling of -pale lines near the bases of the frontal homs. Legs not streaked, but with very sharply defined irregular dark spots of a bluish or brownish colour, which .often form incomplete rings around the various segments. Antennal flagella distinctly ringed \qquad P. omatus
(Fig. 281)
somite 2

abdominal somites (lateral view)

> P. stimpsoni

Fig. 255

P. ornatus

Fig. 256

Fig. 257

PALIN Panul 1

Palinurus argus La treille, 1804, Annales Muséum Histoire Na lurelle, Pa ris, 3:393.
Synonyms: Palinurus ricordi Guérin-Méneville, 1836; Palinurus americanus H. Milne Edwards, 1837; Palinurus (Senex) argus - Pfeffer, 1881.

FAO Names : En - Caribbean spiny lobster; Fr - Langouste blanche; Sp - Langosta común del Caribe.
Type : Type locality of Palinurus argus: unknown:"J e la soupçonne des Grandes-Indes", later corrected by La marck (1818) to "I'Océan du Bresil". Type material in MP: 3 possible syntypes from "Antilles", nos. Pa. 438, 439, 442 dry, in tolerable condition.

Type locality of Palinurus ricordi: "aux Antilles". Lectotype (dry spec imen in reasonable condition) in ANSP, no. 207 (Guerin coll. no. 276).

Type locality of Palinurus americanus: "les Antilles". Syntypes in MP, possibly one, no. Pa. 443, left. "M. I'HerminierGuadeloupe", a dry specimen in tolerably good condition.

Geographical Distribution : Westem Atlantic: Bermuda and the east coast of USA at North Carolina, to Rio de Janeiro, Brazil, including the entire Gulf of Mexico and the Caribbean Sea (Fig. 258). Reported twice from West Africa (Ivory Coast).

Fig. 258
Habitat and Biology : Inhabits shallow waters, occasionally down to 90 m depth, perhaps even deeper. Found among rocks, on reefs, in eelgrass beds or in any habitat that provides protection. The species is gregarious and migratory. Females move to deeper water for spawning and there are mass migrations in the autumn when the animals, in single files of up to 50 individuals, move in a certain direction in daytime, each animal having body contact with the next through the antennae. In the northem part of its range, larvae are found mainly from June to December.

Fig. 257
Size : Maximum body length about 45 cm , average length to about 20 cm .
Interest to Fisheries : This is the most important commercial Palinurid in American waters. It is fished practically throughout its range. The catches of this species reported in the FAO Yearbook of Fisheries Statistics amounted to 32 854 metric tons in 1987 and 33903 metric tons in 1988, taken mainly by Cuba, Brazil, Bahamas, USA and Honduras. The species is mostly caught with traps, but also taken by hand, speared and trawled. It is marketed fresh; the tails are exported frozen or canned.

Local Names : ARUBA: Kreef; CURACAO: Kreef; CUBA: Langosta; FRANCE: Langouste d'Amérique, La ngouste amèricaine, Langouste argus; MARTNIQUE: Homard blanc; MEXICO: Langosta del Golfo; USA: Spiny lobster, Bermuda spiny lobster, Common spiny lobster, Crawfish, Florida spiny lobster, West Indian langouste, West Indian spiny lobster.

Literature : Fisc her (ed.), 1978: vol. 6; Willia ms, 1986: 19, figs 44, 79 b,c.

Panulinus Cygnus George, 1962
Fig. 259

PALIN Panul 12

Panulirus Cygnus George, 1962, , Loumal Royal Society Westem Australia, 45(4): 100, text-figs 1-4, pls 1,2.
Synonyms: Panulirus Iongipes Cygnus - Chittleborough \& Thomas, 1969. In the older literature conceming Westem Australian lobsters, the present species has often incorrectly been given the name Panulirus longipes (A. Milne Edwards).

FAO Names : En - Australian spiny lobster; Fr Langouste d'Australie; Sp-Langosta de Australia.

Type : Type locality:"Radar Reef, Rottnest Island, Westem Australia ($32^{\circ} 00^{\prime} \mathrm{S} 115030^{\prime} \mathrm{E}$), in reef pool at depth of 1 metre". Holotype male in WAM, no. 90-62.

antennular plate

abdominal somites (lateral view)

Geographical Distribution : Indo-West Pacific region: restricted to Westem Australia, na mely on the west coast between Northwest Cape (21048 'S) and Hamelin Harbour ($34^{\circ} 30^{\prime} \mathrm{S}$) and at the offshore islands (Fig. 260).

Habitat and Biology : Found in depths between 0 and 90 m ; rarely as deep as 120 m . The a nimals are noctumal and shelter in the daytime in rock crevices and among coral. They undertake limited migrations. The species is omnivorous.

Size : Maximum carapace length 14 cm , corresponding to a total body length of about 40 cm . Average between 8 and 10 cm carapace length. The carapace length of ovigerous females or those with spermatophores is 9 to 11 cm ..

Interest to Fisheries: The fishery of this species is of major importance in Australia. According to FAO Yearbook of Fisheries Statistics the annual catches were 11025 metric tons in 1987 and in 1988. The season used to extend from 15 November to 14 August, but was reduced in 1978 from 15 November to 30 June. At the beginning of the season (November and December) the fishery takes the freshly moulted a nimals (the so-called "whites") which then leave the shallow reef areas. During the remaining part of the season, the ".coastal red" lobsters are fished. The Abrolhos Islands are exceptional as the season starts there on 15 March. The fishing activities are concentrated between 24° and $35^{\circ} \mathrm{S}$, and the largest yields are obtained between $28 \circ$ and 320 .

Fig. 259

Fig. 260

The fishery operates lobster traps of various design and divers take specimens by hand. Apart from the closed season there are several protective measures: a minimum size limit (cl .7 .5 cm), bag limit for sports fishermen, restriction of the size of the lobster pots, etc.

The species is marketed fresh, but the greatest percentage is exported as frozen tails.

Local Names : AUSTRALA: Westem rock lobster (official name), Westem Australian crayfish, Westem cray.
Literature : Sheard, 1962; George \& Holthuis, 1965:19, text-fig. 1d, pl. 4; Morgan \& Barker, 1982-1987; Williams, 1986: 18, figs 39,78 k-l.

Panulirus ec hinatus Smith, 1869

Panulirus echinatus S.I. Smith, 1869, Iransactions Connecticut Academy Arts Sciences, 2:20,39.

Synonyms: ? Panulirus inermis Pocock, 1891; Panulirus guttatos brasiliensis Fa ria \& Silva, 1937.

FAO Names : En - Brown spiny lobster, Fr - Langouste brune; Sp - Langosta ma rón.

Type : Type locality: of Panulirus echinatus: "Pemambuco" (= Recife, Pemambuco State, Brazil). Whereabouts of type material unknown.

Type locality of Panulirus inermis: "Dredged in Water Bay [Femando do Noronha, Brazil]. About 10 fathoms depth". Holotype (puerulus stage) in BM, no. 1888: 19, in alcohol, condition fair.

Type locality of Panulirus guttatus brasiliensis: "Atóll das Roccas. - lattitude S. $3^{\circ} 52^{\prime} 30^{\prime \prime}$ e longitude EM do Rio de Janeiro 9020'26" - e Pemambuco". Whereabouts of type material unknown.

Geographical Distribution : Extreme N.E. Brazil (Ceará Rio Grande do Norte, and Pemambuco States) and the Central Atlantic Islands (Canary Islands, Cape Verde Islands, St. Pauls Rocks, Femando do Noronha, Atol das Rocas, llha da Trindade, Ascension, St. Helena) (Fig. 262).

Fig. 261

Fig. 262

Habitat and Biology : Depth range from 0 to 35 m . but usually not deeper than 25 m ; in deep crevices in rocks, among boulders, etc. The animals are noctumal.

Size : The carapace length varies from 3 to 19 cm (males) and 2 to 15 cm (females), the total.body iength from 7 to 39 cm (males) and 5 to 38 cm (females). Ovigerous females with carapace length 5 to 10 cm have been reported. In some areas the population consists of a nimals much smaller than in other a reas.

Interest to Fisheries: The species is fished for throughout its range. In St. Helena it is reported to be of commercial importance. In the Cape Verde Islands it is the most abundant coastal lobster, and it might support a more intensive fishery. In Brazil it is fished and marketed in the states where it occurs, as well as at Femando do Noronha and Atol das Rocas.

The species is caught with lobster traps, by diving and. by hand (at night with torches in shallow water). In Brazil it is often taken together with Panulirus argus or P. laevicauda.

Local Names : BRAZL: Lagosta pintada, Lagosta encamadinha, iagosta roxa, Lagostinho, Potiquiquiya; CAPE VERDE ISLANDS: Lagosta vermelha; FRANCE: Langouste brune des lles du Cap Vet-t; STHELENA: Long legs.

Literature : Fisc her, Bianchi \& Sc ott (eds), 1981 :vol. 5; Willia ms, 1986:20, fig. 47

Panulirus gracilis Streets, 1871
Fig. 263
PALIN Panul 13

Panulirus gracilis Streets, 1871, Proceedings Academy Natural Sciences, Phila delphia, 1871: 225, pl 2, fig. 2.

FAO Names: En - Greenspiny lobster; Fr - Langouste verte; Sp-Langosta barbona.

Type : Type locality of \boldsymbol{P}. gracilis: "Gulf of Tehuantepec, Mexico". Holotype in ANSP (not located in 1989).

Type locality of P. brevipes and P. paessleri: "Mazatlan", Mexico. The male syntype specimen from this locality in ZMH, no. 8074, is chosen by Holthuis \& Villalobos (1961: 265) as the lectotype of both Palinurus brevipes Pfeffer, 1881 and Palinurus paessleri Pfeffer, 1897.

Type locality of \boldsymbol{P}. martensii: "sulle coste Pacifiche del Darien" (=region of Golfo de San Miguel, Pacific coast of Panama; see E. Festa, 1909: 1253, map). Syntypes in MZT no.Cr. 1185.

Geographical Distribution : Eastem Pacific from Baja Califomia (Mexico) to Paita (Peru), and the Galapagos Islands (Fig. 264).

Habitat and Biology: Inhabits shallow coastal waters (0 to 18 m); among rocks and in cracks and crevices. The animals are noctumal.

Size : Maximum total body length 32 cm (males) and 30 cm (females); carapace length 1 to 13 cm (males), and 1 to 12 cm (females).

Interest to Fisheries: The species is fished for commercially throughout its range and is sold in local markets. It is taken with trammel nets, by hand or with lobster pots.

Local Names : ECUADOR: Langosta Verde; Blue lobster, Langosta azul (Galapagos Islands); MEXICO: Langosta Verde, Langosta güera, Langosta de playa, Langosta caribe; PANAMA: Langosta barbona; PERU : Langosta Verde.

Fig. 264

Literature : Holthuis \& Villalobos, 1961:252, figs; Holthuis \& Loesch, 1967:220, pl. 9; Williams, 1986:24, figs 56,80 e-f.

Panulirus guttatus (La treille, 1804)
Palinurus guttatus Latreille, 1804, Annales Muséum Histoire Naturelle, Pa ris, 3:392.

Synonyms: Palinurus (Senex) guttatus - Pfeffer, 1881.
FAO Names : En - Spotted spiny lobster, Fr - Langouste tachetee; Sp-Langosta moteada.

Type : Type locality:"dans les mers des Grandes-Indes". Through the lectotype selection by Holthuis (1959: 126) the type locality is restricted to Suriname. Whereabouts of lectotype unknown.In MP are two dry specimens of this species (nos. Pa 440 and Pa 441) in a reasonable condition, labelled "Antilles", which may be syntypes.

Geographical Distribution : Western Atlantic: Bermuda, Bahamas, South Florida, Belize, Panama, Caribbean Arc from Cuba to Trinidad, Curaçao, Bonaire, Los Roaues, Suriname. (Fig. 266).

Fig. 266

Fig. 26

Fig. 265

Habitat and Biology : A shallow water species, inhabiting rocky areas, mainly in crevices.
Size : Maximum total body length about 20 cm , commonly to 15 cm
Interest to Fisheries : The species is taken throughout its range, but rather incidentally; there is no special fishery for it. It is taken by hand or speared and occasionally caught in traps, mostly those set for other species. Marketed fresh and mostly used for local consumption.

Local Names : BERMUDA: Guinea chick lobster, Star lobster, Spotted spiny lobster, CUBA: Langosta manchada, Langosta Verde; MARTNIQUE: Homard bissie, Homard brésilien; NETHERLANDS ANTLEES: Kreef spanjo, Kreef indjan (Curaçao, Papiamentu language), Spanish lobster (St. Martin), Sand lobster (St. Eustatius); USA: Spotted lobster, Guinea lobster, Rock lobster, Spotted crawfish, Spotted spiny lobster.

Literature : Fisc her (ed), 1978:vol. 6; Williams, 1986: 19, figs 43,78o,79a.

Panulirus homarus (Linnaeus, 1758)
Cancer homarus Linnaeus, 1758, Systema
Naturae, (ed. 10)1:633.
Synonyms: Astacus homarus - Fabricius, 1775; Palinurus homarus - Fabricius, 1798; Palinurus dasypus H. Milne Edwards, 1837; ? Palinurus spinosus H. Milne Edwards, 1837; Palinurus burgeri De Haan, 1841; Palinurus (Senex) buergeri - Pfeffer, 1881; Senex dasypus - Ortmann, 1891; Panulirus dasypus - Henderson, 1893; Panulirus buergeri Ortmann, 1897; Panulirus burgeri megasculpta Pesta, 19 15; Panulirus homarus rubellus Bermy, 1974.

FAO Names: En - Scalloped spiny lobster, Fr - Langouste festonnee ; Sp - Langosta festoneada.

antennular plate

abdominal somites (lateral view)

Fig. 267
PALIN Panul 6

Fig. 267

Type : Type locality of Cancer homarus:"Habitat in Mari Asiatico". Lectotype is the specimen figured by Rumphius (1705, Amboinsche Rariteitkamer: pl. I fig. A). The figure was drawn in Holland, as Rumphius had not provided an illustration himself. As noted in Rumphius' book (1705:3) the figure was prepared after a specimen in the collection of Henric us d'Ac quet, then burgomaster of Delft. The specimen is now lost, but d'Acquet's collection of water colours of this material is still extant and held by the Koninklijk Instituut voor de Tropen (Royal Institute for the Tropics, formenly Colonial Institute) in Amsterdam. The figure of the lectotype of Cancer homarus has the following legend "9: Augusti 1698: Astacus Maximus Ambonensis egregie coloratus". The type locality of Cancer homarus thus definitely is Amboina, Moluccas, Indonesia.

Type locality of Palinurus dasypus: "Habite les mers de I'Inde". Type material in MP, no longer extant (not located in 1989).

Type locality of Palinurus burgeri: J a pan, probably Naga saki area. Holotype male in RMNH, no. D 21129.
Type locality of Panulirus burgeri megasculpta: "Gischin (= Kischin) an der Südküste Arabiens" (= Qishn, South Yemen), 5 male, 2 female syntypes in NMW.

Type locality of Panulirus homarus rubellus: South Africa (Natal and Zululand), s. Mozambique and S.E. Madagascar. Syntypes in SAM, in RMNH, no. D 29843 (in alcohol, condition good), a nd in BM, no. 1928.12.1.326 and 1925.8.18.86-87 (in alcohol, condition fa ir)

Geographical Distribution : Indo-West Pacific region: East Africa to Japan, Indonesia, Australia, New Caledonia and probably the MarquesasArchipelago (Fig. 268). The nominotypical form (Panulirus h. homarus) is found throughout the range of the species; \boldsymbol{P}. homarus megasculpta is only known from the northem Arabian Sea (Socotra, south coast of Arabia, perhaps west coast of India); P. h. rubellus inhabits S.E. Africa (Mozambique to Natal) and S.E. Madagascar.

Habitat and Biology : Inhabits shallow waters between 1 and 90 m depth, mostly between 1 and 5 m ; among rocks, often in the surf zone, sometimes in somewhat turbid water. The species is gregarious and noctumal.

Size : Maximum total body length 31 cm , carapace length 12 cm . Average total body length 20 to 25 cm .

Fig. 268

Interest to Fisheries : In South Africa, until 1965 the exploitation of this species was "restricted to the efforts of Bantu children in the intertidal zone, and of divers in somewhat deeper waters" (Heydom, 1969: I). In 1969, a company was formed for the exploitation of the species on a commercial basis. Although off the S.E. Afric an coast (Natal) P. homarus is the most frequent of the Panulirus species, on the East Afric an coast (Zanzibar, Kenya) it belongs to the less common lobsters. In S.E. Africa it is caught with baited lines, baited nets and traps. Off Somalia, the annual catch is about 120 tons. It is the most important contributing species to the lobster fishery off the Indian S.W. and s. coast (Kerala and Ta mil Nadu), it is caught there with anchor hooks, traps and gill nets, and supports a lucrative freezing industry (J ones, 1967:1339). Gruvel ($1911: 33,34$) remarked that the species (evidently ssp. rubellus) "se prête . . à une exploitation industrielle intéressante" in S.E. Madagascar. In the Philippines the species"is abundantly caught by gill nets partic ularly after heavy rains" (Motoh, 1980:50,51). In Taiwan the species is common in the markets from spring to a utumn (Chang, 1964:6, fig. 4; 1965:36,37). Also in Thailand the species is offered for sale in markets especially in the southem area. However, the fishery is mostly local, a nd the a nimals are marketed fresh or cooked, in some areas there is a minor export of frozen ta ils. In most places the species is caught by hand, with traps, gill nets, cast nets, baited lines etc. In Tha iland, mounted specimens often in fancy glass cases, a re sold to tourists (e.g. in Rayong).

Local Names : INDONESIA: Udang karang;JAPAN: Kebuka ise-ebi, Samehada ise-ebi; MOZAMBIQUE: Lagosta escamosa; PHILPPINES: Banagan (also used for other species of the genus); THAILAND: Kung mangkon (also used for other spec ies of the genus).

Literature : Fischer \& Bianchi (eds), 1984:vol. 5; Williams, 1986:17, figs 38,78j.

Remarks: A possible synonym of Panulirus homarus is Palinurus spinosus H. Milne Edwards, 1837. That species was described as having 4 teeth on the antennular plate, a transverse groove on each abdominal somite as P. guttatus, 3 or 4 dentic les on the posterior margin of the abdominal pleura, the abdomen with numeroussmall specks and no distinct lines or spots on the legs. The morphological characters would fit P. homarus, P. intemuptus and \mathbf{P}. regius, but the colour characters are most like those of \mathbf{P}. homans. For the time being \mathbf{P}. spinosus is therefore regarded here as a probable synonym of the present species. The type material in MP is no longer extant (in 1989).

Panulirus inflatus (Bouvier, 1895)
Fig. 269
PALIN Panul 14
Palinurus inflatus Bouvier, 1895, Bulletin Museum Histoire Naturelle, Paris, 1:8.

Synonyms: Palinurus digueti Gruvel, 1911; a manuscript na me cited by Gruvel, 1911, in the synonymy of P. inflatus of which name it is an objective synonym.

FAO Names : En - Blue spiny lobster; Fr - Langouste bleue; $\mathbf{S p}$ - Langosta azul.

Type : Type locality of P. inflatus and P. digueti: "Basse Califomie" (= Baja Califomia, Mexico). Type specimens in MP, no. Pa 412 (27 cm long), Pa 446 (23 cm) both dry in rather good condition and labelled P. digueti.

Geographical Distribution : Eastem Pacific region: west coast of Mexico from Baja Califomia to Puerto Angel (Oaxaca) (Fig. '270); a record from San Diego, Califomia, USA, needs verification.

Fig 270
Fig. 269
Habitat and Biology : Sublittoral to 30 m deep; on rocky, rarely gra velly bottom.
Size : Maximum carapace length 15.5 cm , but usually not more than 12 cm ; the coresponding total body lengths are respectively 38 and 30 cm

Interest to Fisheries: The species is of interest to fishery throughout its range, although mostly used for local consumption. It is caught by hand and with gill nets, and sold fresh or frozen.

Local Names : MEXIC O: Langosta azul, Langosta caribe, Langosta cabezona, Langosta de roca, Langosta prieta; USA: Pinto lobster, Blue spiny lobster.

Panulirus intemuptus (Ra nd a ll, 1840)
Fig. 271
PALIN Panul 15

Palinurus intemuptus Randall, 1840, Lournal Academy Natural Sciences. Philadelphia, 8: 137

FAO Names : En - California Spiny lobster; Fr - La ngouste mexicaine; Sp Langosta mexicana.

Type: Type locality: "from Upper Califormia, where it IS used as food by, the natives". T. Nuttall. who collected the type material visited Monterey, Santa Barbara, San Pedro and San Diego in Califomia (March - May 1836); he was most active in Santa Barbara and San Diego, and one of these two localities in all probability is the true type locality. Two dry syntypes in ANSP, No. 4188 (condition poorto reasonable).

abdominal somites (lateral view) (from WIlliams,1986)

Geographical Distribution : Eastem Pacific region: Califomia, USA (from San Luis Obispo Bay southwards; there is a doubtful record from Monterey), to Baja Califomia, Mexico (entire west coast); the species is also reported from the Gulf of Califomia (Fig. 272).

Habitat and Biology: From the littoral zone (tide pools) to depths of about 65 m , being more frequent in the deeper waters; on rocky substrates. The species is nocturnal; spa wning takes place from May to August.

Size : The maximum total body length reported is 60 cm , usually it does not exceed 30 cm . The legal size limit is a carapace length of 3.25 inch ($=8 \mathrm{~cm}$), corresponding to a total length of about 20 cm

Interest to Fisheries: Panulirus intemuptus is the economrcally most important lobster of the American west coast. In Califomia it is taken almost exclusively with traps, also trammel nets are used, a nd occasionally they a re obta ined by trawling. The species is also taken by diving by sports fishermen;according to Frey (1971) "the sport catch may equal 50% of the commercial catch". The total catches in 1976 were about 135 tons. The major fishing area is the west coast of Baja Califomia.

Fig. 272

The demandfor the lobster in Califomia "is so great that imports from Mexico average about twice the Califomia catch" (Frey,1971); of course the imported lobsters do not all need to be P. intemuptus. Protective measures as to season, size,bag limit, etc. are at present in force. Sold fresh, cooked and frozen. Best known as gourmet food, sometimes used as bait.

Local Names: MEXICO: Langosta colorada, Langosta roja; USA: Califomia lobster, Califomia manine crayfish, Califomia spiny lobster, Red lobster.

Literature : Mitc hell etal., 1969:121-131; Frey, 1971:19; Williams, 1986:21, figs 49 , 79 h-i.

Panulirus japonic us (Von Siebold, 1824)
Fig. 273

PALN Panul 16

Palinurus japonic us Von Siebold, 1824, De Historiae naturalis in Japonia_statu: 15. Namé placed on the Offic ialal List of Specific Names in Zoology in Opinion 507 (published in 1958).

Synonyms: Senex japonicus - Ortmann, 1891; Puer pellucidus Ortmann, 1891; Puerulus pellucidus - Calman, 1909.
FAO Names: En-J apanese spiny lobster; Fr-Langouste japonaise; Sp - Langosta japonesa.
Type : Type locality of Palinurus japonicus: "J a ponia",J apan, probably near Nagasaki. Lectotype in RMNH, no. 60, selected by George \& Holthuis, 1965: 10, in alc ohol condition excellent; paralectotypes in BM, MP, RMNH, USNM.

Type loc ality of Puer pellucidus: "J apan, Kochi, 15-20 Faden" (= Kochi, Shikoku Island, J apan, 27-37 m). Two syntypes in MZS, preserved in alcohol, condition poor.

abdominal somites (lateral view) (from George, \& Holthuis. 1965)

Geographic al Distribution : Westem Pacific: J apan (south of $38^{\circ} 30^{\prime} \mathrm{N}$ to Ryukyu islands), Korea, East China Sea, China, Xiamen (=Amoy), Taiwan (Fig. 274).

Fig. 274

Fig. 273
(after George \& Holthuis, 1965)

Habitat and Biology : Inhabits shallow waters, between 1 and 15 m depth on rocky bottoms.
Size : Maximum total body length 30 cm ; common length up to 25 cm .
Interest to Fisheries: Panulirus japonic us is fished for commercially in J apan. Longhurst (1970:286) reported the total a nnual catch of spiny lobsters in J apan to a mount to 1600 tons; by far the larger part of this is made up by the present species. The lobsters in Japan are sold fresh and frozen. The FAO Yearbook of Fishery Statistics reports for Japan no catches of P. japonic us, but only for P. longipes, viz. 1083 tons for 1987, 969 tons for 1988. However, as P. longipes is much less abundant than \mathbf{P}. japonicus, it is likely that these figures actually correspond to \mathbf{P}. japonicus, or to a combination of all Japanese spiny lobsters. In Taiwan, the species is found in markets throughout the year, but mostly so from March to October (Chang, 1965:41).

Local Names: J APAN: Ise-ebi (official name), J a panese crayfish, No-ebi (for old specimens).
Literature: George \& Holthuis, 1965:8-14, text-fig. la, pl. 1.

Panulirus laevic auda (La treille, 1817)
Fig. 275
PALIN Panul 3

Palinurus laevicauda Latreille, 1817, Nouveau Dictionnaire d'Histoire naturelle, (ed. 2) 17:295.

Synonyms: Senex laevicauda - Von lhering, 1897.

FAO Names : En - Smoothtail spiny lobster, Fr - Langouste indienne; Sp Langosta Verde.

Type : Type locality: "M. Delalande fils l'a trouvé sur les côtes du Bresil": Pierre Antoine Delalande (1787-1828) arived from France in Rio de Janeiro, Brazil on 1 J une 1816, "He retumed to France after a short voyage through the Province of Rio de Janeiro, carrying the collections obtained" (Papavero, 1971, pp.115, 116). The type locality thus may be restricted to Rio de Janeiro, Brazil. Type material in MP; no longer extant in 1989.

Geographical Distribution : Westem Atlantic: Bermuda and Florida to E. Brazil, including Yucatan and the Caribbean Sea (Fig. 276).

Habitat and Biology : Coastal waters, down to 50 m depth; substrate: rock or coral.

Size : Maximum total body length about 31 cm , common to 20 cm .

Interest to Fisheries: The species is caught throughout its range, but there is no special commercial fishery for it. Sometimes it is taken together with Panulirus argus. The yield of its fishery seems to be largest in Brazil.

Local Names : BERMUDA: Smooth-tailed spiny lobster, BRAZL: Lagosta cabo Verde; MARTNIQUE: Grosses bresiliennes (for large specimens), Homard d'indien; USA: Brazilian lobster, Smooth-tailed crawfish.

Literature : Fischer (ed.), 1978: vol. 6; Williams, 1986:22, figs 52, 79 n -o.

Fig. 276

Palinurus longipes (A. Milne Edwards, 1868)

Fig. 277

PALIN Panul 7

Palinurus longipes A. Milne Edwards, 1868, Nouvelles Archives Museum Histoire Naturelle, Pa ris, 4:87, pl. 21.
Synonyms: Palinurus femoristriga Von Martens, 1872; Palinurus longitarsus Lenz \& Richters, 1881 (erroneous spelling of P. longipes); Senex femoristriga - Ortmann, 1891; Panulirus bispinosus Borradaile, 1899; Panulirus japonicus longipes - De Man, 1916.

FAO Names: En - Longlegged spiny lobster; Fr - Langouste diablotin; Sp - Langosta duende.
Type : Type locality of \boldsymbol{P}. longipes: "trouvée sur les côtes de l'île Zanzibar", through the lectotype selection by George \& Holthuis (1965:25); the paralectotype came from "Maurice" ($=$ Maunitius). Type material in MP, no longer extant in 1989.

Type loc a lity of P. femoristriga: "Amboina", Moluccas, Indonesia. Holotype (or lectotype) female in ZMB, no. 1333, preserved in alcohol; could not be located in 1989.

Type locality of P. bispinosus: "Sandal Bay, Lifu, Loyalty Islands". Holotype male, ZMC, in alcohol, condition good.

a. P. longipes longipes
b. P. longipes femoristriga (after George \& Holthuis. 1965) Fig. 277

Geographical Distribution : Indo-West Pacific region: East Africa to Japan and Polynesia. Two subspecies can be recognized: P. l. longipes (Fig. 277a) is the westem form occuring from East Africa to Thailand, Taiwan, the Philippines and Indonesia and the eastem subspecies P.I. femoristriga (Fig. 277b) inhabiting J apan, the Moluccas, New Guinea, eastem Australia, New Caledonia and Polynesia (Fig. 278). Intermediate forms have been observed, especially in the area of overlap between the two ranges.

Habitat and Biology : The species lives in clear or slightly turbid water at depths of 1 to 18 m (also reported from 122 m), in rocky areasand coral reefs. The a nimals are noctumal and not grega rious.

Size : Maximum total body length 30 cm , average length 20 to 25 cm . Maximum carapace length 12 cm , average carapace length 8 to 10 cm . The smallest ovigerous female has a total length of 14 cm .

Fig. 278

Interest to Fisheries: The species is caught throughout its range, mostly by hand when diving or with spears, also with traps, tangle nets and lobster pots. In Taiwan it is also known to be taken as by-catch by trawls. Fishing is of local interest only The animals are sold fresh in the markets and directly to restaurants. The FAO Yearbook of Fishery Statistics reports for this species catches in Japan of 1083 tons in 1987 and 969 tons in 1988. As P. longipes is not partic ularly common in Japan, and as P. japonicus was not listed in those statistics it is likely that the figures refer to the latter species or to both.

Local Names : AUSTRALA: Blue spot rock lobster, Coral crayfish, Painted crayfish, Red cray, Tropical rock lobster, Tropical spiny lobster, White whiskered rock lobster; JAPAN: Kanoko ise-ebi; MOZAMBIQUE: Lagosta de coral; NEW CALEDONIA: Langouste rouge; PHIUPPINES: Banagan (also used for other spiny lobster species), Coral crayfish, Marine crayfish, Marine rock lobster, Tropical rock lobster, Tropical spiny lobster, SOUTH AFRICA:, Long-legged crayfish; THAILAND: Kung mangkon (also used for other species of spiny lobster); TUVALU: Oula.

Literature: George \& Holthuis, 1965:21-28, text-fig. le, pl. 5, Fischer \& Bianchi (eds), 1984:vol. 5; Willia ms, 1986:20, figs 46,79 f-g

Panulinus marginatus (Quoy \& Gaimard, 1825)
Fig. 279
PALIN Panul 17
Palinurus marginatus Quoy \& Gaimard, 1825, in L de Freyc inet, Vovaoe autourdu monde surlescorvettesl'Uranie et la Phvsicienne, Zool.:537, pl. 81.

FAO Names : En - Ba nded spiny lobster; Fr - La ngouste bordée.
Type : Type loc a lity: "Iles Sandwich" (= Hawaiian islands). Type material no longer extant in MP in 1989.

abdominal somites (lateral view)
(from George \& Holthuis, 1965)

Geographical Distribution : Only known from the Hawaiian Islands, including Pearl and Hermes Reef, and Lavsan Island (Fia. 280).

Fig. 280

(after George \& Holthuis. 1965)
Fig. 279

Habitat and Biology : The species has been reported from depths down to 143 m , but usually in shallow water, in well protected places on a rocky substrate, under rocks and in rock crevices. The animals are noctumal.

Size : Total body length to 40 cm , carapace length to 12 cm .
Interest to Fisheries : Used as food throughout its range. Fished with traps or nets. Also taken by hand, in daytime by diving, at night with lights and spears. Sold fresh in local markets. The 1971 USA fishery statistic sindicate a total of 5 725 pounds ($=2600 \mathrm{~kg}$) of lobsters caught in the Hawaiian Islands, of which 5371 pounds in Oahu, 263 pounds in Maui, 70 pounds in Hawaii and 21 pounds in Lanai. Of these slightly more were caught in gill nets (3253 pounds) than in traps (2113 pounds) and 339 pounds were registered as fished by hand. These figures include the catches of P. penic illatus.

Local Names : HAWAIl: Ula (general name for spiny lobsters).
Literature : George \& Holthuis, 1965: 14-17, text-fig 1 b, pl. 2; Willia ms, 1986:20, figs 45,79 d-e.

Panulinus omatus (Fa bric ius, 1798)
Fig. 281
PALIN Panul 8
Palinurus omatus Fabric ius, 1798, Supplementum Entomoloaiae systematicae:400.
Synonyms: Pa linurus sulcatus H. Milne Edwards, 1837; Panulirus sulcatus - White, 1847; Palinurus (Senex) sulcatus Pfeffer, 1881; Senex omatus - Lanc hester, 1900.

FAO Names: En - Omate spiny lobster; Fr-Langouste omée; Sp - La ngosta omamentada.

Type : Type locality of P. omatus: "in Oceano Indico. Dom. Daldorff". I.K. Daldorff, a Danish officer, was stationed from 1790 to 1793 in Tranquebar, SE. India ($11022^{\prime} \mathrm{N}, 7951^{\prime} \mathrm{E}$) in which area he collected; he did not retum to India until 1798. His material is from Tranquebar or the nearby region, which may be considered the restricted type locality. Lectptype in UZM, originally preserved dry, recently transferred to alcohol, condition reasonable.

Type loc ality of P. sulcatus: "Habite les còtes de I'Inde". presumed type specimen in MP, no. Pa 448; a dry specimen in reasonable condition la belled "Palinurus sulc atus Lmk. Indes".

Geographical Distribution: Indo-West Pacific region from the Red Sea and East Africa (south to Natal) to southem Japan, the Solomon Islands, Papua New Guinea, SW., W., N., N.E. and E. Australia, New Caledonia and Fiji. Recently (1988) a specimen was found on the coast of Israel in the E. Mediterranean (Fig. 282).

Habitat and Biology : In shallow, sometimes slightly turbid coastal waters, from 1 to 8 m depth, with a few records from depthsasgreat as 50 m . On sandy and muddy substrates, sometimes on rocky bottom, often near the mouths of rivers, but also on coral reefs. The species has been reported as solitary or as living in pairs, but has also been found in larger concentrations.

Fig. 282

Size : This is one of the largest of the Panulirus species and can atta in a total body length of about 50 cm , but usually is much smaller (30 to 35 cm).

Interest to Fisheries: Panulirus omatus is fished for throughout its range, but in most places only on a small scale. Taken mostly by hand by divers, or speared. Handnets are used also, but trapsprove to be ineffective. Sold mostly fresh or frozen in local markets. In the Philippines a minorexport activity hasdeveloped. In Australia a commercial fishery was developed since about 1966, it uses freezing installations ashore, as well asfreezer boats; these operations cover the Torres Strait area, as well as N.E. Queensland, with an annual catch of over 120 tons tail weight around 1986 (Channells et al., 1987). Mounted dry specimens (sometimes in glass cases) are sold to tourists in several areas (e.g., in Thailand).

Local Names : AUSTRALA: C oral crayfish, Omate rock lobster, Painted cray, Tropic al rock lobster, FIJ I: Coral crayfish, Omate rock lobster, Painted crayfish, Tropical rock lobster, Uraubola, Urautamata; JAPAN: Nishi ki-ebi; MOZAMBIQUE: La gosta omamentada; NEW CALEDONIA: Grosse langouste porcelaine; PAKISTAN: Kikat (Sindhi), Kikka (Baluchi); PHILPPINES: Banagan; SOUTH AFRICA: Omate crayfish, Omate spiny lobster, THAILAND: Kung mangkon.

Literature : Fisc her \& Bianchi (eds), 1984:vol. 5; Willia ms, 1986:22, figs 51,79 I-m.

Fig. 283
Panulinus pascuensis Reed, 1954, Scientia, Valpa raiso, 21:121,136,fig s1-9.
Synonyms: Palinurus pasc halis (Philip pi Ms.) Holthuis, 1972.
FAO Names : En - Ea ster Isla nd spiny lobster

Type : Type locality of P. pascuensis: "Isla de Pascua" (= Easter Island, southem Pacific). Holotype male in Museo de la Dirección General de Pesca y Caza de Chile, Valparaiso, Chile.

abdominal somites (lateral view)
(from George. \& Holthuis 1965)

Geographical Distribution: Easter Island and Pitcaim Island, southem Pacific Ocean (Fig. 284).

Habitat and Biology : Lives in shallow water (from 0 to 5 m depth) in crevices of a rocky substrate. Impregnated and ovigerous females have been taken in December.

Size: Reported carapace lengths of males 6 to 10 cm ; females cl. 6 to 9.5 cm . This corresponds to total body lengths of about 15 to 25 cm (males), and 15 to 24 cm (females); the smallest ovigerous female has a cl. of 6 cm .

Interest to Fisheries : Both at Easter Isla nd and at Pitcaim the species is mainly taken by hand or speared by divers in daytime, and with torch light at night; also gill nets and lobster pots are used. The lobsters are sold fresh for local consumption.

Local Names : CHILE: Langosta de Pascua, Ura (Ea ster Island).

Literature: George \& Holthuis, 1965:17-19, textfig. Ic, pl.3; Holthuis, 1972:36-44, figs 1,2.

Fig. 283

Astacus penicillatus Olivier, 1791, Encyclopedie méthodique. Histoire naturelle. Insectes, 6:343.

Synonyms: Palinurus gigas Lamarck, 1801; Palinurus penicillatus - Olivier, 1811; Palinurus ehrenbergi Helter, 1861; Palinurus (Panulirus) ehrenbergi - Heller, 1865; Palinurus (Senex) penicillatus - Pfeffer, 1881; Cancer theresae C urtiss, 1938.

FAO Names : En - Pronghom spiny lobster; Fr - Langouste fourchette; Sp - Langosta horquilla.

antennular plate

Type : Type locality of \boldsymbol{A}. penicillatus (and \boldsymbol{P}. gigas, which is a replacement name for \boldsymbol{A}. penicillatus): unknown ("Elle se trouve"). Type material in La marck collection, in MP? In the Paris Museum there are 7 specimens of this species labelled "Mer des Indes", or without locality indication. One or more of these may belong to the type lot, but this cannot be made certain.

Type locality of P. ehrenbergi: "Coseir" (= Quseir, Red Sea coast of Egypt). Type in NMW.

Fig. 285

Type locality of Cancer theresae: "At Tautira, in the bamier reef", Tahiti; whereabouts of type material unknown.

Geographical Distribution : IndoWest Pacific and Eastem Pacific regions: Red Sea, E. and S.E. Africa to Japan, Hawaii, Samoa and the Tuamotu Archipelago and further east to the islands off the west coast of America (Clipper-ton Island, Revillagigedo Archipelago, Cocos Istand, Galapagos Arc hipelago) and in some localities near the continental coast of Mexico (Sinaloa, Nayarit and Guerrero) (Fig. 286).

Fig. 286

Habitat and Biology : Depth range from 1 to 4 m , rocky substrates. In clear water, not influenced by rivers, often in surf zone and in surge channels. Therefore often near arid coasts and on small islands. The species is not gregarious and is noctumal, hiding in the daytime in crevices in the rocks and coral reefs.

Size : Maximum total body length a bout 40 cm , average a dult length about 30 cm . Ma les usually much larger than females.

Interest to Fisheries: The species is fished wherever it occurs. Mostly taken by hand or with spears during diving in daytime, or with torch light near the surface at night. Traps do not seem not to be very effective, but are used in places; trammel nets seem to give better results. On the west coast of Thailand the species is sold in local markets or directly to restaurants. In the Galapagos the average catch is 50 to 100 lobsters per day. They are sold fresh for local consumption or a s frozen lobster tails.

Local Names : AUSTRALA: Coral cray, Double spined rock lobster; FIII: Golden rock lobster, Uraukuta, Urauvatuvatu; GALAPAGOS ISLANDS: Langosta roja, Red lobster; HAWAll: Tufted spiny lobster, Uta; INDONESIA: Udang barong; JAPAN: Shima ise-ebi; MALAYSIA: Udang karang; MEXICO: Langosta de Isla Socorro; MOZAMBIQUE: Lagosta comuda; NEW CALEDONIA: Grosses têtes (name used for large males), Vraie tangouste verte; PALAU: Raiklius; PHILPPINES: Banagan, Spiny lobster, Tufted spiny lobster; SOUTH AFRICA: Variegated crayfish; TAHIT: Oura-miti; THAILAND: Kung king kong (for large specimens, Phuket), Kung mangkon; TUAMOTU ISLANDS: Komanga; USA: Socorro spiny lobster, VIEINAM: Tôm hum.

Literature : Fisc her \& Bianchi (eds), 1984:vot. 5; Willia ms, 1986:18, figs 40,78 m-n.

Panulirus polyphagus (Herbst, 1793)
Fig. 287
PALIN Panul 10

Cancer (Astacus) polyphagus Herbst, 1793, Versuch einer Naturgeschichte der Krabben und Krebse, 2:90, pl. 32.

Synonyms: Palinurus fasciatus Fabricius, 1798; Palinurus polyphagus - Bosec 1802; Panulirus orientalis Doflein, 1900.

FAO Names : En - Mud spiny lobster; FrLangouste de vase; Sp-Langosta fanguera.

Type: Type locality of Cancer polyphagus: "Das Vatertand ist Ostindien". The dry hototype or lectotype in ZMB, no. 1973, in good condition.

antennular plate

Type locality of P. fasciatus:"Habitat in Oceano Indico Dom. Daldorff". I.K. Daldorff, a Danish officer at Tranquebar, SE. India, collected there for Fabricius and also Herbst obtained material from him. The type material of P. fasciatus almost certainly came from the Tranquebar area, and there even is a possibility that Herbst's material of C. polyphagus was also obtained from Daldorff, so that the type localities of the two species would be very close, but this is only a guess. Three syntypes of \mathbf{P}. fasciatus are in UZM, preserved in alcohol, condition reasonable.

The statement of the type locality of P. orientalis is: "J apan. Salmin".Balss (1914:76), who examined Doflein's type specimen and synonymized \mathbf{P}. orientalis with the present species, remarked that the locality indication " J apan" is doubtful "da auf Salmins Fundorte in unserer Sammlung kein Verlass ist" and as the species was not known from Japan. C-L Salmin wasa dealer in natural history objects in Hamburg in the second half of the last century (the Lei den Museum had dealings with him between 1863 and 1875) and evidently, like several of such dealers at that time was not very accurate with labelling his material. The true type locality of \mathbf{P}. orientalis thus is unknown; the holotype was in ZSM , now probably lost (not located in 1989).

Geographical Distribution: Indo-West Pacific region, from the coasts of Pakistan and India to Vietnam, the Philippines, Indonesia, N.W. Australia and the Gulf of Papua (Fig. 288).

Habitat and Biology : The species is found on muddy substrates and sometimes on rocky bottoms. Often found near river mouths, in turbid water. Depth range from 3 to 90 m , but usually far less than 40 m .

Size : Maximum total body length: about 40 cm , common from 20 to 25 cm .

Interest to Fisheries : In the Bay of Bengal and the Gulf of Tha iland, the species is quite important commercially. In India, the main fishing season extends from November to March. The animals are caught by trawling, but also with set nets, seines, etc.;they rarely enter traps. Sold fresh

Fig. 288 and frozen in local markets and also transported to the larger towns. Served regularly in restaurants in Thailand, and else-where. In Thailand, mounted dry specimens, usually in fancy glass cases, are sold ascurios to tourists.

Local Names : BURMA: Kyauk-pazun; INDONESIA: Udang barong;PAKISTAN: Kikat (Sindhi), Kikka (Baluchi); PHILIPPINES: Banag, Banagan; THAILAND: Kung mangkon; VIETNAM: Tom hum.

Literature : Fischer \& Bianchi (eds), 1984: vol. 5.
Remarks: As the specific name fasciatus formerly has often been used not for this species but for \mathbf{P}. versic olor, old records of \mathbf{P}. fasciatus have to be treated with much reserve.

Panulirus regius De Brito Capello, 1864
Fig. 289

PALIN Panul 5

Panulirus regius De Brito Capello, 1864, Memorias Academia real sciencias Lisboa (classe sciencias matematicas. physicase naturaes), (2)3:5, fig. 1.

Synonyms: Phyllosoma commune Leach, 1817; Palinurus rissonii Desmarest; 1825; Palinurus (Senex) longipes Pfeffer, 1881 (non A. Milne Edwards, 1868); Palinustus phoberus De Roc hebrune, 1883; Puer atlantic us Bouvier, 1905.

FAO Names : En - Royal spiny lobster; Fr - Langouste royale; Sp - Langosta real.
Type : Type locality of \mathbf{P}. regius: "Habita os mares das ilhas de Cabo-Verde. Na ilha de S. Vicente d'este archipelago foi encontrado o exemplar que nosserviu de typo" (=São Vicente, Cape Verde Archipelago). Holotype in MNL, Lisbon, Portugal, lost in the fire of 1978.

Type locality of Phyllosoma conmune: "Taken at Porto Praya and during the voyage until 2,58,0 S lat. 9,21,22 E long." (West Africa from Porto da Praia, llha de São Tiago, Cape Verde Islands, $14054{ }^{\prime} \mathrm{N}, 2303 l^{\prime} \mathrm{W}$, and from there to off Gabon 2058 , $9021^{\prime} 22^{\prime \prime} \mathrm{E}$). Four syntypes in BM, no. 170 (dry, condition fair).

Type locality of P. rissonii: "Nice", s. France. Whereabouts

front margin of carapace of type material unknown.

Type locality of P. longipes Pfeffer: "Monrovia" (Liberia, 6019'N 10응́W) and "St. Thomé West-Afrika" (llha de São Thomé $0 \div 12^{\prime} N, 6039$ 'E). Syntypes in ZMH.

Type locality of Palinustus phoberus: "Embouchure de la Gambie et de la Casamence "(=mouths of the Gambia River, Gambia, and of the Casamence River, southem Senegal). Types in MP, no longer extant.

Type locality of Puer atlanticus: " dans le trémail, par 20 mètres de profondeur, au voisinage de Sainte-Lucie, île du Cap Vert " (= llha de Santa Luzia, Cape Verde Islands, $16046^{\prime} \mathrm{N}$ 24ㅇ4ㅇ́W); holotype in MOM, no. 380624 (in alcohol).

Geographical Distribution : Eastem Atlantic region: west coast of Africa between Cape Juby (Morocco) and Mocâmedes .(S. Angola), and westem Mediterra nean (east coast of Spain, south coast of France) (Fig. 290).

Habitat and Biology : The species inhabits shallow water from the sublittoral to 40 m , but is mostly found between 5 and 15 m . It seems to prefer rocky bottoms.

Size : Maximum total body length 35 cm , usually not more than 25 cm .

Interest to Fisheries: The species is fished for throughout its range, mostly with vertical nets or by trawling; it is also taken by hand or with lobster pots. The lobsters are sold fresh locally. French (Breton) and Spanish fishing boats bring the specimens alive (orfrozen) to France and Spain where they are marketed. In some places in Spain, the lobsters are kept alive in "viviers" before being sold. In Angola "the quantity of "lobsters" is not sufficient to assure the development of fisheries on large commercial scale" (Da Franca, 1966: 1).

Local Names: ANGOLA: Lagosta Verde; CAPE VERDE ISLANDS: Lagosta Verde; GAMBIA: Soum; GHANA: Blue crawfish; MOROCCO: Azeffane, Bakhouche, Langusta (also used for Palinurus species); SENEG AL: Soum, Soumpé

Literature : Fischer, Bianchi \& Scott (eds), 1981 :vol 5; Willia ms, 1986:21, figs 50, 79 j-k; Fischer, Bauchot \& Schneider (eds), 1987:311.

Fig. 289

Fig. 290

Panulirus stimpsoni Holthuis, 1963
Fig. 291
PALIN Panul 19
Panulirus stimpsoni Holthuis, 1963, Proceedings Koninkliike Nederlandse Akademie Wetenschappen, (C) 66:54.

Synonyms: Palinurus godeffroyi (Pfeffer MS.) Holthuis. 1978.

FAO Names: En - Chinese spiny lobster.

Type : Type locality of Panulirus stimpsoni: "Hong Kong". Holotype female in RMNH, no. D 3541.

Type locality indication of Palinurus godeffroyi: "Südsee" [= Pacific Ocean], indication probably incorrect. Holotype male in ZMH, no. 8005.

Geographical Distribution Indo-West Pacific region. Coast of southem China between Shanghai and Shantou (= Swatow); Hong Kong; Taiwan. Recently also found in the Gulf of Thailand off Chonburi province (Fig. 292).

Habitat and Biology : The speciesseems to inhabit rocky areas in shallow water.

Size : Known carapace lengths: 6.5 to 10.5 cm (males), and 5 to 6.5 cm (females). The corresponding total body lengths are about 16 to 28 cm (males), and 13 to 16 cm (females).

Interest to Fisheries : The species is of commercial interest notwithstanding its relatively small size. Caught throughout its range, mostly with tangle nets, rarely by lobster traps. Sold fresh on local markets. In Hong kong, it is mainly caught in February/March and August, September. The species is reared and cultured in China (Liu, 1986:44).

Local Names: HONG KONG: Green lobster, Luk Sik Lung Ha; THAILAND: Kung mangkon

Literature: George \& Fischer, 1978:93-95,fig1; Holthuis,1978:95100, pl. 1 Liu, 1986:45

Fig. 292

Panulirus versic olor (La treille, 1804)
Palinurus versicolor Latreille, 1804, Annales Muséum Histoire naturelle, Paris, 3:394.

Synonyms: Palinurus taeniatus Lamarck, 1818; Panulirus taeniatus - White, 1847; Palinurus (Panulins) omatus decoratus Heller, 1865; Puer spiniger Ortmann, 1894; Panulinus demani Borradai le, 1899; Senex omatus laevis Lanchester, 1901; Puerulus spiniper - Calman, 1909; Panulirus omatus laevis- De Man, 1916.

FAO Names: En - Painted spiny lobster, Fr Langouste bariolée; Sp - Langosta colorete.

antennular plate

Fig. 293
PALIN Panul 11

Fig. 293

Type : Type locality of Palinurus versicolor. "Cette jolie espece nous est a mivée par la frégate le Naturaliste".. The "Naturaliste" together with the "Geographe" left Le Havre, France, on 18 October 1800 on a voyage of discovery to Australia. F. Peron and CA. Lesueur, whose names as zoologists are well known in connection with this expedition, shipped on the Géographe, the zoologists on board the "Naturaliste" were G.J.B.M. Bory de St Vincent and D. Dumont. Bory de St Vincent, however, did not travel beyond Maunitius, where he stayed for a year. The two ships a rived at Mauntius (lle de France) on 16 March 1801 and left 25 April. The "Naturaliste" reached SW. Australia on 27 May 1801 and went from there to Timor where she stayed from 22 August to 13 November 1801. From Timor the "Natura liste" went around S.W. Australia to Tasmania and PortJackson, Sydney, and retumed from there the same way to Shark Bay, Westem Australia, which was left 23 March 1803 for Timor. On 3 J une 1803 the ship headed home from Timor via Maunitius. The only two localities where the "Naturaliste" could have collected Panulins versicolor are Ma untius and Timor. It seems best to select Mauritius as the restricted type locality. Types in MP, see under type of P. taeniatus.

Type locality of P. taeniatus: "Habite les mers de la Nouvelle Hollande" Lamarck (1818:211) cited P. versicolor Latreille as a synonym of his \mathbf{P}. taeniatus (although he himself used the name versicolorfor a species that probably is \mathbf{P}. penicillatus). As La marck cla ims that the type specimens of his P. taeniatus are rather small, just as La treille (1804) did for his own \mathbf{P}. versicolor, it is possible, that taeniatus is just a new name for versicolor Latreille, a nd that the type material of the two is the same. The fact that the object of the voyage of the "Naturaliste" was to explore Australia ("Nouvelle Hollande"), may be the reason that Lamarck gave Australia astype locality for P. taeniatus, while its types probably were actually collected in Mauritius or Timor. In the Paris Museum, there are 3 specimens identified by La marck as P. taeniatus labelled "lle de France" (= Ma uritius), which may be the syntypes of this species a nd of \mathbf{P}. versicolor.

Type loc ality of P. omatus decoratus: "J ava", Indonesia. Type material in NMW.
Type loc a lity of Puer spiniger. "Amboina", Moluccas, Ind onesia. Depository of syntypes unknown.
Type localities of Panulinus demani: "Blanche Bay, New Britian" (1 male syntype in $\mathbb{Z} \mathrm{MC}$, in alcohol, good condition), "Amboina" (Moluccas, Indonesia),"Neu-Guinea" (= southeast coast of Papua New Guinea between Yule Isla nd and East Cape),"Thursday island" (Torres Strait, Australia) (material from the last three localities reported upon by Ortmann, 1894, the syntypes probably in the Zoologic al Institute, University of J ena, Gemany), "J ava-See" (J ava Sea, Indonesia) (De Man, 1896; 2 juveniles syntypes in $\mathbb{M L}$).

Type locality of Senex omatus laevis "Singora" (= Songkhla, S. Tha iland on coast of Gulf of Thailand). Holotype male in $Z \mathrm{MC}$, in a lc ohol, condition good.

Geographical Distribution : Indo-West Pacific region: entire Red Sea and east coast of Africa (south to Natal), to southem Japan, Mic ronesia, Melanesia, northem Australia and Polynesia (Fig. 294).

Habitat and Biology : In shallow water, from the sublittoral down to 15 m depth; in coral reef areas, often on sea ward edges of the reef plateau. In clear water also in surf areas. The species is noctumal and not gregarious; in daytime, it hides in crevices and cavities of the rocks.

Size : Maximum total length about 40 cm , a verage length less than 30 cm .

Interest to Fisheries: The species is taken wherever it occurs, mostly for local use; like all spiny lobsters it is considered to be excellent food. It is taken in daytime by divers, either by hand or with spears; at night it is hunted and speared at the reefs with the help of torch lights, it rarely enters trapsOn the west coast of Thailand, it is sold fresh in markets or directly to restaurants; mounted specimens, usually in fancy

Fig. 294 glass cases are sold as curios to tourists.

Local Names: AUSTRALA: Painted rock lobster; FII: Pa inted rock lobster, Uraudina; HONG KONG: Huk paak mun lung ha; INDONESIA: Udang barong; JAPAN: Goshiki ebi, Goshiki-ise-ebi; MALAYSIA: Udang karang; MOZAMBIQUE: Lagosta pintada; NEW CALEDONIA: La porcelaine, Porcelain crayfish; PAKISTAN: Kikat (Sindhi), Kikka (Baluchi); PHILPPINES: Banag, Banagan, Marine crayfish, Painted crayfish; SOUTH AFRICA: Striped crayfish; THAILAND: Kung mangkon; VIETNAM: Tôm hum.

Literature : Fischer \& Bianchi (eds), 1984:vol. 5; Willia ms, 1986:23, figs 55,80c-d.

Projasus George \& Grindley, 1964
Projasus George \& Grindley, 1964, LoumaLRoyal Society WestemAustralia, 47(3):87. Gender ma sculine.
Type Species: by original designation a nd monotypy: Jasus parkeri Stebbing, 1902.
Synonyms : Isopuerulus Bahamonde, 1963, Noticiario mensual Museo Nacional Historia_Natural. Santiaao, Chile, 7(81):4. Type species, by monotypy: Jasus parkeri Stebbing, 1902. Gender masculine. Name unavailable as it, when established, was not "accompanied by a description or definition that states in words characters that are puported to differentiate the taxon", and neither is there "a bibliographic reference to such a published statement" (Art. 13 of the Intemational Code of Zoological Nomenclature).

Isopuerulus Bahamonde, 1965, Noticiario mensual Museo Nationa_Historia natural, Santiaqo, Chile, 10(112):5. Type species by monotypy: Jasus parken Stebbing, 1902. Gender masculine. This time the name is availably established, even though barely so, as the author states that the genus is smaller than the genus Jasus ("de menor talla que la anterior"). However, now it is a junior objective synonym of Projasus George \& Grindley, 1964.

At present two species are known to belong to this genus, neither is of importance to fisheries. On account of the scarcity of a vailable material the taxonomy at the species level is not yet quite clear.

Key to Species :

1a Eastern Pacific. Spinules present on the ventral margin of the merus and ischium of the pereiopods (Fig. 295a) P. bahamondei
(Fig. 296)
1b. Indo-West Pacific. No spinules on merus and ischium of the pereiopods (295b)
P. parkeri
(Fig. 298)

a. P. bahamondei
pereiopod

Projasus bahamondei George, 1976
Fig. 296
PALIN Proja 1
Projasus bahamondei George, 1976, Crustaceana, 30(1):27, text-fig. 1, pl. 1.
Synonyms : Before 1976 not distinguished from Projasus parkeri.
FAO Names : En - Chilean jagged lobster.
Type : Type locality: "San Ambrosio Island, south-east Pacific, 26o21'S 79047'W, 175 m". Holotype female in WAM, no. 104-72.

Geographical Distribution : Off the Chilean Coast between Huasco (Atacama) and Constitución (Maule), roughly between 290 and 350 ; also at thelslas Desventuradas, and near Juan Femandez (Fig. 297).

Fig. 297
Habitat and Biology : Depth range from 175 to 300 m , on substrates of sandy mud, muddy sand and gravel.

Size : Maximum total body length about 18.5 cm ; carapace length up to 7.5 cm .

Interest to Fisheries : Practically none. The species is taken as by-catch by the trawlers that fish for the shrimp Heterocarpus reedi Bahamonde. Báez \& Ruiz (1985) suggested that the species might be sufficiently abundant nearJ uan Femandez and the IslasDesventuradas to be of interest to fisheries.

Local Names : CHILE: Dalmacita, tangosta de Valparaiso, Langosta enana.

Literature : Original description; Webber \& Booth, 1988:89-92, figs 6,8,9.

Projasus parkeri (Stebbing, 1902)
Fig. 298
PALIN Proja 2
Jasus parkeri Stebbing, 1902, Marine_Investigations South Africa, 2:39, pl. 7.
Synonyms : Puerulus parkeri - Holthuis, 1946; Iso puerulus parkeri - Ba ha monde, 1963.
FAO Names : En - Cape jagged lobster.
Type : Type locality: "Buffalo River north 15 miles. Depth, 310 fathoms [$=567 \mathrm{~m}$]. Bottom, coral and mud", Natal, South Africa, about 33ㅇ 28ㅇ. Holotype male in SAM, no. A 993 (in alcohol; condition good).

Geographical Distribution : S.W. Africa (Valdivia Bank off Namibia); S.E. Africa (Cape Province north of East London, and Natal, South Africa); St. Paul Island; New Zealand (Fig 299). A Projasus puerulus stage taken off New South Wales, might belong here. A distribution map IS provided by Webber \& Booth (1988).

Habitat and Biology : Depth range from 370 to 841 m; bottom: mud with rocks and coral.

Size : Carapace length of S.W. African females 7.078 cm . Maximum total length for East Afric an material: 13.4 cm (males) and 15 cm (females), maximum carapace length about 6 cm for both sexes. Specimens from St Paul Island had carapace length 7 cm (in both sexes). However, the sizes of specimens from New Zealand reported upon by Webber\& Booth (1988) were distinctly larger: carapace length $6.9-8.2 \mathrm{~cm}$ (males) and 6.8-9.2 cm (females).

dorsal view
Fig. 298
(both from Webber \& Booth, 1988)

Interest to Fisherie: So far none. The species is rare, and even though lives on soft substrates, evidently is seldom caught in trawls

Local Names : SOUTH AFRICA: Parker's crayfish.
Literature : Bamard, 1950:540; Webber \& Booth, 1988:81-92, figs 1-9; Melville-Smith, 1990.

Puerulus Ortmann, 1897, American Joumal Science, (4)4:290. Replacement name forthe preoccupied PuerOrtmann, 1891; therefore with the same type species. Gender masculine. Name placed on the Official List of Generic Names in Zoology, in Opinion 519 (published in 1958).

Type Species: Panulirus angulatus Bate, 1888.
Synonyms: PuerOrtmann, 1891, Zoologische Jahrbücher,Systematik, 6: 15,37. Type species, selected by Calman, 1909, Annals Magazine Natural History, (8)3:442: Panulirus angulatus Bate, 1888. Gender masculine. An invalid junior homonym of Puer Lefebvre, 1842 (Insecta Neuroptera).

So far 4 spec ies have been recognized in this genus, all deepwater forms. One of them (P. sewelli) is the subject of a minor fishery. The others are not fished for, but are of potential interest.

Key to Species (after Bery, 1969):
la. Postorbital spine present. No teeth, but 6 postcervical and 6 intestinal tubercles on the median keel of the carapace. Tubercleson carapace low and largely obscured by pubescence (Fig. 300a). Eyes large, much broader than long P. velutinus
(Fig. 307)
1b. Postorbital spine absent. Median keel of carapace with 3 to 5 postcervical and 2 to 4 intestinal teeth. Tubercles of carapace usually distinct and not obscured by the pubescence. Eyes smaller, longer than broad

2a Three ormore teeth between the frontal homs and the cervical groove. Median keel of the carapace with 3 postcervical and two intestinal teeth (Fig. 300b). Fifth pereiopod of male not chelate \qquad P. angulatus
(fig. 301)
2b. Two teeth between frontal homs and the cervical groove (Fig. 300c, d)

3a. Median keel of carapace with 3 postc envical and 2 (occasionally 3 or 4) intestinal teeth (Fig. 300c). Fifth pereiopod of male chelate \qquad P. carinatus
(Fig. 303)
3b. Median keel of carapace with 5 postcervical and 2 or 3 intestinal teeth (Fig. 300d). Fifth pereiopod of male not chelate \qquad P. sewelli
(Fig. 305)

a. P. velutinus

c. P. carinatus

b. P. angulatus

Fig. 301
PALIN Puer 2
Panulirus angulatus Bate, 1888, Report Voyage Challenaer, Zool., 24:81, pl. 11 figs 2-4. Name placed on the Official List of Specific Names in Zoology, in Opinion 519 (published in 1958).

Synonyms: Puer angulatus - Ortmann, 189 1; Puenulus gracilis Kubo, 1939.

FAO Names: En - Banded whip lobster
Type : Type locality of P. angulatus: "Challenger" Station 219, "lat. 1ㅇ54'S. long. 146039'40" E; Eastem [read: Westem] Pacific, north of New Guinea; depth, 150 fathoms [$=274 \mathrm{~m}$]; bottom, coral mud". Holotype male in BM, no. 88.22 (in alcohol, condition fair).

Type locality of Puenulus gracilis: "off Kominato, Prov. Bôsyû [Honshu, Japan] at at depth of about 170 fathoms $[=310 \mathrm{~m}]$ ". Depository of types unknown.

Geographical Distribution: Indo-West Pacific region, from the east and south-east coast of Africa (Zanzibar, Mozambique, Natal) and the westem Indian Ocean, to Japan, the Philippines, Indonesia, New Guinea and Westem Australia (Fig. 302).

Habitat and Biology : Depth range from 274 to 536 m , on soft substrates (mud or sand).

Size : Maximum carapace length is 7.3 cm , comesponding to a total body length of about 21 cm .

Interest to Fisheries: At present the species is accidentally caught by fishermen, as is the case for the type of Puerulus gracilis, which was taken in a gill net ("naname-ami") intended for flatfishes; specimens from Natal and Mozambique were taken by commercial trawlers, but in very small numbers. Crosnier \& Jouannic (1973:13) report that experimental fishing near Madagascar produced only very few specimens. George (1983: 16) observed that off Port Hedland, Westem Australia, "the commercial prospects [of 4 species of Metanephrops and of] the whip lobster Puerulus angulatus are probably the most encouraging". Experimental fishing with different types of gear, and better knowledge of ha bitat and biology of this species are required in order to assess its real potential as a fisheries resource.

Fig. 302

Puerulus carinatus Borradaile, 1910, Iransactions Linnean Society London, (Zool.), (2)13: 261.

Synonyms: The species was synonymized with P. angulatus by Holthuis (1966:267) but incorrectly so, as shown by Bery (1969)

FAO Names: En - Red whip lobster.
Type : Type locality: " Dredged in 125 fathoms off Saya de Malha bank", westem Indian Ocean. Holotype in ZMC, lost. Neotype locality: "N.E. of Ouro Point, southem Mozambique, approx. $26050^{\prime} \mathrm{S} 33000^{\prime} \mathrm{E}$, depth 320 metres". Neotype male, selected by Bemy (1969:240), in RMNH no. D. 25535.

Geographical Distribution: Westem Indian Ocean: Zanzibar, Mozambique, Natal (South Africa), Madagascar, Saya de Malha Bank (Fig. 304).

Habitat and Biology : Known from depths between 228 and 450 m ; on soft substrates (sandy mud, or sand).

Size: Maximum total body length: 18 cm (males), and 20 cm (females); maximum carapace length: 6.4 cm (males), and 7.4 cm (females); average total body length about 15 to 16 cm .

Fig. 303

Interest to Fisheries: Very slight at present. Although evidently occuring on trawlable bottoms, very few specimens have been accidentally taken by trawlers.

Local Names: MOZAMBIQUE: Lagosta carinada.
Literature : Bery, 1969:240, text-fig. 1a,b, pl. 1 fig.1, pl. 2fig. 1, pl. 3fig. 1.

Fig. 304.

Puerulus sewelli Ramadan, 1938, Scientific Reports Lohn Murray Expedition, 5(5): 128, figs 3-5.

Synonyms: ? Phyllamphion santuccii Belloc, 1959.

FAO Names: En - Arabian whip lobster, Fr - Langouste fouet arabe; Sp Langosta de fusta arabica.

Type : Type locality of P. sewelli: "Gulf of Aden", "Gulf of Manaar and the Arabian Sea",through the lectotype selection by Holthuis (1966:271) restricted to Gulf of Aden, $13016^{\prime} 00^{\prime \prime} \mathrm{N}$,
 220 m deep, bottom green mud. Lectotype male in. BM, no. 1969:61-64 (in alcohol, condition good); paralec totypes in BM, ZSI, USNM.

Type locality of Phyllamphion santuccii: "dansle sud-est de Perim", Gulf of Aden; depository of type unknown, possibly in MOM, but not yet located there.

Geographical Distribution : Westem Indian Ocean: Somalia, Gulf of Aden, off Pakistan, southwest and south India, Gulf of Mannar (Fig. 306).

Habitat and Biology : Known from depths between 180 and 1300 m , most common between 180 and 300 m ; on a substrate of coarse sand, hard mud and shells.

Size : Maximum total body length about 20 cm , maximum carapace length about 8 cm . Average total length about 15 cm .

Interest to Fisheries: Between 1974 and 1977, the species was commercially fished off the east coast of Somalia. In the Gulf of Aden, experimental tra wling wasc a mied out with a verage catc hes of 10 to $129 \mathrm{~kg} /$ hour. Off SW. India, rich grounds were found, where the fishery for this species might become commercially rewarding. The annual sustainable yield in that area was estimated at 6700 tons. The operationswere caried out by deep-sea trawlers. The lobster tails were sold deep-frozen.

Local Names: PAKISTAN: Khada kikka (Baluchi), Kikat (Sindhi).
Literature : Fischer \& Bianchi (eds), 1984:vol. 5.

(from Ramadan 1938)
Fig. 305

Fig. 306

PALIN Puer 4
Puerulus velutinus Holthuis, 1963, Proceedings Koninkliike Nederlandse Aka demie Wetenschappen , (C)66: 55.

FAO Names : En - Velvet whip lobster.
Type : Type locality: "Siboga" Expedition Station 297 "between Roti and Timor, Lesser Sunda Islands, $1039^{\prime} \mathrm{S}$ 123040'E", depth 520 m , soft grey mud with brown upper layer. Holotype male in ZMA, no. De. 101.823, condition fair, paratypes in ZMA no De. 101.823 +101.824.

Geographical Distribution : Indo-West Pacific region: Malay Archipelago: Philippines and Indonesia (Fig. 308).

Fig. 308

Habitat and Biology : Depth range from 520 to 683 m; bottom: soft substrate of mud, sand orcoral. Ovigerousfemales have been found in April.

Size : Maximum carapace length: 6.5 cm (males), and 6.2 cm (females), corresponding with a total length of about 19 cm (males) and 18 cm (females). Ovigerous females have a carapace length of 4.7 to 6.1 cm .

Interest to Fisheries : So far none. The fact that the species occurs on soft bottoms and is sometimes collected in relatively great numbers (at "Siboga" Sta. 38 no less than 23 specimens were taken in one haul) indicates that the species might be of commercial interest.

Literature : De Man, 1916:36-42, pl. 2 fig. 5 (as P. a ngulatus); Holthuis, 1966:273-274.

(after De Man, 1916)

2.2.4

Synaxidae Bate, March 1881,Annals Magazine Natural History, (5)7:228.
Type Genus: Synaxes Bate, March 1881.
Synonyms : Araeostemidae De Man, July 1881, Notes Levden Museum, 3: 137.
Type Genus: Araeostemus De Man, July 1881.
This family consists of two genera and a total of three species.

Key to Genera :

1a. Antennula rplate with stridulating organ (Fig. 309a). Rostrum trans versely oval,wider than long. Lateral margin of carapace with distinct teeth behind anterolateral tooth (Fig. 309b). Posterior margin of pleura of abdominal somites 2 to 5 with a deep and abrupt excavation near the top, most distinct in somites 4 and 5 . Total length to 27 cm \qquad Palibythus

1b. Antennular plate without stridulating organ (Fig. 310a). Rostrum triangular, longer than wide. Lateral margin of carapace without teeth behind anterolateral tooth (Fig. 31 0b). Posterior margin of abdominal pleura evenly sinuously rounded, without a deep and sudden concavity near the top. Maximum known length 20 cm

Palinurellus
b. anterior part of carapace
(dorsal view)
(after Davie. 1990)
Palibythus Fig. 309
Palinurellus
Fig. 310

Palibythus Da vie, 1990
Palibythus Da vie, 1990, Invertebrate Taxonomy, 4:685. Gender masc uline.
Type Species : By original designation and monotypy: Palibythus magnificus Davie, 1990.
A single spec ies is known of this genus.

Palibythus magnificus Da vie, 1990
Fig. 311
SYNAX Palib 1

Palibythus magnificus Davie, 1990, Invertebrate Iaxonomy, 4:685,686, figs 1A, B, 3A,C,4A, 5A.

FAO Names: En - Musical fury lobster.
Type : Type locality of Palibythus magnific us: "off c oast of Sa vaii, Westem Samoa, trapped . . . 220-275 m". Female holotype, QM, no. W 16402, 2 female paratypes, QM, no. w 15941.

Geographical Distribution: Central Pacific: W. Samoa and Tuamotu Archipelago (Fig. 312).

Fig. 312

Habitat and Biology : Depth range between 220 and 300 m.

Size : Carapace length in females 13.1 to 13.7 cm , corresponding with a total length of about 27 cm . Males unknown.

Interest to Fisheries: So far none, as the species seems to be very rare and lives in deep water. The three females from Samoa were obta ined in a fish trap, evidently during commercial or exploratory fishing.

Literature : O riginal description.
Remarks: The spec imens from the Tua motu Isla ndsare only known from photographs,but were "almost definitely this species" (Davie, 1990:688).

(after Davie, 1990)
Fig. 311

Palinurellus Von Martens, 1878, Sitzungsberichte Gesellschaft naturforschender Freunde, Berlin, 1878: 131. Gender masculine. Name placed on the Official List of Generic Names in Zoology, in Opinion 519 (published in 1958).

Type Species: by monotypy: Palinurellus gundlachi Von Martens, 1878
Synonyms : ? Phyllamphion Reinhardt, 1849, Videnskabelige Meddelelser natumistoriske Forening Kobenhavn, 18491850:2. Type species, by monotypy: Phyllamphion elegans Reinhardt, 1849. Gender masculine.

Synaxes Bate, 1881 (March), Annals Maqazine Natural_History, (5)7:228. Type species, by monotypy: Synaxes hybridica Bate, 1881 (March). Gender feminine.

Araeostemus De Man, 1881 (J uly), Notes Leyden Museum, 3: 137. Type species, by monotypy: Araeostemus wieneckii De Man, 1881 (J uly). Gender masculine.

Two species are recognized in this genus, neither of commerc ial importance. If Phyllamphion is ba sed on larvae of the present genus, which, in the light of recent investigations seems most likely, the generic na me Phyllamphion is the oldest for the genus and therefore has to replace Palinurellus.

The two spec ies are very similar. Some of the alleged differences proved to be due to abnormalities (e.g., the shape of the rostrum in the holotype of \mathbf{P}. wieneckii), inc orrect observations, or inc orrect interpretation of the variability of characters. As both species are rather rare the study of larger series of specimens is nec essa ry to cla rify their ta xonomic status.

Key to Species :

1a. Westem Atlantic .. P. gundlachi (Fig. 313)
1b. Indo-West Pacific . P. wieneckii (Fig. 315)

Palinurellus gundlachi Von Martens, 1878
Fig. 313

SYNAX Pali 1

Palinurellus gundlachi Van Martens, 1878, Sitzungsberichte Gesellschaft naturforschender Freunde, Berlin, 1878: 131. Name placed on the Offical List of Specific Names in Zoology, in Opinion 519 (published in 1958).

Synonyms : Synaxes hybridica Bate, 1881; ? Phyllamphion reinhardti Belloc, 1959.
FAO Names: En - Caribbean furry lobster; Fr-Cacahouète cara'ibe; Sp - Langostita del Caribe
Type : Type locality of P. gundlachi:"an der Küste von Cuba, bei C amaric oia östlich von Matanzas". Holotype female in ZMB no. 5833, in a lc ohol, condition excellent.

Type locality of Synaxes hybridica:"West Indies". Holotype female in NMI, dry but in reasonable condition (don. Sir F.L McClintok).

Type locality of Phyllamphion reinhardti: "entre la Pointe orientale de la Guadeloupe (Pointe des Châteaux) et le petit archipel situé dansle sud-est connu sous le nom de Petite-Terre". Holotype larva in MOM, at present not located.

Geographical Distribution : Westem Atlantic: Bermuda, Bahama islands, southem Florida, Yucatán, Caribbean Arc (Cuba to Barbados), Curaçao, N.E. Brazil (Pemambuco) (Fig. 314).

Habitat and Biology : Depth range from 1.5 to 35 m ; found in rather inaccessible placesamong rock and coral. Ratherscarce.

Size : Maximum total lenght about 15 cm .
Interest to Fisheries: C augth by hand, and occasionally in traps, but of no interest to commercial fisheries.

Local Names : MARTINIQUE: Vraie langouste de metropole; USA: Copper lobster (Florida).

Literature : Fischer (ed.), 1978: vol. 6.
Remarks : There appears to be little doubt that the larvae described as Phyllamphion belong to the present genus. Should this be confirmed, the corect name of the present species must be Phyllamphion gundlachi (Von Martens, 1878).

Fig. 313

Fig. 314

Araeostemus wieneckii De Man, 1881, NotesLeyden Museum, 3:131.

Synonyms: ? Cancer cassideus Forster, 1782;. ? Phyllamphion elegans Reinhardt, 1849; Palinurellus gundlachi wieneckii. Gruvel, 1911.

FAO Names : En - Indo-Pacific fury lobster, Fr-Cacahouete indopacifique; Sp - Langosta del Indo-Pacifico.

Type : Type locality of Cancer. cassideus: "Bewohnt das Indische Meer". "Habitat in Mari Indico" "Zwischen dem Vorgeburge der guten Hoffnung und Indien im grossen Ozean, dreihundert grosse Seemeilen weit von irgend einem Lande". Depository of types unknown.

Type locality ,of Phyllamphion elegans: "har hjemme i det chinesiske Hav, hvor jeg dog kun en Gang har erholdt 3 Exemplarer, som fangedes met Slaebenaettet i nogle Miles Afstand fra Öen Luçon at Par Timer efter Solnedgang (d. 11. J uni 1846)" (hasits home in the Chinese Sea, where I once obtained 3 specimenscaught with a drag net at several miles off the isand of Luzon, a few hours after sunset on 11 J une 1846). Depository of syntypes unknown.

Type loc a lity of Araeostemus wieneckii: "Rat-Island near Benkuler (Sumatra)" (= Pulau Tikus, S.W. coast of Sumatra, Indonesia. about 3050'S 102" 11 'E) Holotype male in RMNH no. D 965

Geographical Distribution: Indo-West Pacific region: Arabian coast of Red Sea, East Africa (larvae), South Africa (Natal, juvenile), westem Indian Ocean (larvae), Mauritius, Tha iland, (Phuket Island), Japan (Ryukyu Islands), Philippines (larvae), Indonesia (Sumatra, Bomeo), New Guinea (Kiriwina Islands), Solomon Islands (Savo Id.), Caroline Islands (Ifaluk), New Caledonia (larvae and juveniles), New Hebrides (larvae), Hawaiian Islands (Oahu, Hawaii, Maui), Tua motu Islands (larvae and juveniles) (Fig. 316).

Habitatand Biology : In shallow water (from 9 to 27 m) on coral

planktonic

Size : Maximum total body length about 20 cm , maximum carapace length about 8 cm . Body length usually around $10-14 \mathrm{~cm}$.

Interest to Fisheries : Very slight at present: the species is taken only occasionally, being too rare for a commercial Fishery. It is taken by hand and sometimes gets entangled in gill nets. It has caught the attention of the tropical marine aqua rium trade, but is too infrequently taken to be of great economic value. The only specimen so far reported from Thailand, was offered for sale in a fancy glass case as a tounist souvenir.

Local Names : HAWAll: Mole lobster; MOZAMBIQUE: Lagosta peluda; THAILAND: Kung boran.

Literature : Fischer \& Bianchi (eds), 1984:vol. 5.

Remarks: There appears to be little doubt that the larvae described asCancercassideus a nd Phyllamphion elegans are those of the present species. If this is confimed, the name of the species should change to Phyllamphion cassideus (Forster, 1782).
2.2.5

FAMILY SCYШARIDAE La treille, 1825
SCYL
Scyllarides La treille, 1825, Eamilles Naturelles du Reqne Animal: 278. Name placed on the Offic ia I List of Family Names in Zoology, in Opinion 519 (published in 1958).

The family Scyllaridae includes 7 recent genera, which are distributed in 4 subfamilies: Arctidinae, Ibacinae, Scyllarinae, and Theninae. Except for most representatives of Scyllarus, which are of no interest to fisheries, all species of Scyllaridae are treated in this catalogue.

Key to Genera :

1a. Exopods of all maxillipeds with a multiartic ulate flagellum (Fig. 317)

2a. Carapace strongly depressed, with a deep cervical incision in the lateral margin. Mandible with a simple or two-segmented palp (subfamily lbacinae)

3a. Orbits entirely closed, placed behind the anterior margin of the carapace. Cenvical incision closed. Carapace with a posteromedian tooth. Fifth abdominal somite in the adults without posteromedian spine. Body smooth and tuberculate. East Pacific (Fig. 318) \qquad Evibacus

3b. Orbits anteriorly open, placed on the anterior margin of the carapace. Cenvical incision usually open, at least at the base. Carapace without posteromedian tooth (Fig. 319, 320). Atlantic and Indo-West Pacific

Evibacus (dorsal view) (from Holthuis, 1985)
Fig. 318

4a. Dorsal surface of the body smooth and punctate, not tuberculate, sometimes pubescent. Carapace with postrostral and branchial carinae distinct. Distance between the orbits as long as or shorter than the distance separating each orbit from the nearest a nterolateral angle. Fifth abdominal somite with postero-median spine. Mandibular palp consisting of a single segment (Fig. 319) lbac us

4b. Dorsal surface of the body coarsely squamose-tuberculate, without postrostral or branchial carinae. Distance between the orbits more than twice as long as the distance between each orbit and the anterolateral angle of the carapace. Fifth abdominal somite without posteromedian spine. Mandibular palp two-segmented (Fig. 320) Parribacus

2b. Carapace rather highly vaulted, with a small, shallow cervical incision, which may be lacking altogether. Mandible with three-segmented palp (subfamily Arctidinae)

5a. First abdominal somite without a transverse groove dorsally; it is smooth there and shows a pattem of coloured spots. Carapace without postorbital spine. Apart from a median ridge, the abdomen shows no dorsal sculpturation (Fig. 321)

Scyllarides
5b. First abdominal somite with a distinct transverse groove dorsally. Carapace with postorbital spine. Abdominal somites with a distinct sculpturation on either side of the median line (Fig. 322) \qquad Arctides

Scyllarides (dorsal view)
Fig. 321

Ibacus (dorsal view) (from Holthuis.1985)
Fig. 319

Pamibacus (dorsal view)
Fig. 320

Fig. 322

1b. Exopod of third and first maxilliped without a flagellum; the flagellum of the second maxilliped transformed to a single laminate segment

6a. Orbits on the anterolateral angle of the carapace. Body strongly depressed. Lateral margin of the carapace with only the cervical incision. 'No teeth on the lateral margin of the carapace, apart from the anterolateral and postcervical(Fig. 323). Fifth leg of female without a chela (subfa mily Theninae) \qquad Thenus

6b Orbits on the anterior margin of the carapace, some distance from the anterolateral angle. Body not depressed, but rather high and vaulted. Lateral margin of the carapace with both cervical and postcervical incisions, neither of which is very deep. Lateral margin of the carapace with numerous teeth or squa miform tubercles. Fifth leg of female with a chela (Fig. 324) (subfa mily Sc yllarinae) \qquad Scyllarus

SUbFAMILY ARCTIDINAE Holthuis, 1985
Arctidinae Holthuis, 1985, Zoologische Verhandelingen, Leiden , 218: 10,11
The subfamily Arctidinae contains two genera, Arctides a nd Scyllarides. The species of this subfa mily are edible, but are caught only incidentally.

Arctides Holthuis, 1960

SCYL Arct
Arctides Holthuis, 1960, Proceedings Biological Society Washinaton , 73: 154. Gender ma sc uline.
Type Species: by original designation: Scyllarus guineensis Spengler, 1799.
All three species of this genus are treated here. There is no great interest for any of them, asfarasfishery is concemed.

Key to Species :

1a. Sculpturation of abdomen not very distinct, partly obscured by hairs and tubercles, hairy grooves betweeen naked portions wide. Median figures elongate and na row, usually much elevated above surface of somites. Naked area along posterior margin of somite 2 to 5 occupying about $1 / 3$ of the length of the posterior half of the somite (Fig. 325a). Legs more robust, propodus of second leg about three times as long as wide. No coloured bands on the legs. Dactylus and propodus of first and second legs purplish with small white spots. Larger species, carapace length up to more than 10 cm . Australasia
A. antipodarum
(Fig. 327)
1b. Sculpturation of abdomen very distinct, the naked elevated parts distinct and separated by narrow hairy grooves. The median figures with broad lateral lobes. The naked area along posterior margin of somites 2 to 5 occupying almost half the length of the somites (Fig. 325b). Legs sender, propodus of second leg about 5 to 6 times as long as wide. Propodus, cappus and merus of second to fifth legseach with a coloured band. Smaller species, carapace length less than 7 cm .

2a. Behind gastric spine of carapace two doubletopped spinules present. Denticles on outer margin of last segment of antenna smaller (Fig. 326a). Atlantic
A. guineensis
(Fig. 329)
2b Behind gastric spine a longitudinal row of three single spinules. Dentic les on outer margin of last segment of antenna larger (Fig. 326b). Indo-West Pacific region \qquad A. regalis
(Fig. 331)

a. A. guineensis

a. A. antipodarum

b. A. guineensis
abdomen (dorsal view)
Fig. 325

Arctides antipodarum Holthuis, 1960, Proceedings Biological Society Washinaton, 73: 154.

FAO Names: En - Rough Spanish lobster.
Type : Type locality: "Off Malabar [= 27응́S 152으'́E], New South Wales, Australia, depth 80 fathoms [= 146 m]". Holotype male in RMNH, No. D. 10648.

Geographical Distribution : East, coast of Australia (New South Wales: Malabar, Port Stephens, Newcastle, Port Jackson), New Zealand (North Island: Hauraki Gulf) (Fig. 328). Michel (1971: $467,471,472$) mentioned larvae from the New Caledonia-New Hebrides area and from the Tuamotu Archipelago that he assigned with some doubt to the present species. It is possible, however, that they actually belong to \mathbf{A}. regalis.

Fig. 328

Fig. 327

Habitatand Biology : The species has been found in depths from 5 to 146 m , usually between 5 and 30 m ; it seems to prefer clear water and rocky bottoms

Size : Maximum total length about 30 cm , average carapace length 9 to 10 cm .
Interest to Fisheries: The spec ies is sometimes caught in lobster traps set forspecies of Jasus, a nd also is taken by hand by divers.' The number of spec imens caught, however, is so small that the species is of hardly a ny commercial interest notwithstanding that it is edible and of a reasonable size.

Local Names: AUSTRALA: Red flapjack, Squat crayfish, Southem shovel-nosed cray, South-eastem shovel-nosed crayfish, South-eastem squat crayfish; NEW ZFALAND: Spanish lobster.

Arctides guineensis(Spengler, 1799)
Scyllarus guineensis Spengler, 1799, Kongelige Danske Videnskabers Selskab Sknifter (n.ser.) 5:333, pl. 1.

Synonyms: Scyllarus sculptus Latreille, 1818; Scyllarides sculptus bermudensis Verill, 1922; Scyllarides sculptus - C hace, 1937; Sc yllarides guineensis - Holthuis, 1946.

FAO Names: En - Small Spa nish lobster.
Type : Type locality of S. guineensis: "Dens Faedreneland er Kysten af Guinea" (= Its fatherland is the coast of Guinea, West Africa). As the species never, before or since, has been reported from West Africa and it is rather frequently met with in the West Indies, there is some doubt about the correctness of the type locality indic ation. Holotype male in UZM, now lost (not located in 1989).

Type locality of S. sculptus: none of the early public ations dealing with the type gives any indic ation of its locality. The dry holotype in MP (no. Pa. 964, in good condition); bears the inscription "Méditerranée" which most likely is incorrect.

Type loc ality of S. sculptus bermudensis: "Bermuda"; syntypes in YPM, no. 814 (not located in 1989), and USNM (no. 21608).

Geographical Distribution : Westem Atlantic: Bermuda, Florida, Ba hama Islands, Martinique. Larvae have been collected in the "Bermuda triangle" area (Bermuda, the coast of USA from N. Carolina to S. Florida, the Bahamas and noth of Puerto Rico) (Fig. 330).

Habitat and Biology : The species is found on the outer reefs. The larvae are planktonic.

Size : Total body length up to about 20 cm , carapace length about4 to 6 cm .

Interest to Fisheries: The species is too rare to be of much economic interest. Most specimens known so far have been taken in lobster pots set for other species

Local Names : BERMUDA: Small Spanish lobster.
Literature : Vemill, 1922:30-31, pl. 7 fig. 1. for larval development see Robertson, 1969: 143-151.

Fig. 329

Fig. 330

Arctides regalis Holthuis, 1963, Proceedings Koninkliike Nederlandse Akademie Wetenschappen, (C) 66:58.

FAO Names: En - Royal Spanish lobster.
Type : Type locality:"reef near Coconut Island, Kaneohe Bay, Oahu, Hawaii". Holotype male in RMNH, no D. 17700.

Geographical Distribution : Indo-West Pacific region: westem Indian Ocean (Maunitius, Reunion), New Caledonia, Hawaiian Islands, Easter Island. J ohnson (1971:98, fig. 88-92) desc ribed la rvae from east of J ohnston Isla nd. The larvae reported by Michel (1971:467) from the New Caledonia-New Hebrides area and from the Tua motu Islands as A. antipodarum, might well belong to the present species (Fig. 332).

Habitat and Biology : Depth range from 5 to 50 m ; it is found on the outer edges of coral reefs. The a nimals are noctumal a nd hide in the daytime in cavities in the rocks. They seem to be scavengers and feed on detritus.

Size : Total body length up to 17 cm ; carapace length about 1.5 to 6 cm .

Interest to Fisheries: Minor, as the species is so rare and diffic ult to obtain. Therefore it is of little importance as food. But the aqua rium trade has disc overed that "when imported, their bright colours (for a slipper lobster) and unusual form make them popular and expensive novelties" (1984, Tropic al Fish Hobbyist, 32(6):6).

Local Names: HAWAII: Royal slipper lobster, King's Hawaiian lobster, Shovel-nosed lobster, Spa nish lobster, Ula-papapa.

Literature : Tinker, 1965:46, pl. 11.

Sc yllarides G ill, 1898
Scyllarides Gill, 1898, Science, New York (n.ser.) 7:98. Gendermasculine. Name placed on the Official List of Generic Names in Zoology, in Opinion 293 (published in 1954).

Type Species: by original designation: Scyllarus aequinoctialis Lund, 1793
Synonyms: Pseudibacus Guérin-Méneville, 1855, Revue Magasin Zoologie, (2)7:137. Type species, by monotypy: Pseudibacus veranyi Guerin-Meneville, 1855 (= junior subjective synonym of Scyllarides latus (Latr.)). Gender masculine. Name suppressed by the Intemational Commission on Zoologic al Nomenclature under its plenary power in Opinion 293 (published in 1954) and placed on the Official Index of Rejected and Invalid Names in Zoology.

Scyllaridia Bell, 1857, Monograph of the fossil malacostracous Crustacea of Great Britain, 1:35. Type species, by monotypy: Scyllaridia koenigi Bell, 1857. Gender feminine. Name suppressed by the Intemational Commission on Zoological Nomenclature under its plenary power in Opinion 293 (published in 1954) and placed on the Official Index of Rejected and Invalid Names in Zoology.

At present 13 spec ies of the genus Scyllarides are known. All are treated in the present catalogue. They attain a large. size and are edible.

Key to Species :

1a. Outline of the posteriormargin of the pleura of the second abdominal somite straight or evenly convex (Fig. 333)

2a Lateral margin of carapace with distinct cervic al and postcervical incisions. Anterior margin of the carapace between the eye and the a nterolateral angle evenly conc ave (Fig. 334). South Afric a
S. elisabethae
(Fig. 357)
2b Lateral margin of carapace with a cenvical incision only. Anterior margin of carapace between the eye and the anterolateral angle convex or sinuous

3a. Inner orbital margin evenly tuberculate with 3 or 4 rounded tubercles. Lobe of inner orbital angle not touching the outer a ngle. Grooves of carapace rather indistinct. Gastric tooth not distinguishable from the other tubercles of the area. First abdominal somite with only two red spots (the laterals), the median spot being absent (Fig. 335a). Median caninae on abdominal somites hardly noticeable. Western Atlantic S. brasiliensis
(Fig. 351)

lateral view ofpleuron of 2 nd abdominal somite S. brasiliensis
(from Williams, 1986)
Fig. 333

S. elisabethae

Fig. 334

3b. Inner orbital margin with two strong, pointed teeth, which are larger than any of the tubercles on that margin. Inner orbital angle with a toothed lobe which in adults practic ally touc hes the outer orbital angle and so closes the orbit. Grooves on the carapace distinct. First abdominal somite with three red spots, one rather ill-defined in the middle, and two more distinct laterally; seldom the three are fused to a single broad spot (Fig. 335b). Median carinae present on abdominal somites. Indo-West Pacific
S. squammosus
(Fig. 369)
1b. Outline of the posterior margin of the pleura of the second abdominal somite concave in the middle through the presence of a strong tooth (Fig. 336)

4a. Cappus of first pereiopod with a large, swollen hump in the upper basal part; a very shallow groove extends over this hump (Fig. 337). Westem Atlantic

5a. Abdominal somites 2 to 4 with a very distinct broad elevated median carina, which is sharply set off from the rest of the surface. First abdominal somite with three distinct red spots. Tuberculation of carapace and abdomen coarse (Fig. 338a). Legs, even in specimens preserved for a long time in alcohol, with conspicuous sharply delimited red bandson propodus, merus and capuss \qquad S. nodifer
(Fig. 365)

lateral view of pleuron of 2 nd abdominal somite S. deceptor
(from Willia ms, 1986)

carpus of first pereiopod
S. aequinoctialis

Fig. 337

a. S. brasiliensis

b. S. squammosus
carapace and first abdominal somite (dorsal view) Fig. 335

5b. Abdominal somites without a broad elevated median ridge, although there may be an indication of a median longitudinal line (Figs 338b,c,d). Tubercles of carapace and abdomen low, hairs inconspicuous

6a. Grooves on the carapace very inconspic uous Pregastric and gastric teeth hardly if at all set off from the surface of the carapace. Cervical incision of the lateral margin hardly at all indic ated. No indic ation at all of a median carina on the abdominal somites. Second abdominal stemite of male evenly dentic ulate, without a deeper median incision. First abdominal somite dorsally in the middle with a well defined horseshoe-shaped spot, consisting of two rounded submedian spots, which are connected anteriorly (Fig. 338b) \qquad S. aequinoctialis
(Fig. 347)
6b. Grooves on the carapace distinct. Pregastric and gastric teeth welldefined. Cervical incision in lateral margin distinct and carapace constricted there. A faint elevated median line visible on abdominal somites 2 to 5 . The stemite of the second abdominal somite in the male serrate, with the median incision usually deeper than the rest. No horseshoe-shaped coloured figure on the first abdominal somite (338c,d)

7a. First abdominal somite with a circular central spot and two irregular lateral spots. The cervical incision is na mow and distinct though short (Fig. 338c). The epistome bears two tubercles between the inner teeth \qquad S. delfosi
(Fig. 355)
7b. First abdominal somite without a median spot but with two very distinct and sharply defined lateral spots. The cervic al incision is wide and not very distinct (Fig. 338d). The epistome shows no tubercles or teeth between the two inner teeth \qquad S. deceptor
(Fig. 353)
4b. Cappus offirst pereiopod with a distinct dorsal groove, and without a conspicuous basal swelling (Fig. 339). Eastem Atlantic, Indo-Pacific

a. S. nodifer

c. S. delfosi

b. S. aequinoctialis

d. S. deceptor carapace and anterior abdominal somites Fig. 338 (dorsal view)

carpus of first pereiopod
S. latus

Fig. 339

8a. Fourth abdominal somite in adult specimens produced into a very strong median hump which is about twice as high as those on the second and third somite (Fig. 340a). First abdominal somite with 2 distinct but rather small lateral spots and a large, less dark and iregular median spot (Fig. 340b)
S. haanii
(Fig. 359)
8b. Fourth abdominal somite of adult specimens not conspic uously higher than the third (fig. 341)

9a. Pleura of second abdominal somite ending in a sham somewhat posteriorly directed point (Fig 341). Eastem Atlantic

10a. Tubercles on the carapace high and conspic uous. Dorsal carinae of abdomen distinct and consisting of a row of pointed or blunt tubercles. Anterolateral tooth of fourth antennal segment hooked and twisted up out of the plane of the segment. Central spot on the first abdominal somite circular, separated by a na row yellowish ning like zone which sumounds the entire spot from the lateral spots, which are broadly triangular with the inner margin concave (Fig. 342a)
S. latus
(Fig. 363)
10b. Tubercleson the carapace low and blunt, entire sculpturation less pronounced and shap than in S. latus. Anterolateral tooth of fourth antennal segment although sometimes somewhat hooked, not twisted up. The first abdominal somite with three circular or irregular widely separated red spots (Fig. 342b)
S. herklotsii
(Fig. 361)

9b. Outline of pleura of second abdominal somite broadly rounded (Fig. 343). Indo-Pa cific

11a. Gastric and pregastric teeth hardly notic eable, forming only fain-\& broad elevations. No median carinae on abdomen. First somite of abdomen with two distinct lateral spots, between which numerous small spots, which in the median area are somewhat fused (Fig. 344). Eastem Pacific \qquad S. astori (Fig. 349)

11 b. Gastric and pregastric teeth distinct, well set off from the rest of the carapace. Abdominal somites 2 to 4 with median carinae (Fig. 343). First abdominal somite with 3 distinct spots, the central sometimes of iregular sha pe (Figs 345,346)

12a. Cervical groove wide and deep in its median area, anterior margin of cardiac knob thereby high. Pregastric tooth with a single tip. Median ridges on the second to fourth abdominal somites more in the shape of humps, gradually merging with the rest of the surface. Central spot on first abdominal somite very indistinct, the laterals distinct (Fig. 345) (Ea ster Island) \qquad S. roggeveeni
(Fig. 367)
12b. Cervic al groove na row and shallow in its median area; the cardiac knob thereby very little pronounced. Pregastric tooth distinctly twotopped. Median ridges on second to fourth abdominal somite sharp and distinctly set off from the rest of the surface. Central spot on first abdominal somite sha ply defined, as distinct as the laterals (Fig. 346) S. tridac nophaga
(Fig. 371)

S. roggeveeni
carapace and first abdominal somite (dorsal view)

abdomen (lateral view)
S. roggeveeni

Fig. 343

S. astori (dorsal view)

Fig. 344
carapace and first abdominal somite

S. tridac nophaga
carapace and first abdominal somite (dorsal view)

Fig. 346

Sc yllarides aequinoctialis (Lund, 1793)

Scyllarus aequinoctialis Lund, 1793, Kongelige Danske Videnskabers Selskab Sknifter, (n.ser.) 2(2):21. Name placed on Official List of Specific Names in Zoology, in Opinion 293 (published in 1954).

Synonyms: Pseudibacus gerstaec keni Pfeffer, 1881.
FAO Names: En - Spanish slipper lobster, $\mathbf{F r}$ - Cigale marie-carogne; Sp-Cigarra español.

Type : Type locality of S. aequinoctialis: "seldom seen in Jamaica, though a native of those seas" (Browne, 1765:424). The male specimen figured by Browne (pl. 41 fig. 1) is chosen as the lectoptype of Lund's species; its present whereabouts are unknown.

Typelocality of Paribacus gerstaeckeri: "Atlantischer Ocean"Type material in ZMH.

Geographical Distribution : Westem Atlantic, from S. C arolina (USA) and Bermuda via the West Indiesto S. Brazil (São Paulo State), including the Gulf of Mexico and the Caribbean Sea (Fig. 348).

Habitat and Biology : Depth range from 0.6 to 180 m , usually between 0.6 and 64 m ; on a substrate of sand or rocks, often on outer reefs. The animals are sluggish and noctumal and feed on (dead) a nimals, detritus, etc. They bury themselves in the sand.

Size : Maximum total body length over 30 cm ; carapace length up to about 12 cm .

Interest to Fisheries: The species is used as food, but is not of great economic importance; it is eaten mostly by the poorer people. Verill (1922:23) remarked that it"is not commonly sold in the markets" at Bermuda, and "is rarely used as food there" Morice (1958:86) remarked that with Panulirus argus this species is the most common lobster in the market of Fort-de-France, Martinique. In Belize, the species"though occasionally caught, is never prepared for export and therefore is of no significance in the fishery" (Allsopp, 1968). Almost throughout its range \mathbf{S}. aeguinoctialis is eaten, but evidently not very highly esteemed. Its meat also serves as bait in lobsterpots. The animals a re mostly taken in trapsset forotherspecies, but also with fixed gill nets and seines. It is sold fresh.

Local Names: BERMUDA: Locust lobster, French lobster, Long-tailed crab, Sea crayfish, Sea crawfish, Slipper lobster, Stump; BRAZL: Lagostim, Cigara, Fradinho, Lagosta sapateira; CUBA: Langosta de arena, Langosta española, Langostina; GRENADA: Lady crab; J AMAICA: Mother lobster, Turtle lobster; MARTINIQUE: Maman homard, Marie-carogne, Mere homard, Savate; NETHERLANDS ANTLES: Beerkreeft, Schoenkreeft, Zandkreeft (Dutch; Aruba, Bonaire, Curaçao), Kreef zapatu (Papiamentu; Aruba, Bonaire, Curaçao); 5 T. THOMAS: Turtle lobster.

Fig. 347
SCYL ScyId 2

Fig. 347

Fig. 348

Literature : Fischer (ed.), 1978: vol. 6; Williams, 1986:29, figs 62 (61 and 62 have been interchanged), 72,80 l-m.

Scyllarides astori Holthuis, 1960
Fig. 349
SCYL ScyId 7
Scyllarides astori Holthuis, 1960, Holthuis, Proceedings Biological Society Washinaton, 73; 152.

FAO Names: En - Galapagos slipper lobster; Fr - Cigale de Galapagos; Sp - Cigamo de Galapagos.

Type : Type locality: "Post Office Bay, Charles Island, Galapagos Archipelago". Holotype male in USNM, no. 104557.

Geographical Distribution : Eastem Pacific: Gulf of Califomia, Mexico; Galápa gosArchipelago, Ecuador. A larva probably of thisspec ies, at 200 miles N. of Clipperton Island (Fig. 350).

larval record (probably of this species) Fig. 350

Habitat and Biology : In shallow water, around 10 m ; hardly any accurate depths are known. Probably on rocky substrate. Noctumal.

Size : Total length up to about 25 cm ; carapace length from 8 to 12 cm .

(from Holthuis \& Loesch, 1967)

Interest to Fisheries: There is no special fishery for this species, but a nimals are occasionally caught in traps and trammel netsfor spiny lobsters orother species. When caught the animals are used forfood. Also the'aquarium trade showed interest in this species, but it is caught too infrequently to be of economic importance.

Local Names: ECUADOR: Langostino (Galapagos islands)
Literature :. Holthuis \& Loesch, 1967:216, pl. 7.

Scyllarides brasiliensis Rathbun, 1906, Proceedings Biological Society Washinston , 19: 113.

FAO Names: En - Brazilian slipper lobster.
Type : Type locality: "Bahia, Brazil". Holotype female in USNM, no. 21612

Geographical Distribution : Westem Atlantic region: Brazil (from Maranhão State to Bahia State). There is also a record from Dominica in the West Indies (Fig. 352).

Fig. 352

Habitat and Biology : Depth range from 22 to 38 m . Very little is known about this species.

Size : Total body length to about 20 cm ; carapace lengths 7.5 to 10 c m.

Fig. 351
Interest to Fisheries: Fa usto Filho et al. (1966) remarked that the species is of "alguma importancia econdmica" in northem Brazil.

Local Names : BRAZL: Sapateira, Lagosta japonesa, Lagosta sapateira.
literature : Original description; Williams, 1986:27, figs 66,80 h-i.

Siyllarides deceptor Holthuis, 1963, Proceedings Koninklijke Nederlandse Akademie Weten-schappen, (C) 66:57.

Synonyms: The species ha s been confused with S. brasiliensis by some authors.

FAO Names: En - Hooded slipper lobster.
Type : Type locality: "Ubatuba, São Paulo State, Brazil" Holotype female in RMNH, no. D. 15451.

Geographical Distribution : Westem Atlantic region: from southem Brazil (States of Rio de Janeiro, São Paulo and Santa Catarina) south to northem Argentina (Buenos Aires Province), 23.5- 39ㅇㅇ (Fig. 354).

Fig. 354

Fig. 353

Habitat and Biology : Found in depth between 45 and 200 m . Little is known about the substrate on which the a nimals live, except for one record from a sandy bottom.

Size : Total body length about 13 to 27 cm ; carapace length 5 to 12 cm .
Interest to Fisheries: The species is oc casionally caught in trawls, but it is not specially fished for and evidently is too rare to become of economic interest.

Local Names: BRAZL Lagosta, Lagostim.
Literature : Ramos, 1951: 125, pls 1,2 (as S. brasiliensis); Williams, 1986:27, fig. 67.

Scyllarides delfosi Holthuis, 1960, Proceedings Biological Society Washinaton, 73: 153.

FAO Names : En - Three-sp ot slipper lobster.
Type : Type locality: "off the Suriname coast (6041 ' N, $55026.5^{\prime} \mathrm{W}$, depth 23 fathoms [$=42 \mathrm{~m}$], bottom mud, shells, and coral)". Holotype male in RMNH, no. D 12735.

Geographical Distribution : Westem Atlantic region: north coast of South America from Venezuela (Sucre State) to Brazil (Ceará State) (Fig. 356).

Fig. 356

Habitat and Biology : Reported from depths between 42 and 80 m , substrate mud.

Size : Total body length to 25 cm ; carapace lengths of 6 to 9 cm have been reported.

Fig. 355
Interest to Fisheries : Minor. The species is sometimes taken in trawls and dredges, but not in commercially interesting quantities. Fausto Filho $(1968: 27,28)$ classed this species as of "insignific a nte valor comercial". Opresko et al. (1973:38) remarked that "the species probably could be taken commercially by either trawl or trap if suffic ient populations are found".

Local Names : BRAZL: Lagosta japonesa, Lagosta sapateira, Sapata.
Literature : Opresko et al., 1973:38, fig. 14.

Scyllarides elisabethae (Ortmann, 1894)
Scyllarides elisabethae (Ortma nn , 1894), Denkschiften medicinisch-naturwissenschaftlichen Gesellschaft, Jena, 8:20, pl. 2 fig. 3.

FAO Names : En - Cape slipper lobster, Fr - Cigale du Cap; Sp-Cigarra del Cabo.

Type : Type locality: "Port Elisabeth" (= Port Elizabeth, Cape Province, South Africa). Holotype male in MZS, preserved dry, condition poor.

Geographical Distribution : Indo-West Pacific region: only known from SE. Africa (from Inhambane, Mozambique to Cape Agulhas, Cape Province, South Africa; about from 24° to $34050^{\prime} \mathrm{S}$) (Fig. 358).

Fig. 358

Fig. 357
SCYL ScyId 5

Fig. 357
Habitat and Biology : Depth range from 37 to 380 m (mostly less than 100 m) on a substrate of fine sediments, mud or fine sand. The animals seem to dig into the mud.

Size : Maximum total body length over 20 cm ; carapace length to 9 cm .
Interest to Fisheries: Minor. The species is occasionally taken by trawlers, but there is no special fishery for it, although Von Bonde (1930:5) remarked that it "occurs off the coast of Natal in such numbers as to be of economic importance".

Local Names : MOZAMBIQUE: Cava-cava do Cabo; SOUTH AFRICA: Port Elizabeth crayfish, Digging lobster, Port Eliza beth crawfish, Port Eliza beth rock lobster.

Literature : Fisc her \& Bianchi (eds), 1984:vol. 5; Willia ms, 1986:29, figs 73,80 n-o.

Scyllarrdes haanii (De Ha an 1841)
Scyllarides haanii De Haan 1841, in P.F. von Siebold, Fauna Japonica, (Crust.), (5): 152.

FAO Names : En - Aesop slipper lobster.
Type : Type locality: "J aponia", probably in the a rea of Nagasaki, Kyushu. Lectotype male in RMNH, no. D 5520.

lateral view of abdomen

Geographical Distribution : Indo-West Pacific region: from the Red Sea and the westem Indian Ocean (Mauritius) to Japan (Sagami Bay and south), Korea, China (southeast coast and Taiwan Island), Indonesia, Australia, and Hawaii (Fig. 360).

Habitat and Biology : Known from depths between 10 and 135 m . Probably on rocky bottom.

Size : Total body length up to 50 cm . The carapace lengths reported vary between 4.5 and 17 cm .

Interest to Fisheries: The species as a rule is only incidentally caught, but it is used for food and offered for sale fresh at local markets (e.g., in Korea, Japan and Hawaii). It is usually taken with lobster pots.

Local Names: JAPAN: Kobu semi-ebi.

Fig. 359

Fig. 359

Fig. 360

Scyllarides herklotsii (Herklots, 1851)
Scyllarus herklotsii Herklots, 1851, Additamenta ad faunam carcinologicam Africae occidentalis: 14, pl. 2 figs. 14, 15.

Synonyms: Formenly sometimes identified with Scyllarides latus.

FAO Names : En - Red slipper lobster; Fr - Cigale rouge; Sp-Cigarra roja.

Type : Type locality: "prope Boutiy" [= Butri, Ghana, $4050^{\prime} \mathrm{N} 1{ }^{\circ} 56^{\prime} \mathrm{W}$]. Lectotype male in RMNH, no. D. 973.

Geographical Distribution : Eastem Central Atlantic region: West Africa from northem Senegal (St. Louis, 160N) to southem Angola (Ponta do Pinda, 1 5045'S) (Fig. 362).

Fig. 362

Fig. 361
SCYL Scyld 4

Fig. 361

Habitat and Biology : Found mostly in depths between 5 and 70 m , but also reported from deeper waters (beyond 200 m); on substrates of sand and rock, sometimes on mud.

Size : Maximum total body length about 32 cm , usually not more than 25 cm .
Interest to Fisheries : Minor. The species is fished for food everywhere it occurs; it usually is caught in vertical nets, sometimes in trawls. There is no special fishery for it, it is taken only accidentally. It is marketed fresh on the local markets.

Local Names: ANG OLA: Cigarra do mar, Lagosta da pedra; GHANA: Po-sesaw (Fante language), Red squat lobster.
Literature : Fischer, Bianchi \& Scott (eds), 1981 :vol. 5; Williams, 1986:28, figs 68,80 j-k.

Sc yllarides latus (La treille, 1802)
Scyllarus latus La treille, 1802, Histoire naturelle, générale et particulière, des Crustacés et des Insectes, 6: 182

Synonyms: Pseudibacus veranyi Guérin Méneville, 1855.
FAO Names : En - Mediterranean slipper lobster; Fr Grandecigale; Sp-Cigarra.
type : Type locality of \mathbf{S}. latus: "Méditemanée". As lectotype is now chosen the specimen figured by C. Gesner (1558, Historia Animalium liber IIII:1097); this specimen wasdrawn by Comelius Sittardus in Rome and evidently came from the coast near Rome, as the figure wasmade aftera fresh specimen. The type is lost, but the original figure by C. Sittardus, published by Gesner is now in RMNH (in collection L.B. Holthuis).

Type locality of Pseudibacus veranyi: "aux environs de Nice", S. France. Whereabouts of type unknown.

Geographical Distribution : Mediterranean and eastem Atlantic from the coast of Portugal (near Lisbon) to Senegal, Madeira, the Azores, the Selva gens Islands and Cape Verde Islands (Fig. 364).

Habitat and Biology : Found in depths between 4 and 100 m on a rocky or sandy substrate. Food consists ma inly of molluscs, especially limpets (Patella sp.). Ovigerous females from J une to August.

Size : Maximum total body length about 45 cm , usually not more than 30 cm . Carapace length to 12 cm .

Interest to Fisheries: The species is taken and eaten wherever it occurs, but because it is rather rare, there is no commercially important fishery. It is incidentally taken with tra mmel nets, trawls a nd lobster pots, also by hand (divers). Scuba diving made its habitat more accessible to collectors, and in some a reasthe population of Scyllarides had to pay a heavy toll because of this. The speciesissold on the local markets, either fresh or frozen. In Israel 2 to 3 tons are taken annually, elsewhere it is only oc casionally offered for sale. The meat is very tasty; already Risso (1816:60) remarked that "la chairégale, parsa bonté celle des meilleurs crustacés de la Méditerranée"

Local Names : ALGERIA: Grosse cigale, Cigale courte; CAPE VERDE: Carrasco; FRANCE: Cigale, Grand Scyllare, Grande cigale, Grosse cigale, Homard plat, Macietta; GERMANY: Grosser Bärenkrebs; GREECE: Caravida; ITALY: Cicala grande, Magnosa (official names), Cicala di mare; MALTA: Ccala hamra, Ccala seula; MOROCCO: Feritah; PORTUGAL: Lagosta (Madeira), Lagosta de ped ra; SPAIN: Cigarra de mar, Cigala gran, Sapa; TUNISIA: Cigale noire, Farzit; YUGOSLAVIA: Kuka, Kukica.

Literature : Palombi \& Santarelli, 1961:373,374 (many local names); Fischer, Bianchi \& Scott (eds), 1981:vol 5; Fischer, Bauchot \& Schneider (eds), 1987:316.

Fig. 363
SCYL ScyId 1

Fig. 363

Fig. 364

Scyllarus nodifer Stimpson, 1866, Proceedings Chicago Academy Sciences, 1:48.

Synonyms: Scylla rides americ anus Verill, 1922.
FAO Names : En - Ridged slipper lobster; Fr - Cigale chambre; Sp-Cigarra de quilla.

Type : Type locality of S. nodifer. "Found among the Florida Keys at the Tortugas and from Key West". Syntypes in USNM and MCZ now probably lost.

Type locality of S. americanus: "Bermuda". Lectotype male (coll. by T.H. Bean) in USNM, no. 21607.

Geographical Distribution : Westem Atlantic region: Bermuda and coast of USA south of Cape Lookout, North Carolina, entire Gulf of Mexico (Florida to Yucatan) (Fig. 366).

Fig. 366

Fig. 365

Habitat and Biology : Known from depths between 2 and 91 m on a sandy substrate, sometimes mixed with mud, shells or corals.

Size : Total body length to about 35 cm ; carapace length to 11 cm .
Interest to Fisheries: Minor. There is no special fishery for the species, but if taken it is used as food or bait. It is mostly obtained in traps set for other species. Marketed fresh.

Local Names: USA: Bulld ozer, Ridged slipper lobster, Spanish lobster.
Literature : Lyons, 1970:7, text-fig.3, pl. 1 figs A, B; Fischer (ed.), 1978:vol. 6.

Scyllarides roggeveeni Holthuis, 1967, Proceedings Koninklikke Nederlandse Akademie Wetenschappen, (C) 70:306.

FAO Names : En - Ea ster Isla nd slipper lobster
Type : Type locality:"Hanga Pico, S.W. Easter Island". Holotype male in RMNH, no. D 21258.

Geographical Distribution :Only known from Easter Island (Fig. 368).

dorsal view
Fig. 367

Fig. 368
Habitat and Biology : Very little is known about the ecology of the species, except that all known specimens were caught in lobster traps.

Size : The carapace length of the type is 11 cm , the total body length about 30 cm ..
Interest to Fisheries: The species so far is known only from 4 specimens all taken in lobster traps. There is no regular fishery for the species, the known specimens being all caught accidentally (Henriquez, 1974:4). Judging by the size of the specimens and by the fact that the other species of the genus are eaten, it is most likely that also S. roggeveeni is used as food.

Local Names : CHILE: Raperape, Ura raperape (Easter Island).
Literature: Holthuis, 1972:49, pl. 2.

Scyllarus squammosus H. Milne Edwards, 1837, Histoire naturelle des Crustaés, 2:284.

Synonyms: ? Scyllarus australis Fabricius, 1781; Scyllarus sieboldi De Haan, 1841; Pseudibacus pfefferi Miers, 1882.

FAO Names : En - Blunt slipper lobster; Fr-Cigale grenue; Sp-Cigara ñato.

Type : Type locality of S. squammosus: "Habite l'lle-de-France" (= Mauritius). Type in MP, now lost; there is a dry specimen in good condition in theParis Museum (Pa 408) from "lle de France" but it is much smaller than the type, 21.5 cm instead of " 15 pouces" (= about 37.5 cm).

Type locality of S. sieboldi: "Nagasaki", Kyushu, Japan; in manuscript notes on the type material the collector wrote (in translation) "is caught sometimes in the months of spring in the outer bays near Nagasaki "(see Holthuis \& Sakai, 1970: 113). Lectotype male in RMNH, no. D 959.

Type locality of Pseudibacus pfefferi: "Mauritius". Three syntypes in BM, no. 81.7, condition poor.

Type locality of S. australis: "Habitat in Oceano a ustraliori. Mus.Dom.Banks". Type lost.

Geographical Distribution : Indo-West Pacific region: from East Africa to Japan, Hawaii, Melanesia, New Caledonia and Australia (Fig. 370)

Habitat and Biology : In depths of "a few fathoms" to about 80 m , most common between 20 and 50 m .. On reefs and rocky areas. Noctumal.

Size : Maximum total body length about 40 cm ; carapace length up to about 15 cm .

Interest to Fisheries : Its large size and well developed fleshy tail make this species, like other species of the genus, a sought-after delicacy. It is scarce and lives in inaccessible places and therefore is not commercially fished. The animals are mostly taken by hand usually at night, but also wire traps are used. They are sold fresh on the local markets.

Local Names : AUSTRALIA: Slipper lobster; JAPAN: Semi-ebi, Seni-gani, Sjako-ebi; MOZAMBIQUE: Cava-cava sc amosa; USA: Scaly slipper lobster, Sea crawfish, Ula-pdpapa (Hawaii);

Literature: Fischer \& Bianchi (eds), 1984:vol. 5.

Fig. 369

Fig. 370

Fig. 371

Scyllarides tridacnophaga Holthuis, 1967, Proceedings Koninkliike Nederlandse Aka demie Wetenschappen, (C)70: 307.

FAO Names : En - Clamkiller slipper lobster.
Type : Type locality: "Eylath, Gulf of Aqaba, Israel". Holotype female in RMNH, no. D 23023.

Geographical Distribution : Indo-West Pacific region: Red Sea, E. Africa (Somalia, Kenya), Gulf of Aden, Pa kistan, west coast of Tha iland (Fig. 372).

Fig. 372
Habitat and Biology : Depth range from 5 to 112 m; substrates unknown. The species has been observed to open live Tidacna shells; it also eats other molluscs and dead fish.

Size : Total body length up to about 30 cm ; carapace lengths reported vary between 6 and 12 cm .

Interest to Fisheries: There are no reports about the economic value of the species, but judging by its size and the fact that all other species of the genus are comestible, it is likely that the specimens caught will be used as food.
literature : Holthuis, 1968:295, pls 1,2.

Fig. 371

SUBFAMILY IBACINAE Holthuis, 1985

Ibacinae Holthuis, 1985, Zoologische Verhandelingen, Leiden, 218:10-12.
Type Genus: Ibacus Leach, 1815.
The subfamily which Holthuis (1985) revised, providing keys to all species, includes three genera, all of which are treated here.

Evibac us S.I. Smith, 1869
SCYL Ev
Evibacus S.I. Smith, 1869, Americ an Joumal Science, (2)48: 118. Gender ma sc uline.
Type Species: by monotypy: Evibacus princeps S.I. Smith, 1869.
This genus, which is restricted to the Eastem Pacific region, has only a single species.

Evibacus princeps S.l. Smith, 1869, American Loumal Science , (2) 48: 119.

FAO Names : En - Shield fan lobster; Fr Cigale écusson; Sp-Cigarra chato.

Type : Type locality: "La Paz, Lower California" (=La Paz, Baja Califomia, Mexico) Holotype female, depository unknown.

mouth field (ventral view)
(from Holthuis, 1985)

Geographical Distribution : Eastem Pacific region: from Gulf of Califomia (Mexico) to nearTumbes (Peru) (Fig. 374).

Habitat and Biology: Found in depths between 2 and 90 m , most common between 2 and 25 m . Bottom sand or mud, or a mixture, sometimes with rocks.

Size : Carapace length from 1 to 14.5 cm . Maximum total length about. 33 cm .

Interest to Fisheries: Although the species is of excellent taste, reasonably large size, and occurs on trawlable substrates, it is not commercially exploited at present. Exploratory trawling in the Gulf of Panama showed it to be present there in fairly large quantities. When caught it is sold fresh in the local markets.

Fig. 374

Local Names : COSTA RICA, EL SALVADOR, GUATEMALA: Langosta de arena; MEXICO: Langosta de arena, Zapatera, Boot lobster, Flat lobster, Sand lobster, Slipper lobster; PANAMA: La ngosta china, Chinese lobster, Pacific sand lobster, Sand lobster; PERU: Langosta chata, Langosta filipina.

Literature: Holthuis, 1985: 13-20, figs 3,4.

Ibacus Leach, 1815

SCYL lb

Ibacus Leach, 1815, Zoological Miscellany, 2:151. Gender masculine. Name placed on the Offic ial List of Generic Names in Zoology in Opinion 519 (published in 1958).

Type Species: by monotypy: Ibacus peronii Leach, 1815.
At present 6 species of lbacus are known. All are found at great depths in the Indo-West Pacific region, a nd most are of little orno economic importance. All are dealt with here.

Key to Species:

1a. Merus of third maxilliped with the ventral surface slightly concave, not swollen, and not coloured differently from the other segments; inner margin sometimes crenulate but not with deep incisions (Fig. 375a)

2a. Anterior margin of the wide cervical incision of the carapace forming the posterior margin of the anterolateral angle of the carapace; the carapace shows no lateral margin between the a nterolateral angle and the cervic al incision. The carapace has 7 to 9 posterolateral teeth (Figs 376,377)

3a. Dorsal surface of the body with a short, woolly pubescence. Fourth segment of antenna slender, without lateral teeth, regula ly na rrowing from base to tip (Fig. 376) \qquad I. alticrenatus
(Fig. 382)
3b. Dorsal surface of the body naked to the unaided eye, with microscopic ally small, scattered setae. Fourth segment of the a ntenna not slender, at first widening in a lateral direction before na rrowing into the apex, with a distinct lateral margin that is provided with well-developed teeth (Fig. 377)
I. brucei
(Fig. 386)

a. I. ciliatus ciliatus

b. I. peronii
mouth field (ventral view)
Fig. 375

Fig. 376

I. brucei
carapace (dorsal view)

4th segment of antenna
anterolateral angle cervical incision posterolateral teeth

Fig. 377

2b. Anterior margin of the narrow cervical incision of the carapace reaching the lateral margin some distance behind the a nterolateral angle. Part of the lateral margin of the carapace extendsbetween the anterolateral angle and the cenvical incision and bearssome teeth there. The carapace bears 10 to 13 posterolateral teeth (Fig. 378a,b)

4a. Carapace of a dult spec imens naked. Lateral margin of carapace with 10 to 12, usually 11 posterolateral teeth (Fig. 378a). \qquad I. ciliatus ciliatus
(Fig. 388a)
4b. Carapace of adult specimens with a thick cover of a velvety pubescence. Lateral margin of carapace with 11 to 13, usually 12 posterolateral teeth (Fig. 378b) \qquad I. ciliatus pubescens (Fig. 388b)

1b. Merus of third maxilliped swollen, often with a yellowish tinge, with deep incisions on the inner margin, several of which may reach beyond the middle of the merus (Fig. 375b)

5a. Lateral margin of carapace behind cervical incision with 12 to 17 teeth (Fig. 379a). Merus of third maxilliped strongly swollen at the distal end, less so in the rest of its length; the incisions of the inner margin, though rather deep, not reaching the median line of the merus; a nterolateral a ngle of ischium strongly produced, pointed, almost reaching halfway the length of the merus (Fig. 379b) \qquad I. brevipes
(Fig. 384)

I. brevipes

a. I. ciliatus ciliatus

b. I. ciliatus pubescens
carapace (dorsal view)
Fig. 378

Fig. 379

5b Lateral margin of carapace behind cervical incision with 6 to 8 teeth (Figs 380a, 381). Merus of third maxilliped evenly swollen, most of the incisions of the inner margin reach beyond the middle of the segment; anterolateral angle of ischium reaching only slightly beyond the base of the merus, top rounded (Figs 375b, 380b)

6a. Posterior branchial carinae of the carapace straight or only slightly convex, lying in one line with the anterior branchial carinae. Posterior incision of the orbit without tubercle. Lateral margin of carapace with 8 (rarely 7) posterolateral teeth (Fig. 380a). Anterior teeth of the epistome directed forwards (Fig. 380b) \qquad I. novemdentatus
(Fig. 390)
6b. Posterior branchial carinae of the carapace strongly convex, not lying in one line with the anterior branchial carinae. Posterior incision of the orbit with a distinct tubercle. Lateral margin of carapace with 6 or 7, seldom 8, posterolateral teeth (Fig. 381). Anterior teeth of epistome directed ventrally (Fig. 375b) \qquad I. peronii
(Fig. 392)

I. novemdentatus

Fig. 380

Ibac us altic renatus Bate, 1888
Fig. 382

Ibacus alticrenatus Bate, 1888, Report Voyage Challenger, Zool., 24:63, pi. 9 fig. 2.

Synonyms: Ibacus alticrenatus septemdentatus Grant, 1905.

FAO Names : En - Velvet fan lobster
Type : Type locality of I. alticrenatus: "Challenger" "Station 167, west of New Zealand . lat. 39032'S., long. 171048'E.; depth, 150 fathoms [$=274 \mathrm{ml}$; bottom, blue mud". Four syntypes in BM, no. 88.22, in alcohol, condition fair.

Type locality of I. a. septemdentatus: "About 28 miles east from Port Jackson Heads" near Sydney, N.S.W. Australia. "250-300 fathoms [= 457-549 m]". Two syntypes in AM, no. G. 5424.

Geographical Distribution : Australia (New South Wales, Bass Straits, Ta sman Sea, Victoria, South Australia); New Zealand (North Island, South Island, Chatham Islands) (Fig. 383).

Fig. 383

(from Holthuis, 1985)
Fig. 382

Habitat and Biology : Depth range from 20 to 455 m , on soft muddy bottoms. Digs into the substrate and covers itself with the mud and sand. Ovigerous females from May to October.

Size : Carapace length 1.5 to 6.3 cm ; maximum total length about 16 cm .
Interest to Fisheries : According to Lesser (1974:260) the species has no commercial value in New Zealand. But in New South Wales, Australia,"commercial quantities of Ibacus alticrenatus are still taken by trawlers working off the continental shelf by day and by night" (Coleman, 1977: 132), and the species is sold at the Sydney market.

Local Names : AUSTRALA: Deep water bug, Sandy bug; NEW 正ALAND: Prawn killer.
Literature : Holthuis, 1985:36-41, fig. 9.

Ibacus brevipes Bate, 1888, ReportVoyage Challenger, Zool . 24:62, pi. 9 fig. 1.

Synonyms: Ibac us verdi Bate, 1888 .
FAO Names: En-Serrate fan lobster.
Type : Type loc ality of I. brevipes: "Challenger" Sta. 192, "lat. 5049' 15 "S., long. 132으' 15 " E .; off the Ki Islands [= Kai Islands, = Kepulauan Ewab, Eastem Indonesial; depth, 140 fathoms [$=256 \mathrm{~m}$]; blue mud". Holotype male in BM, no 88.22, in alcohol, condition fair.

Type loc ality of I. verdi: "C ha llenger" "St. Vincent, Cape Verde Islands ... depth 7 to 20 fathoms" ($=13-$ 37 m). Lectoptype female and 6 paralectotypes in BM, no. 88.22, in alc ohol conditon fair. Statement of type locality of I . verdi probably erroneous.

Geographical Distribution: Indo-West Pacific region: South China Sea, Philippines, Moluccas (Indonesia) and New Caledonia (Fig. 385). The record from the Cape Verde Islands almost certainly is emoneous, as no species of the genus has ever been found in the Atlantic.

Habitat and Biology : Known from depths between 186 and 457 m; on smooth substrates: Sand, mud ora mixture of the two. The record of 7 to 20 fathoms ($=13-37 \mathrm{~m}$) of the so-called Cape Verde specimens, like the rest of their label, is clearly incorect.

Size : Carapace length between 2 and 4.5 cm ; maximum known total body length about 12 cm .

Interest to Fisheries : So far none. This is a flat, relatively small species, with little meat and it is found only at great depths. Therefore, it is not a promising commercial species.

Literature : Holthuis, 1985:47-52, figs 13,14

(from Holthuis, 1985)
Fig. 384

Ibacus brucei Holthuis, 1977

Ibacus brucei Holthuis, 1977, Zoologische Mededelinaen, Leiden, 52:191, pls 1.2.

FAO Names : En - Glabrous fan lobster.
Type : Type locality: "Due east of Point Lookout, North Stradbroke Island, Queensland; 86 fathoms ($=$ $157 \mathrm{~m})$ ". Male holotype in RMNH, no. D 24744.

mouth field (ventral view)

Geographical Distribution : Australia (Queensland, New South Wales) and New Zealand (Kermadec Islands) (Fig. 387).

Habitat and Biology : Depth range from 90 to 183 m; substrates soft with stones.

Size : The carapace length of the known specimens varies between 2 and 5.7 cm ; the maximum total body length being about 13 cm .

Interest to Fisheries: So far none. As the species lives on trawlable grounds (all the types were obtained by trawl), it might be possible that, if the right fishing grounds are found, the species could become commercially important.

Literature : Holthuis, 1985:41-47, figs 10-12

Fig. 386
SCYL Ib 4

(from Holthuis, 1985)
Fig. 386

Fig. 387

Scyllarus ciliatus Von Siebold, 1824, De Historiae Naturalis in Japonia statu: 15.
Synonyms: Phyllosoma guerini De Haan, 1849; Ibacus pictus Vilanova y Piera, 1875; Phyllosoma utivaebi Tokioka, 1954; Ibac us ciliatus pubesc ens Ho Ithuis, 1960

FAO Names : En - Japanese fan lobster.

a. I. ciliatus ciliatus (male)
(from Holthuis, 1985)

b. I. ciliatus pubescens (old male)

Fig. 388

Type : Type loc ality of Scyllarus ciliatus: "J a ponia", probably near Na gasa ki, Kyushu; lectotype in RMNH, no. D 969, in alcohol, condition good.

Type loc ality of Phyllosoma guerini: "J a ponia", probably nearNagasaki, Kyushu; lectotype in RMNH, no. D. 5588, dry, condition poor. Type loc ality of Ibacu pictus: "en las aguas del J apon"; whereabouts of type material unknown,
Type locality of phyllosoma utivaebi: "along the shore near our Laboratory" (=Seto marine biological laboratory, Sirahama, Waka-yama-ken, Japan); 3 syntypes in Seto marine biological laboratory.
Type locality of I. c. pubescens: ""Albatross" Station D 5394, near Ta lajit Isla nd, Philip pines, $12^{\circ} 00^{\prime} 30^{\prime \prime} \mathrm{N}, 124^{\circ} 05^{\prime} 36^{\prime \prime} \mathrm{E}^{\prime \prime}$; holotype male in USNM, no. 104285.
'Geographical Distribution: Indo-West Pacific region: J apan (southward from Niigata on the west coast (ca. 38\%N), and from Tokyo Bay on the east coast (ca. 35.5-N)), south coast of Korea to Hainan Island (S. China), South China Sea, Taiwan, east coast of Philippines and Thailand. The subspecies I.c. pubescens (Fig. 388b) has been reported from the Philippines (among the islandsand along the west coast), and from Westem Australia (W. of Broome) (Fig. 389).

Fig. 389

Habitat and Biology : Depth range from 49 to 314 m , mostly between 100 and 250 m . The species is found on soft substrates of sand, mud or clay.

Size : Maximum total length a bout 23 cm ; the carapace lengths reported'are 4 to 7.6 cm (males), 4 to 8 cm (females), 6 to 8 cm (ovigerous females).

Interest to Fisheries: The species is mostly caught by tra wlers and sold on the fish markets of J a pan, Korea, Taiwan and the Philippines. A report by H . Bürgerfrom about 1830 mentioned that the speciescould be found every day on the fish markets of Nagasaki and nearby area (Holthuis \& Sakai, 1970: 112).

Local Names : JAPAN: Uchiwa-ebi, Utiva-ebi, Kai rô, Takuma-ebi; PHILPPINES: Cupapa, Pitik-pitik; THAILAND: Kung. kradan deng.

Literature : Holthuis, 1985:24-36, figs 5-8.

Ibacus novemdentatus Gibbes, 1850
lbacus novemdentatus G ibbes, 1850, Proceedings American Association Advancement Science, 3:19.

Synonyms: Sometimes confused with I. ciliatus or l. peronii.

FAO Names : En - Smooth fan lobster; Fr Cigale glabre; Sp-Ciga rra liso.

Type : Type locality: unknown. Holotype in "Cabinet of the Lyceum of Natural History, of New York", present whereabouts unknown.

mouth field (ventral view)

Fig. 390
SCYL lb 1

Geographical Distribution : Indo-West Pacific region: East Africa (Kenya to Cape Province), Westem Indian Ocean (N.W. Madagascar, Mauritius-Seychelles Ridge), and from Korea and J apan, to the South China Sea, Taiwan, Vietnam, the Philippines and Westem Australia (Fig. 391).

Habitatand Biology : Depth range from 37 to 400 m ; substrates of fine sediments (sand and mud).

Size : Carapace lengths 3 to 7.7 cm ; maximum total body length about 19 cm .

Interest to Fisheries: In Korea and J apan, as well as in Taiwan, the species is sold at the markets. In Japan and Taiwan it is obtained by trawlers, in Japan also by long line fishery. Ivanov \& Krylov (1980:287) recorded catches of $19.2 \mathrm{~kg} / \mathrm{hour}$ and

Fig. 391 $22.6 \mathrm{~kg} / \mathrm{hour}$ in the westem Indian Ocean.

Local Names: J APAN: Ohba-uchiwa-ebi, Kejirami-gani (Shimane); MOZAMBIQUE: Cava-cava lisa; SOUTH AFRICA: Digging lobster.

Literature : Fischer \& Bianchi (eds), 1984:vol. 5; Holthuis, 1985:52-61, figs 15-17.

Ibacus peronii Leach, 1815
Fig. 392
SCYL Ib 6

Ibacus peronii Leach, 1815, Zoological Miscellany, 2: 152, pl. 119. Name placed on Offic ial List of Specific Names in Zoology in Opinion 519 (published in 1958).

Synonyms : Scyllarus incisus Leach, 1815; ? Phyllosoma duperreyi Guérin, 1829.
FAO Names: En - Butterfly fan lobster.
Type : Type locality of I. peronii and S. incisus: "New Holland" (=Australia). Manuscript notes in the Museum d'Histoire naturelle in Le Havre, France, show that the a ctual type locality is King Island, Tasmania, 39050'S 144000'E. Holotype in MP, no. Pa 146, dry, in good condition.

Type locality of Phyllosoma dupemeyi: "Port J ackson", Sydney, New South Wales, Australia; type in MP, no longer extant.

Geographical Distribution : S.W., S. and S.E. coasts of Australia from Geraldton (Westem Australia) to Southport (S.E. Queensland) (Fig. 393).

(from Holthuis, 1985)
Fig. 392
Fig. 393
Habitatand Biology : De'pth range from 40 to 250 m ; on soft substrates of sand or sand and mud. La rvae obtained from the plankton.

Size: Carapace length between 2 and 8 cm , maximum total length about 23 cm .
Interest to Fisheries: Regularly fished and almost always present at Sydney market. The spec ies is taken by prawn trawls. Some fishemen go out specific ally to catch "bugs", and sometimes over 100 kg is brought in per day. Dakin, Bennett \& Pope (1969: 184) observed that "it hasquite a good flavour when cooked", but Grant (1978:685) found that its flesh "sometimes tastes a nd smells strongly of garlic" and that it therefore is considered inferior to Thenus.

Local Names : AUSTRALA: Balmain bug, Butterfly lobster, Fla pjack, Péron's lbacus crab, Prawn-killer, Sand crayfish, Sand lobster, Southem shovel-nosed lobster, Squagga.

Literature : Holthuis, 1985:61-69, figs 18-20.

Parribac us Dana, 1852

SCYL Par

ParibacusDana, 1852, ProceedingsAcademy Natural SciencesPhiladelphia, 6: 14. Gender masculine. Name placed on the Official List of Generic Names in Zoology by the Intemational Commission on Zoological Nomenclature in their Opinion 519 published in 1958.

Type Species: selected by Ward (1942:61): Scyllarus antarcticus Lund, 1793.
The genus contains 6 species, all of which are used as food, but all are only of local interest.

Key to Species:

1a. The transverse groove which separates the anterior from the posteriorpart of the abdominal somites and which in the fully stretched animal forms the anteriormost part of the visible portion of the somites, is wide and naked, bearing at most a fqw hairsand tubercles in the median area. The anterior part of the second to third abdominal somites, situated before the just-mentioned groove, bears distinct tubercles. The median carinae of the second and third abdominal somites are elevated (Fig. 394a). The lateral margin of the fourth segment of the antenna asa rule bears six teeth (exclusive of the apical tooth). The two lateral teeth before the cenvical incision are of almost equal size (Fig. 395). Indo-West Pacific and West Indian regions. \qquad P. antarcticus
(Fig. 401)
1b. The transverse groove which separates the two parts of the abdominal somites is na rower and filled with many short hairs. The median carinae of the second and third abdominal somites are usually almost level with the surface of the somites (Fig. 394b). The posterior of the two lateral teeth of the carapace before the cervical incision is always smaller than the first (Fig. 396), Indo-West Pacific

Fig. 394
third abdominal somite (dorsal view)
(after Forest, 1954)

P. caledonicus

Fig. 396

2a. The anterior part of the second to fifth abdominal somites, which disappears under the previous somite when the abdomen is fully stretched, camies distinct tubercles (Figs 396, 397). Fourth segment of a ntenna with 6 or 7 teeth on the outer margin (apical tooth not included). Legs short a nd robust

3a.Fourth segment of a ntenna with seven teeth on the outermargin (apical tooth not included). Squa miform tubercles on upper surface of carapace blunt and appressed (Fig. 396) (Queensland, New Caledonia, Loyalty Islands, New Hebrides and Fiji) P. caledonic us
(Fig. 403)
3b.Fourth segment of a ntenna with six teeth on the outer margin (apical tooth no included).' Squamiform tubercles on uppersurface of carapace pointed and not appressed (Fig. 397) (Easter Island) \qquad P. perlatus
(Fig. 409)
2b. The anterior part of the second to fifth abdominal somites smooth or with a reticular pattem of shallow and narrow grooves (Fig. 394b). Fourth segment of antenna as a rule with 5 or 6 teeth on the outer margin. Legs more slender

4a. Distance between the orbit a nd the anterolateral angle of the carapace more than $2 / 5$ of the distance between the two orbits; outer margin of sec ond segment of a ntenna as a rule with five teeth. The posterior of the two lateral teeth of the carapace before the cervic al incision much smaller than the first. First abdominal somite with five red, sharply defined spots on the posterior margin, and a row of smaller spots which is placed more anterionly (Fig. 398)
P. holthuisi
(Fig. 405)
4b. Distance between the orbit and the a nterolateral angle of the carapace $2 / 5$ or less than $2 / 5$ of the distance between the two orbits. The posterior of the two lateralteeth of the carapace before the cervical incision smaller, but not very much smaller than the anterior. The first abdominal somite with 3 to 5 not very sharply defined spots on the posterior margin: no second row of spots is present (Figs 399,400)

dorsal view
P. perlatus

6 teeth on outer margin of 4th antennal segment
tubercles on anterior part of somites

Fig. 397

carapace and first somite
(dorsal view)
P. holthuisi

Fig. 398

5a. Rostrum with a dorsal rostral tooth. Outer margin of second segment of antenna as a rule with six teeth (Fig. 399) \qquad P. scarlatinus
(Fig. 411)
5b. Rostrum without a dorsal rostral tooth. Outer margin of second segment of antenna as a rule with five teeth (Fig. 400) \qquad P. japonic us
(Fig. 407)

Fig. 401
SCYL Par 1
Parribac us antarctic us (Lund, 1793)
Scyllarus antarctic us Lund, 1793, K.Danske Videnskabers Selskab Sknifter, (n.ser.) 2(2):22. Na me placed on the Offic ial List of Specific Names in Zoology, in Opinion 519 (published in 1958).

Synonyms: Cancer (Astac us) ursus major Herbst, 1793; ? Scyllarus carinatus Guilding, 1825; lbacus ciliatus G uild ing, 1825; Ibac us parrae H. Milne Edwards, 1837; Ibacus antarcticus-H. Milne Edwards, 1837; Pamibac us parrae - Dana, 1852; Scyllarus (Ibac us) parrae - Herklots, 1861; Parribacus antarctic us carinatus Pfeffer, 1881; Paribacus papyraceus Rathbun, 1906; Parribacus ursus major - De Man, 1916; Cancer barffi Curtiss, 1938.

FAO Names: En - Sculptured mitten lobster, Fr-Cigale savate; Sp - Cigarra chinesa.
Type : Type locality of Scyllarus antarcticus: not cited in the original public ation, but by the lectotype selection of the specimen figured by Rumphius (1705) (see Holthuis, 1956: 111) it is restricted to Amboina, Moluc cas, Indonesia. Type specimen no longer extant.

Type locality of Cancer (Astacus)ursus major:"Das Vaterland ist J apan",through Herbst's references to Rumphius (1705) and Seba (1759). Amboina also belongs to the type localities, a nd through the lectotype selection forthis species by Holthuis (1956: 111) of the a nimal figured by Rumphius, Amboina has become the restricted type locality.

The lectotype specimen of \mathbf{C}. ursus majorbeing the same as that of \mathbf{S}. antarcticus the two names are objective synonyms. Herbst's own paratype is no longer extant.

Type locality of Scyllarus carinatus Guilding: "in mari Caribeo", probably near St. Vincent. Depository of type unknown.

Type locality of Ibacus ciliatus Guilding: "in Caribeo mari", probably near St. Vincent. Depository of type unknown.

Type loc a lity of Ibacus parae: "les Antilles", restric ted to Cuba by Holthuis (1985:73); 2 syntypes in MP, nos Pa 409 and $465, \mathrm{dry}$, in good condition.

Type loca lity of P. antarcticus carinatus: "Südsee" (South Pacific). Holotype male in ZMH.

Type loc a lity of Paribacus papyraceus: "South coast of Molokai Island", Hawaiian Archipelago. Lectotype male in USNM, no. 30265

Type locality of Cancer barffi: "On the bamier reef at Tautira", Tahiti. Depository of type unknown.

Geographical Distribution : Westem Atlantic region: from Florida to N.E. Brazil (Bahia), including the West Indian islands and the mainland coast of the Caribbean Sea. Indo-West Pacific region: E. and SE Africa to Hawaii and Polynesia (Fig. 402).

Habitat and Biology : Taken at depths from 0 to 20 m ; in coral orstone reefs with a sandy bottom. The species is noctumal and in the daytime hides in crevices, sometimes in small groups.

Size : Carapace lengths between 2 and 9 cm ; maximum total length about 20 cm .

(from Holthuis, 1985)
Fig. 401

Interest to Fisheries: The species is of excellent taste and eaten where it occurs. It is usually hunted at night on the reefs with torch light. The a nimals are taken with dipnets or speared or taken by hand There is no special fishery for it on a commercial scale, but it is sometimes taken in nets set for spiny lobsters. Although its taste is usually highly praised and considered better than that of other lobsters, the species is considered too small and the abdomen to flat to become of commercial interest. It is sold fresh or cooked and used for local consumption. At Phuket Island, Thailand, specimens, mounted in fancy glass cases, are occasionally sold to tourists.

Fig. 402

Local Names : BARBADOS: Horseshoe crab; BRAZL: Chineza, Potiquiquyixe (Recife, 17th Century); CARO UNE IS.: Allpap; CUBA: Langostino; HAWAll: Ula-pápapa; INDONESIA: Udang laut lebar, Miyu uhut, Ketam gonosso, Udang pasir laut, Uhut; J AMAICA: Sea cockroach; KAPINGAMARANGI: Tapa tapa; KIRIBATI: Te Mnawa; MALAYSIA: Udang laut lebar; MANGAREVA: Kopapa; MARTINIQUE: Savate, Maman homard, Marie-carqgne; MARSHALL IS.: J ipukpuk, Uraber, MOZAMBIQUE: Cava-cava esculpida; PALAU: Braber, REUNION: Cigale de mer, Taille de boeuf; SAMOA: Papata; TAHIT: Tianée;THAILAND: Kung kamayi; TUVALU: Tappa tappa.

Literature : Fisc her (ed), 1978: vol. 6; Fisc her \& Bianchi (eds), 1984:vol. 5; Holthuis, 1985:73-88, figs 21,25A.

Pamibac us caledonic us Holthuis, 1960
Panibacus caledonic us Holthuis, 1960, Proceedings Biological Society Washington, 73: 147.

Synonyms: Formerly not distinguished from antarcticus.

FAO Names : En - Caledonian mitten lobster
Type : Type locality: "Ile des Pins", New Caledonia. Holotype female in RMNH, no. D 14506.

Geographical Distribution : Indo-West Pacific region: Queensland, Australia; New Caledonia and Loyalty Islands; New Hebrides; Fiji Islands; Samoa (Fig. 404).

Fig. 404

Fig. 403
SCYL Par 2

(from Holthuis, 1985)
Fig. 403

Habitat and Biology : In shallow water on reefs, usually on the exposed side, often in surge channels. The animals hide in crevices and marine caves in the day time, often attached to the ceilings of the caves.

Site : The carapace length varies between 4.5 and 8 cm ; maximum total body length is about 18 cm .
Interest to Fisheries: The spec ies is caught by divers wirh gloved hands (George, 1971:4). They are eaten and found on the local markets, where they are sold fresh. According to George (1971:9) in Samoa the species is "not in demand by the hotel trade".

Local Names : FIJ: Butterfly lobster, Ivinibila, Vavaba; NEW CALEDONIA: Popinée.
Literature : Holthuis, 1985:88-93, fig 22.

Parrbacus holthuisi Forest, 1954, Bulletin Muséum National Histoire naturelle, Paris, (2)26:346, figs 25, 26B.

FAO Names : En - Red-spotted mitten lobster.
Type : Type locality: "Hikueru", Tuamotu Archipelago. Lectotype female in MP no. Pa 141; paralectotypes in MP and RMNH, all types preserved in alcohol, condition excellent.

Geographical Distribution: The species is only known from the Society, Tua motu and Gambier Islands in the southem Pacific. A larva, possibly belonging to this species, was reported from 14013.6^{\prime} S 12600' W, in the Pacific Ocean (Fig. 406).

tarval record possibly of this species
Fig. 406

(after Forest, 1954)

Fig. 405

Habitat and Biology : In shallow water on the sandy bottom of coral reefs.
Size : Carapace lengths measured vary from 2.5 to 6.5 cm ; maximum total length about 14 cm .
Interest to Fisheries: Minor. Used as food by the natives and collected at night with torches.
Local Names : GAMBIER IS.: Akamaru, Opapa; TAHITI: Tia née.
Literature : Holthuis, 1985:98-102, figs 24,25B.

Pamibac us japonicus Holthuis, 1960, Proceedings Biological Society Washinoton, 73: 148.

Synonyms: Formenly often confused with \boldsymbol{P}. antarcticus.

FAO Names : En - J apanese mitten lobster
Type : Type locality: "Ku'ruri District, Tokyo Bay", Honshu, Japan. Holotype male in USNM, no. 18883. Pa ratypes in RMNH, USNM.

Geographical Distribution : Japan (north-west coast, west of Maizuru, 135015'E; Pacific coast from Tokyo Bay, 140ㅌ, south-westward to Ryukyu Islands) (Fig. 408).

Fig. 408

Fig. 407

Habitat and Biology : In shallow waters up to 20 m depth; the a nimals live on shore reefs
Size : Carapace lengths from 4 to 7.4 cm ; maximum total body length about 16 cm .
Interest to Fisheries: Minor. The species is caught in gill nets a nd is sold fresh. Very little information is a vailable.
Local Names: J APAN: Zori ebi.
Literature : Holthuis, 1985: 106-I 11, fig. 27

Parribacus perlatus Holthuis, 1967
Parribacus perlatus Holthuis, 1967, Proceedings Koninkliike Nederlandse Akademie Wetenschappen, (C) 70:305.

FAO Names : En - Easter Island mitten lobster.
Type : Type locality: "Easter Island" Holotype female in RMNH, no. D 21257, in alcohol, condition excellent.

Geographical Distribution : So far only known from Easter Island, Pacific Ocean (Fig. 410).

Fig. 410

Fig. 409
SCYL Par 5

Fig. 409

Habitat and Biology : In shallow water among the rocks, the a nima ls hide in the daytime in marine caves and crevices.
Size: Carapace length 4 to 5 cm . Maximum total body length about 11 cm .
Interest to Fisheries: The species is fished by the population of Easter Island by wading in the water both at night and in the daytime. The lobsters a re stepped upon and then picked up by hand; divers enter the cavesand crevicesand pick them up there. At night the fishery takes place with torches.

Local Names: CHILE: Raperape, Ura, Ura raperape, Crayfish, Langosta, Easter Isla nd lobster (Easter Island).
Literature : Holthuis, 1972:44, pl. 1; Holthuis, 1985:93-98, fig 23.

Panibacus scarlatinus Holthuis, 1960, Proceedings Biological Society Washington, 73: 148.

FAO Names : En - Marbled mitten lobster
Type : Type localily: "Enderbury Island, Phoenix Archipelago, 3008'29.7"S, 171005'34.4"W". Holotype male in USNM. no. 100826.

Geographical Distribution : Central Pacific Ocean from Kapingamarangi through the Marshall, Gilbert and Phoenix Islands to the Marquesas (Fig 412).

Fig. 412

(from Holthuis, 1985)

Habitat and Biology : In shallow waters, in or near reefs.
Size : Known carapace lengths vary between 2.5 and 7 cm Maximum total body length about 15 cm .
Interest to Fisheries : No information available, but judging by the fact that all other species of the genus are used as food, the same is expected for the present one.

Literature : Holthuis, 1985: 102-106, fig. 26.

SUBFAMILY SCYШARINAE La treille, 1825
Scyllarides Latreille, 1825, Familles naturelles du Règne Animal :278.
The subfamily Scyllarinae is monotypic, i.e., it contains only the type genus Scyllarus; so far no other genera of Scyllarinae have been described.

Scyllarus Fa bric ius 1775
SCYL Scylr
Scyllarus Fabricius 1775, Systema Entomologiae:413. Gender masc uline. Name placed on the Offic ial List of Generic Names in Zoology by the Intemational Commission on Zoological Nomenclature in their Opinion 519 (published in 1958).

Type Species: by monotypy: Cancer arctus Linnaeus, 1758.
Synonyms: Syllarus Rafinesque, 1815, Analyse de la Nature:98. Substitute name for Scyllarus Fabricius, 1775. Gender masculine.

Chrysoma Risso, 1827, Histoire naturelle de l'Europe méridionale, 5:88. Type species, by monotypy: Chrysoma mediterraneum Risso, 1827 (a junior subjective synonym of Cancer arctus L., 1758). Gender neuter.
Arctus De Haan, 1849, in P.F. von Siebold, Eauna Japonica, Crustacea (6,7):xx, 238. Type species, by absolute tautonymy: Cancer arctus L., 1758. Gender masc uline.

Arctus Dana, 1852, ProceedingsAcademy NaturalSciencesPhiladelphia, 6: 14. Type species by monotypy (and absolute tautonomy): Arctus ursus Dana, 1852, (=a replacement name for Cancer arctus L, 1758). Gender masculine.
Nisto Sarato, 1885, Moniteur desétranaers de Nice, 9 (216):3. Type spec ies, by present selection: Nisto laevis Sarato, 1885 (a junior subjective synonym of Cancer arctus L, 1758). Gender masculine.

Yalomus Rafinesque in Holthuis, 1985, Zoologische Mededelingen, Leiden, 59(13):141. Type species, by monotypy: Yalomus depressus Rafinesque in Holthuis, 1985 (a junior subjective synonym of Cancer arctus L, 1758). Gender masculine.

More than 40 speciesare known in this genus, they are listed below. Most species are small and of no economic value. A few (only 7 are known to me) have been reported from fish markets, but even those can only be considered as accidental bycatch of otherspecies. Hence, a key to species is not presented here, but short diagnoses are provided for the 7 species repot-ted from fish markets as an aid for their recognition.

List of Species* :

S. aesopius Holthuis, 1960 - Philip pines
S. amabilis Holthuis, 1963 - Westem Australia
S. americanus (S.I. Smith, 1869) Syn: Arctus americanus S.I. Smith, 1869; Scyllarus gundlachi (Von Martens, 1872) West Central Atlantic
S. aoteanus Powell, 1949-New Zealand
S. arctus (Linnaeus, 1758) Syn: see p. 217 - East Central Atla ntic
S. aureus Holthuis, 1963 - Indo-West Pacific
S. aurora Holthuis, 1982 - Indo-West Pa cific
S. batei Holthuis, 1946 Syn: see p. 219 - Indo-West Pacific
S. bertholdii Paulson, 1875 Syn: see p. 221 - Indo-West Pacific
S. bicuspidatus (De Man, 1905) Syn: Arctus bicuspidatus De Man, 1905 - Indo-West Pa cific
S. brevicomis Holthuis, 1946 Syn: see p. 222 - J apan, China
S. caparti Holthuis, 1952 - West Africa
S. chacei Holthuis, 1960 - West Central Atla ntic
S. crenatus (Whitelegge, 1900) Syn: Arctus crenatus Whitelegge, 1900 - Eastem Austra lia
S. cultififer (Ortmann, 1897), Syn: subs. S.c. meridionalis Holthuis, 1960 - Indo-West Pa cific
S. delfini (Bouvier, 1909) Syn: Arctus delfini Bouvier, 1909 - J uan Femandez, Chile
S. demani Holthuis, 1946 - Indo-West Pacific
S. depressus (S.I. Smith, 1881) Syn: Arctus depressus S.I. Smith, 1881; S. nearctus Holthuis, 1960 - West Central Atlantic
S. dubius Holthuis, 1963 - Austra lia
S. faxoni Bouvier, 1917 - West Central Atla ntic

[^4]S. gibberosus (De Man, 1905) Syn: S. sordidus Nobili, 1905 (not Stimpson, 1860); Arctus gibberosus De Man, 1905; Arctus nobilii De Man, 1905; Scyllarus paulsoni Nobili, 1906; Scyllarus nitidus Nobili, 1906; Scyllarus nobilii - Nobili, 1906-Indo-West Pacific
S. kitanovinosus Ha rada, 1962 - J apan, Korea
S. lewinsohni Holthuis, 1967 - Red Sea
S. longidactylus Ha rada, 1962 - J a pan
S. martensii Pfeffer, 1881 Syn.: see p. 223 - Indo-West Pa cific
S. mawsoni (Bage, 1938) Syn: Arctus mawsoni Bage, 1938 - Australia
S. modestus Holthuis, 1960 - Ha wa iian Isla nds
S. omatus Holthuis, 1960 - Indo-West Pacific
S. paradoxus Miers, 1881 Syn: S. (Arctus) arctus paradoxus (Miers, 1881) - West Afric a
S. planorbis Holthuis, 1969-C aribbean Sea
S. posteli Forest, 1963 - East Central Atla ntic
S. pumilus Nobili, 1905 Syn: S. thiriouxi Bouvier, 1914 - Red Sea, Westem Indian Ocean
S. pygmaeus (Bate, 1888) Syn.: see p. 224 - East Central Atla ntic
S. rubens (Alcock \& Anderson, 1894) Syn: Arctus rubens Alcock \& Anderson, 1894 - Westem Indian Ocean
S. rugosus H. Milne Edwards, 1837 Syn.: see p. 225 - Indo-West Pacific
S. sordidus (Stimpson, 1860) Syn: Arctus sordidus Stimpson, 1860 - Indo-West Pa cific
S. subarctus C rosnier, 1970 - West Afric a
S. timidus Holthuis, 1960 - Indo-West Pa cific
S. umbilicatus Holthuis, 1977 - Eastem Austra lia
S. vitiensis (Da na. 1852) Syn: Arctus vitiensis Dana, 1852 - Indo-West Pa c ific

Scyllarus arctus (Linna eus, 1758)
Cancerarctus Linnaeus, 1758, Systema Naturae, (ed. 10) 1:633. Name placed on the Official List of Specific Names in Zoology, in Opinion 519 (published in1958).

first and second abdominal somites (dorsal view)

second abdominal somite (lateral view)

thoracic sternum (ventral view)

Fig. 413
SCYL Scylr 1

Synonyms: Astacus arctus - Pennant, 1777; Cancer (Astacus) ursus minor Herbst, 1793; Scyllarus tridentatus Leach, 1814; Scyllarus cicada Risso,1816; Chrysoma mediteraneum Risso,1827; Phyilosoma samiense Lukis, 1835; Phyllosoma parthenopaeum Costa, 1840; Arctus arctus - De Haan, 1849; Phyllosoma meditenaneum - Hope, 1851; Arctus ursus Dana, 1852; Nisto laevis Sarato, 1885; Nisto asper Sarato, 1885; Arctus crenulatus Bouvier, 1905; Scyllarus (Arctus) crenulatus - Bouvier, 1915; Scyllarus arctus lutea Risso MS in Holthuis, 1977; Yalomus depressus Rafinesque MS in Holthuis, 1985.

FAO Names : En - Small European locust lobster; Fr-Petite cigale; Sp - Santiaguiño.
Type : Type locality of Cancer Arctus and Arctus ursus (the latter is a replacement name for the former): "Habitat in M [ari]. Europae, Asiae, Africae, Americae". As lectotype of the species is now selected the specimen figured by Barrelier (1714:131, fig. 1288 II) as "Squilla Ursa minor altera remipes", the only specimen of the present species cited by Linnaeus (1758). Ba relier's specimen was collected and figured by him during his travels in "Galliam, Hispaniam et Italiam", no exact locality is given, but the type locality may be arbitrarily restricted to Ostia, the port of Rome, as in the second page of Barrelier's biography in the introduction to his 1714 book, it is said that in Ostia he figured marine i nsects (= Crustacea): "Portum Ostiensem ... Plantas investigandi causâ perlustravit, Marinasque plurimas, Insecta simul \& Conchylia depinxit". On p. xxvi of the chapterr "Index Iconum Barrelieri" of his book, all the Crustacea, Mollusca and Echinodermata that he figured are listed as "Insecta marina". The lectotype is almost certainly no longer extant, but the figure is $s o$ exact that there cannot be any doubt as to the identity of the specimen.

Type locality of Cancer (Astacus) ursus minor."Man findet diesen Krebs im Mittelländischem Meere". Type material in ZMB, no longer extant.

Type locality of Scyllarus tridentatus:"Its habitat is unknown". The specimen was observed by Leach "in the collection of William Comyns, Esq. of Mount Pleasant, near Dawlish, Devonshire" and thus may have come from the south coast of England. Whereabouts of the type material unknown.

Type locality of Scyllarus cicada: "Environs de Nice", "dans les rochers du litoral". Depository of type material unknown.

Type locality of Chrysoma mediterraneum: "dans nos mers [= seas near Nice, dépt. Alpes Maritimes, S. France]. Depository of types unknown.

Type locality of Phyllosoma samiense: "on the Coast of Guemsey",Channel Islands, Great Britain. Depository of type unknown.

Type locality of Phyllosoma parthenopaeum: "Trovato a galleggiare nella marina di Capri", near Naples, Italy. Depository of larval holotype unknown.

Type locality of both Nisto laevis and Nisto asper."Les deux Nisto ont été decouverts. dans les eaux de Saint-Jean, près de Nice", dépt. Alpes Mantimes, S. France. Depository of syntypes of either species unknown.

Type locality of Arctus crenulatus: "Porto-5anto (Madére)", later (Bouvier, 1905:2) given more detailed as "de la baie de Porto-Santo ... par 100 mètres de profondeur". Holotype in MOM.

Type loc ality of Scyllarus arctus lutea: Nice, S. France. Depository of type unknown.
Type loc ality of Yalomus depressus: "in the Sic ilian Seas", Italy. Types lost.

[^5]Geographical Distribution : Eastem Atlantic region from the south coast of the British Islands to the Azores, Madeira and the Canary Islands, as well as the entire Mediterranean (Fig. 414)

Habitat and Biology : Depth range from 4 to 50 m ; on rocky or muddy substrates, and also in Posidonia prairies. Ovigerous females from February to April.

Size : Total body length usually between 5 and 10 cm , maximum body length about 16 cm .

Interest to Fisheries: Minor. The species is edible and used as food, but there is no special fishery for it, being usually taken as a by-catch in other fisheries. It has been taken with gill nets, trawls, dredges, traps and seines. It is also taken by hand by divers, who at places seem to have decimated the populations, especially after the introduction of Scuba gear. The animals are offered for
 sale at local markets, usually fresh. The relatively small size and the fact that it is never abundant make the species economically not very attractive.
Local Names: FRANCE: Petite cigale, Cigale de mer, Petit Scyllare, Chambre (Provence); GERMANY: Kleiner Barenkrebs, Grillenkrebs; GREECE: Astakoudaki; ISRAEL: Kapavit dubit; ITALY: Cicala di mare, Magnosella; PORTUGAL: Lagosta da pedra, Lameiro; SPAIN: Santiaguiño, Toribio, Cigala; Bujias, Llagosta lluisa, Xuius (Cataluña); Cigarra (Andalucia); TUNISIA: Chkal, Zz il bahr, Cigale blanche, Petite cigale de mer, UK: Broad lobster, YUG OSLAVIA: Zezavac.

Literature : Palombi \& Santarelli, 1961:372 (local names); Fischer, Bianchi \& Scott (eds), 1981 :Vol. 5; Fischer, Bauchot \& Sc hneider (eds), 1987:317-318.

Remarks: The name "Phyllosoma samiense" is not mentioned in Lukis" (1835:459-464) article, the editor even put in this article on p. 462 a bracketed remark" "Will Mr Lukis please to take an early opportunity of adding a specific epithet". The name is provided in the index to the volume (8) of The Magazine of Natural History in which Lukis' a aticle appeared; on p. 685 of the index is cited "Phyllosòma samiénse Lukis, and other species, 461".

Scyllarus batei Holthuis, 1946
Fig. 415

SCYL ScyIr 3

Scyllarus batei Holthuis, 1946, Temminckia. Leiden, 7:94.
Synonyms: Arctus orientalis Bate, 1888 (not Scyllarus orientalis Lund, 1793); Scyllarus orientalis - De Man, 1916; Scyllarus batei arabic us Holthuis, 1960.

FAO Names : En - Soft locust lobster, $\mathbf{F r}$ - Cigale douce; Sp-Cigarra blanducha.
Type : Type locality of Arctus orientalis and \mathbf{S}. batei (the latter name being a replacement name for the former): "Challenger" "Station 209, between Bohol and Zebu [= Cebu], ... lat. 10ㅇ14' N., long. 123054'E.; depth, 95 fathoms [$=174$ ml; bottom, blue mud". Two syntypes in BM.
 Expedition Sta. 194". Holotype in BM, no. 88.22, in alcohol, condition good.

Diagnostic Features: Carapace with 2 distinct teeth in the median line before the cervical groove (the gastric and pregastric teeth), the rostral tooth is absent. The region between the postrostral and branchial carinae with only very few tubercles and extensive smooth areas. Abdomen with a distinct Shap median carina on somites 1 to 5 , all these ridges of approximately the same height. Somite 1 with the transverse groove intemupted in the middle by the median carina; behind the groove there are no longitudinal grooves, but a transverse row of tubercles. The exposed part of somites 2 to 5 without an arborescent pattern, but with a wide transverse groove (intemupted'in the middle) behind which there is a transverse row of tubercles, and before which there are some tubercles and wide short side grooves. The fourth segment of the antenna has a single, distinct oblique median carina; the Upper surface has no additional canina or tubercles. The outer margin of the segment has 2 to 4 larger, the inner margin 4 to 7 smaller teeth (not including the apical tooth). The thoracic stemum with the a nterior median end gutter-like sunken, not incised in the middle. No median tubercles on the stemites. Dactyli of legs 3 to 5 with dorsal fringes of hair. Colour: body pale brown with the ridges and tubercles pale puple or reddish. First abdominal somite brick red in the anteromedian area (see Chan \& Yu, 1986, pls 4,9A,B).

Geographical Distribution : Indo-West Pacifc region: Gulf of Aden and East Africa to the South China Sea, Taiwan, the Philippines and Indonesia. It is possible that the westem form is a separate subspec ies S.b. arabic us (Fig. 416).

Habitat and Biology : Depth range from 160 to 484 m, usually between 170 and 210 m ; on sandy and muddy substrates.

Size : Maximum total body length about 7 cm , carapace length to 3 cm (males 1.4 to 2.9 cm ; females 1.5 to 3.3 cm ; ovigerous females 2.3 to 3.1 cm).

Interest to Fisheries : Sometimes taken by trawlers in small quantities (George, 1969:433), the species is not considered to be of potential commerc ial interest. Chan \& Yu (1986: 149) reported the species, from local fish markets in Taiwan; the animals were caught with "baby shrimp trawls"

Fig. 415
Literature : Fisc her \& Bianchi (eds), 1984:vol 5; Chan \& Yu, 1986: 155, pl. 4fig. A-C, pl 9 fig. A,B.

Fig. 416

Scyllarus bertholdii Pa ulson, 1875
Fig. 417
SCYL ScyIr 4
Scyllarus bertholdii Paulson, 1875, Izsledovaniya Rakoobraznvkh Krasnago Morya:97.

Synonyms: Scyllarus haanii Berthold, 1845 (not S. haanii De Haan, 1841); Scyllarus sinensis White, 1847 (nomen nudum).

FAO Names : En - Two-spot loc ust lobster.
Type : Type locality of S. bertholdii and S. haanii Berthold (the former being a replacement name for the latter): China. Lectotype female RMNH, no. 5518, dry, condition rather poor. A possible paralectotype in SMF, under no. 7 MG 233. The specimen, a dry female labelled "Mare Indic um", is the only specimen of this species from the collection of the Göttingen Museum now on pemanent loan in the Senckenberg Museum. It was not labelled as being a type.

Type locality of S. sinensis: "C hina". Syntypes in BM.
Diagnostic Features: The teeth in the median line of the carapace low and obscure: the rostral tooth is usually reduced to a mere tubercle, the pregastric tooth is distinct, but low, the gastric tooth is absent; the cardiac tooth (behind the cervical groove) is replaced by 2 low blunt and flattened submedian tubercles. The region between the post-rostral and branchial carinae shows few tubercles and rather large smooth areas. Abdomen without median carina, the median area of the somites is low and flat. The exposed part of the abdominal somites shows an arborescent pattem of na row grooves. Somite 1 has a complete transverse groove behind which there are numerous parallel oblique grooves, which in the middle of the segment form a triangular figure. Fourth segment of the antenna with a single straight and obliquely directed median carina; no additional caninae or tubercles on the dorsal surface. Outer margin of the segment with two distinct Sharp teeth, inner margin with a large single Sharp tooth (apical tooth of segment not included). Thoracic stemum with the anterior margin straight and transverse, with a very narrow median incision. The anterior margin forms a broad ridge behind which there is a sunken triangular area. No median tubercles on the stemites. Dactylus of pereiopods 1, 2, 4 and 5 without hairy fringes. Colour: the body is reddish brown. Most conspicuous and characteristic are two large dark spots on the first abdominal somite, one on each side slightly above the base of the pleuron. The legs are pale with a few dark bands (see Chan \& Yu, 1986, pls. 2, 8B).

Geographical Distribution: Indo-West Pacific region: S. China, Hong Kong, Taiwan, South China Sea, Gulf of Tha iland, Philippines, Indonesia, W. and N. Australia (Fig. 418).

Habitat and Biology: Reported from depths between 15 and 150 m , but most common between 40 and 75 m . Found on a soft substrate (mud, sandy mud, muddy Sand, Sand, coralline algae, etc.).

Size : Maximum total body length 4.2 cm (males), 5.8 cm (females). Carapace length 0.4 to 1.5 cm (males), 0.5 to 2 cm (females, including ovigerous ones)

Interest to Fisheries: The species is caught by trawlers (with "baby shrimp trawls") as a by-catch and SO may reach fish markets, e g. in Taiwan (see Chan \& Yu, 1986:149). It is not known whether the a nimals are sold as food.

Fig. 417

Scyllarus brevicornis Holthuis, 1946, Iemminckia._Leiden , 7:92.

Synonyms : Arctus rugosus Yokoya, 1933 (not Scyllarus rugosus H . Milne Edwards, 1837).

FAO Names : En - Blue-back locust lobster.
Type : Type locality: "southem Bungo Strait [between Shikoku and Kyushu Islands, J apan], 110 m deep". Holo-type male in Fishery Institute, College of Agriculture, Tokyo University, Tokyo, J apan (dried and in poor condition). As S. brevicomis is a new name for \mathbf{A}. rugosus, the type loc ality is the same for both.

Diagnostic Features: Carapace with 2 distinct teeth in the median line before the cenvical groove (the gastric and rostral teeth), the pregastric tooth is absent. The region between the postrostral and branchial carinae with only a few tubercles and extensive smooth areas. Abdominal somites 2 to 5 with distinct elevated median longitudinal carina; the carina of the third somite is distinctly higher than that of the other somites. The exposed part of the somites without arborescent pattem, but with a wide transverse groove over the middle; behind this groove a transverse ridge extends along the posterior margin of the somite; before the groove there are tubercles and some wide side grooves. Somite 1 dorsally smooth with only an indic ation of a transverse groove in the extreme lateral part. Posterior margin of somites 5 and 6 not tuberculate. Fourth segment of antenna with the median oblique carina distinct but not quite straight; a row of tubercles is present on the outer half of the Uppersurface of the segment, tubercles are also present in the basal part of the median carina. The outer margin of the fourth segment has 3 or 4 teeth, the distal largest, the inner margin with 4 or 5 teeth, the basal of which is largest (the apical tooth not included in these counts). The thoracic stemum is widely U-shapedly incised anteriorly; the last 4 stemites show an inconspi-cuous median tubercle. A dorsal fringe of hairs is present on the dactyli of pereiopods 3 to 5 . Colour: dark brown above, tubercles sightly paler, sometimes with whitish areas in the branchial region and along the central part of the cervical groove. A dark blue spot in the median part of the first abdominal somite (see Chan \& Yu, 1986, pl. 5,9 fig. C, D).

Geographical Distribution : East China Sea (west of the Tokara Islands), Japan (Tosa Bay, Bungo Strait), Taiwan (Fig. 420).

Habitat and ,Biology : Depth range from 60 to 150 m ; substrates: sand or mud.

Size : Total body length 4to 5.5 cm . Carapacelengthof1.3to 1.8 cm ; in ovigerous females 1.6 to 1.8 cm .

Interest to Fisheries : None SO far as known. The specimens enter trawls by accident and then are found at fish markets, more likely as trash than as saleable products. Chan \& Yu (1986:149) reported the species from local fish markets in Taiwan, these specimens were taken by "baby" shrimp trawlers.

(after Chan \& Yu, 1986)
Fig. 419

Fig. 420

Scyllarus martensii, Pfeffer, 1881, Vemandlungen naturwissenschaftlichen Vereins Hamburq-Altona , (2)5:48.

FAO Names : En - Striated locust lobster.
Type : Type locality: not mentioned in the original description. The two female syntypes are in the collection of ZMH under no. K 7955 and are labelled "Amur Mus Godeffroy". The locality indication evidently is incorrect as the mouth of the Amur River lies far to the north of the northem limit of the range of S. martensii. The Museum Godeffroy was founded around 1860 as the private collection of J ohann Cesar VI Godeffroy, the director of the shipping company J.C. Godeffroy \& Sohn in Hamburg. The ships of this company visited East and South Asia, Australia, and the Central and Eastem Pacific. Their captains were asked to collect for the Museum and brought important collections home for that purpose; also private persons were sent out by Godeffroy to collect. When in 1879 the firm Godeffroy collapsed, most of the zoological collections were acquired by the Hamburg Museum. The types of S. martensii were most likely collected in S.E. Asia, but nothing definite can be said in this respect.

Diagnostic Features: Carapace with two distinct teeth in the median line before the cervical groove (the gastric and pregastric teeth), the rostral tooth is absent, and replaced by an inconspic uous tubercle. The region between the postrostral and branchial caninae showsmany tubercles, especially in the posterior half of the carapace. The abdomen hasa conspic uously elevated longitudinal median carina on somites 2 to 5 , that of somite 2 shows as an inverted V-shaped ridge when looked at dorsally. The carina of somite 3 is somewhat higher than the others Somite 1 shows a complete transverse groove behind which there are about 16 straight, parallel longitudinal unbranched grooves, which are quite characteristic for the species. The other somites show a somewhat arborescent pattem on the exposed part. The fourth segment of the antenna has, apart from the distinct and Shap oblique median carina, an additional short curved carina formed by a row of tubercles; this additional carina is on the outer half of the segment. The outer margin of the segment has 3 to 5 (mostly 3) distinct teeth (apical tooth not included), the inner margin has 5 to 9 teeth, the basal of which is largest. The anterior margin of the thoracic stemum is very shallowly concave, narrowly incised in the middle and with a small tubercle either side of that

Fig. 421 incision. Stemites 2 to 4 show a faint median tubercle each. The pereiopods show no hairy fringes on the dactyli Colour: the body is yellowish or reddish brown, somewhat iregularly marbled. A darker brown transverse band may be present on the third abdominal somite. The legs show a darker band on some of the segments (see Chan \& Yu, 1986, pls. 3, 8C ,D).

Geographical Distribution : Indo-West Pacific region from East Africa (Zanzibar, Mozambique) and the westem Indian Ocean to Japan, Vietnam, Thailand, Malaysia, Singapore, Taiwan, the Philippines, Indonesia, N.W., N. and N.E. Australia and New Caledonia (Fig. 422).

Habitat and Biology : The species has been found in depths between 6 and 79 m , mostly between 10 and 50 m . The substrate that it inhabits' is soft and smooth, consisting of sand and/or mud, sometimes

Size : Thetotal body length in this species is 2 to 4 cm (mates), 2 to 6 cm (females), 2.5 to 4 cm (ovigerousfemales); the respectivecarapace lengths being 0.4 to 1.3 cm (males), 0.7 to 2 cm (females), 0.5 to 1.5 cm (ovigerous females).

Inierest to Fisheries: None. The species is too small to be of any commercial interest and is not found in great quantities. It is sometimes caught accidentally by trawlers fishing for other species; in this way the specimens may reach the fish markets. SO far as is known the specimens are not sold per se. Chan \& Yu (1986: 149) report the species from fish markets in Taiwan being caught there by "baby" shrimp trawlers.

Literature : Chan \& Yu, 1986:153, pl. 3 figsA-C , pl. 8 figs C,D.

Scyllarus pygmaeus (Bate, 1888)
Arctus pygmaeus Bate, 1888, Report Voyage Challenger, Zool 24;73, pl 10 fig. 4.

Synonyms: Arctus immaturus Bate, 1888; Scyllarus immaturus - Bouvier, 1912.

FAO Names : En - Pygmy locust lobster; Fr - Cigale naine; $\mathbf{S p}$ Ciga ra enana.

Type: Type locality of Arctus pygmaeus: "off Gomera, one of the Canary Islands, ... lat. 280 N. ., long. $1605^{\prime} \mathrm{W}$.; depth 78 fathoms [$=143 \mathrm{~m}$]; bottom, volcanic Sand". Ovigerous female holotype in BM.

Type locality of Arctus immaturus: "dredged off Cape Verde [Sénégal], but neither station nor depth are recorded". Leaotype in BM.

first and second abdominal somites

second abdominal somite (lateral view)

thoracic sternum (ventral view)

Fig. 423

Diagnostic Features: Carapace with three distinct acute teeth in the median line before the cervical groove (the gastric, pregastric and rostral teeth). Region between the postrostral and branchial carinae with only few tubercles and with extensive smooth areas. Abdomen without a Shap elevated median longitudinal canina, but each of abdominal somites 2 to 5 with an elongate lobulate figure in the middle. The exposed part of abdominal somites 2 to 5 with an arborescent arrangement of very narrow grooves. Somite 1 with a complete transverse groove, behind which there are numerous short longitudinal grooves that may be rather irregular in shape and sometimes are interconnected by transverse grooves; this posterior part of somite 1 is longer in the middle than laterally. The smooth anterior half of abdominal somites 2 to 6 (i.e., the part that disappears under the tergum of the previous somite when the abdomen is fully stretched) on either side with a short transverse groove in which hairs are implanted. Fourth segment of antenna with a single oblique median carina. Outer margin of the segment with 2 , the inner margin with 3 or 4 teeth (not
including the apical tooth). Thoracic stemum anteriorly U-shapedly incised in the middle. A blunt and low but conical tubercle on the last thoracic stemite. Dactyli of legs without fringes of hair Colour. pale brownish or pinkish with patches of darker hairs. Two dark spots on the dorsal surface of the first abdominal somite in the submedian region.

Geographical Distribution : The entire Mediteranean (but not yet reported from the North African coast east of Morocco), and Atlantic islands (Madeira, Canary Islands, Cape Verde Islands) (Fig. 424).

Habitat and Biology : Depth range from 5 to 100 m . Ovigerous females in June and August.

Size : Maximum total length 5.5 cm , usually not more than 4 cm . Carapace length to 1 cm (males) and 1.15 cm (females).

Interest to Fisheries : Probably nil. The report in Fiches FAO d'Identification, Méditeranée et Mer Noire, vol. 1:319, that the species is fished for in Sardinia with trammel nets and lobster pots and is regularly present at the markets, where it is sold fresh, needs to be considered with much reserve. It is possible that this information is based, not on S. pygmaeus, but on S. arctus.

Fig. 424

The small size of S. pygmaeus does not make it an attractive fisheries objetc. In N.E. Spain, the fishermen, when they got S. pygmaeus in their nets, threw it back in the sea, in the conviction that these were juvenile Scyllarus arctus, which needed still some time to grow up to acceptable size.

Literature : Fischer, Bauchot \& Schneider (eds), 1987:3 19.

Scyllarus rugosus H. Milne Edwards, 1837
Fig. 425

SCYL Scylr 7

Scyllarus rugosus H. Milne Edwards, 1837, Histoire naturelle desCrustacés, 2:283.
Synonyms: Arctus tuberculatus Bate, 1888; Scyllarus tuberculatus - Nobili, 1903
FAO Names : En - Hunchback locust lobster.
Type : Type locality of Scyllarus rugosus: "Habite la cote de Pondichéry" (= Pondichery, S.E. India, 11059’N 79950'E). Holotype in MP, no longer extant.

Type locality of Arctus tuberculatus: "Challenger" "Station 190, between New Guinea and Australia ... lat. 8056'S., long. 13605'E.; depth, 49 fathoms [$=90 \mathrm{ml}$; bottom, green mud". Syntypes in BM.

Diagnostic Features: The carapace has the median teeth before the cervical groove blunt and inconspicuous: the rostral tooth is reduced to a tubercle, the pregastric tooth is replaced by a double row of 1 or 2 tubercles and a few inconspic uous median tubercles. The gastric tooth is the most conspicuous, it is broad and blunt and bears a double row of tubercles. The surface of the carapace is very uneven and the tubercles are high. Between the postrostral and branchial caninae there are a few tubercles and many smooth areas. The abdomen shows a distinct median longitudinal carina on so mites 2 to 5 , that of somite 3 is by far the highest, and (like the one of somite 4) bears numerous tubercles laterally. Somite 1 is quite smooth, and has the transverse groove only slightly notic eable in the extreme lateral parts. The exposed part of the following somites shows no arborescent pattem, but in each somite there is a wide transverse groove there. In somite 2, both before and behind this groove there is a perfectly smooth broad ridge, a character in which the species differs from most others. In the following somites these ridges are tuberculate.

In somites 4 to 6 the posterior margin is tuberculate. The fourth antennal segment has a Shap and high oblique median canina. Outside the carina the Uppersurface of the segment shows a row of tubercles. The outer margin of the segment bears 4 or 5 teeth (apical tooth of the segment not included), the inner margin has 5 to 7 teeth of irregular size. The antenor margin of the thoracic stemum is deeply U-shapedly incised. Each of the thoracic stemites bears a rounded median tubercle. The dactyli of pereiopods 3 to 5 show two short fringes of hair each. Colour: the dorsal surface of the body is greyish or purplish brown with darker spots. The distal segment of the antenna is often lighter. The first abdominal somite shows dorsally often a dark blue colour (see Chan \& Yu, 1986, pls 1, $8 \mathrm{~A}, \mathrm{IOC}$).

Geographical Distribution: Indo-West Pacific region from Red Sea, East Africa and Madagascarto Japan, Taiwan, the Philippines, Indonesia and N.E. Australia (Fig. 426).

Habitat and Biology : Inhabits depths from 20 to 60 m , rarely reported from 100 or 200 m . Bottom usually Sand and mud, sometimes with coral, shelly grit or rubble.

Size : Total body lengths reported are 2.5 to 6 cm (mates), 2.5 to 6 cm (females), 3 to 6 cm (ovigerousfemales) and carapace lengths of 0.8 to 2.1 cm (males), 0.8 to 2.2 cm (females), 1 ta 2.2 cm (ovigerous females).

Interest to Fisheries: Like the other Indo-West Pacific species of the genus, \mathbf{S}. rugosus is hardly of any commerc ial importance, if at all. It is taken accidentally by trawlers fishing for other species and SO get to the fish markets. Chan \& Yu (1986:149) reported it from fish markets in Taiwan, brought in by "baby" shrimp trawlers, but Chang (1965) does not list any Scyllarus a mong the "Edible Crustacea of Taiwan".

Literature : Chan \& Yu, 1986: 150-I 52, pl. 1 figs A-E, pl. 8 fig. A, pl. 9 fig. C.

dorsal view
(after Chan \& Yu, 1986)

Fig. 425

Fig. 426

SUBFAMILY THENINAE Holthuis, 1985
Theninae Holthuis, 1985, Zoologische Vemandelingen, Leiden, 2 18: 10,12
The subfamily is monotypic, the genus Thenus Leach, 1815, is its type and only genus.

Thenus Leach, 1815

SCYL Then

Thenus Leach, 1815, Transactions of the Linnean Society, London, 11:335, 338. Gender masculine. Name placed on the Offic ial List of Generic Names in Zoology by the Intemational Commission on Zoological Nomenclature in Opinion 519 (published in 1958).

Type Species: by monotypy: Thenus indic us Leach, 1815 (= junior subjective synonym of Scyllarus orientalis Lund, 1793).

Synonyms: Sagaritis Billberg, 1820, Enumeratio Insectorum in Museo Gust.Joh.Billberg:134. Type species by monotypy Scyllarus orientalis Lund, 1793. Gender feminine.

Scyllibacus Desja rdins, 1831, Proceedings of the Committee of Science and Correspondence of the Zoological Society of London, 1(4):46. Type species by monotypy: Scyllibacus orientalis Desjardins, 1831. Gender masculine. If Scyllibacus orientalis Desjardins is a new combination of Scyllarus orientalis Lund, 1793, Scyllibacus falls as a junior objective synonym of Thenus Leach, 1815; if it is a new species, Scyllibacus is a nomen nudum.

At present only a single species is recognized within the genus Thenus, but recent studies, indic ate the possibility that more than one species may have been confused under the name Thenus orientalis.

Thenus orientalis (Lund, 1793)
Fig. 427
SCYL Then 1
Scyllarus orientalis Lund,1793, K.Danske Videnskabers Selskab Sknifter, (n.ser.)2(2):22. Name placed on the Official List of Specific Names in Zoology, in Opinion 519 (published in 1958).

Synonyms: Thenus indicus Leach, 1815; Saganitis orientalis - Billberg, 1820; Scyllibacus orientalis - Desja rdins, 1831.
FAO Names : En - Flathead lobster; Fr - Cigale raquette; Sp-Cigarra chata.
Type : Type locality of S. orientalis: "Fra Ostindien og China". Lund's material consisted of a specimen from Tranquebar, India, and one from China, so that both a re syntypes; also a syntype is the specimen figured on pl. 2 fig. D in Rumphius' (1705) Amboinsche Rariteitkamer, this specimen not necessarily comes from Amboina, as the figure was made in Holland after a specimen of unknown locality and subsequently added to Rumphius' manuscript, it most likely originated from Indonesia. One of Lund's two specimens is in UZM, it is preserved in alcohol, its condition is reasonable; the second specimen is lost. The third syntype specimen formed part of the collection of Henricus d'Acquet, burgomaster of Delft, The Netherlands, this collection was sold publicly in 1708, the fate of the specimen of Thenus is unknown.

Type locality of Thenus indicus: "Habitat in mari Indico". Holotype in BM, no. 107 a 54, dry, condition fair (it is not fully certa in that this is the holotype).

Geographical Distribution : Indo-West Pacific region: from the east coast of Africa (southem Red Sea to Natal) to China, southem Japan, the Philippines and tropical Australia (Westem Australia to Queensland) (Fig. 428).

Habitat and Biology : Depth range from 8 to 70 m (exceptionally in 100 m), usually between 10 and 50 m ; on soft substrate: sand or mud, or a mixture of the two, sometimes with shells or gravel.

Size : Maximum total body. length about 25 cm ; maximum carapace length about 8 cm .

Interest ta Fisheries: The species often appears as a bycatch in the nets of trawlers and is edible. It is also reportedly taken by divers although there is no specialized fishery for it. Specimens caught in the sixties in the southem Red Sea by Israeli trawlers were frozen and sold in Israel. Experimental fishing undertaken in 1975 to 1976' off the coast of East Africa (Kenya to Mozambique) and elsewhere in the Westem Indian Ocean was not promising for this species (up to 30 specimens per hour). Longhurst (19701286) mentioned that it is "caught in the Gulf of Thailand, and on a small scale off Malaysia and Singapore". In Queensland, the shrimp fishery lands Thenus as a bycatch where it ranks above lbacus as a food item (Grant, 1978:685). It is also offered for sale in Sydney markets. In Taiwan, this species is found in markets year-round but is most abundant from March to August, and is marketed together with Ibacus ciliatus and I. novemdentatus (Chang, 1965:47) In the Philippines it is priced lower than spiny lobsters (Motoh \& Kuronuma, 1980:58). Davidson (1977: 141) remarked of this species: "The meat of the slipper lobster is not quite up to the standard of good prawns or spiny lobsters, but is nonetheless well worth eating". Marketed locally either fresh or frozen.

Local Names : AUSTRALA: Bay lobster (official name), Moreton Bay bug, Bug, Gulf lobster, Northem bay lobster, Shovelnosed lobster; BURMA: Kyauk-pa-zun; HONG KONG: Pei pa ha; INDONESIA: Udang pasir, JAPAN: Uchiwa-ebimodoki; KAMPUCHEA: Bangkang pak; MALAYSIA: Udang lobok; MAURITUS: Homard sans comes; MOZAMBIQUE: Cava-cava triangular, PAKISTAN: Kikat (Sindhi), Kikka (Baluchistan); PHIUPPINES. Pitik-pitik, Bay lobster, Cupapa, Sand crayfish, Sand lobster, ShoveInosed lobster, Slipper lobster, SINGAPORE: Common flapjack lobster; TANZANIA: Kamba; THAILAND: Kung kradan, Kung hin.

Literature : Fischer \& Bianchi (eds), 1984:vol. 5; Williams, 19861 : 26, figs 6 (fig 61 and 62 have been interchanged), 80 g .

Fig. 427

Fig. 428

2.3 INFRA ORDER THALASSINIDEA La treille, 1831

Thalassinides La treille, 1831, Coursd'Entomologie:377.
The infraorder contains a single supetfamily Thalassinoidea Latreille, 1831, with 7 fa milies, viz., Axianassidae, Axiidae, Callianassidae, Callia nideidae, Laomediidae, Thalassinidae and Upogebiidae with all together more than 350 known species. Of these 7 families only 3 are dealt with here as the other do not have species of which it is known that they are of interest to fisheries. Of these three families, Thalassinidae, Callianassidae and Upogebiidae, perhaps two or three species are used for human consumption, a number of others is used as bait fo: fishing.

2.3.1

FAMILY THALASSINIDAE La treille, 1831
THAL

Thalassinides Latreille, 1831, Cours d'Entomologie:377. Name placed on the Official List of Family Names in Zoology, in Opinion 434 (published in 1956).

Synonyms: Scorpionoidae Haworth, 1825, Philosophical Magazine, London, 65: 184 (not based on an included genus and thus una vailable).

The family consists of a single genus.

Thalassina La treille, 1806
THAL Thal

Thalassina Latreille, 1806, Genera Crustaceorum et Insectorum; 1:51. Gender feminine. Name placed on the Official List of Generic Names in Zoology by the Intemational Commission on Zoological Nomenclature in their Opinion 434 (published in 1956)

Type species: by monotypy: Thalassina scopionides Latreille, 1806 (= junior subjective synonym of Cancer (Astacus) anomalus Herbst, 1804).

Until recently this genus was generally considered to have a single species, but recent investigations make it likely that more than one have to be recognized. A revision of the taxonomy of Thalassina is badly needed.

Thalassina anomala (Herbst, 1804)
Fig. 429
THAL Thal 1

Cancer(Astacus) anomalus Herbst, 1804, Versuch einer Naturgeschichte derKrabben und Krebse, 3(4):45, pl. 62. Name placed on the Official List of Specific Names in Zoology, in Opinion 434 (published in 1956).

Synonyms: Thalassina scopionides Latreille, 1806; Thalassina scabra Leach, 1814; Thalassina talpa White, 1847 (nom. nud.); ? Thalassina gracilis Dana, 1852; Thalassina chilensis Steenstrup \& Lütken, 1862; Thalassina maxima Hess, 1865.

FAO Names: En - Scorpion mud lobster.
tail fan of male (dorsal view)

Fig. 429

Type : Type locality of Cancer anomalus: "Das Vaterland dieses Krebses ist völlig unbekannt"; holotype in ZMB, no. 1256, dry, condition reasonable.

Type locality of Thalassina scomionides not indicated in the original description, evidently likewise unknown; type material in MP, now absent.

Type locality of T. scabra not mentioned either, probably unknown; type material "in the Hunterian Museum", present whereabouts unknown.

Type locality of Ttalpa: "Philippine Islands"; holotype in BM, no. 43.6 (in alcohol, condition poor)
Type locality of T. gracilis: "from shores of Telegraph Island, near Singapore"; holotype in USNM.
Type locality of T. chilensis: "Mare Chilense"; holotype in MP, no Th 537, in alcohol, condition mediocre. As pointed oui by Holthuis (1952:85-86) the locality label probably is incorrect, as the species since has never been found in Chile.

Type locality of T. maxima: "Sydney", New South Wales, Australia; holotype in SMF, no. ZMG 227, in alcohol, broken, but condition otherwise fair. This locality indication likewise is highly dubious as the species does not occur near Sydney.

Diagnostic Features: The integument of the body is very firm. The carapace is high; in dorsal view it is elongate oval in outline. In adults the carapace measures less than $1 / 3$ of the total body length. The rostrum is narrowly triangular and short; it is depressed and its lateral margins continue for some distance on the carapace as short divergent ridges. The rostrum has no teeth. The carapace ends posterionly in a distinct posteriorly directed median tooth that overhangs the articulation with the first abdominal somite. The abdomen is long a nd narrow, more than 5 times as long as wide in the males, about 4 times aslong as wide in the females. The somites are of about equal width throughout their length, they have a longitudinal carina over the base of the pleura. The telson is about as long as the previous somite, but slightly na rower, the posterior margin is broadly rounded. The uropods are styliform. The eye are small. The first pair of pereiopods is very strong and asymmetrical, both chelae are subchelate, the larger less conspicuously so than the smaller. The second legs are smaller, also subchelate; the other legs are simple. Epipods are present on the pereiopods. Colour: the whole body is rather uniformly yellowish or reddish brown.

Geographical Distribution : Indo-West Pacific region, from the west coast of India to S. Japan (Ryukyu Islands), Vietnam, the Philippines, indonesia, New Guinea, New Britain Island, N. and N.E. Australia, Fiji, Samoa (Fig. 430).

Habitat and Biology: The species lives in the littoral and supralittoral zones, where it digs its burrows. These can be found in mangrove areas and estuaries. The excavated mud forms a kind of chimney or mound over the openings of the burrows, and because of their height form a most conspic uous feature in the landscape. The chimneys can be 75 cm high, but sometimes several chimneys together can form complex hills of mud up to 1.5 m high. The burrows go down vertically or obliquely to the water level after which they may make zigzags and side branches; the depths of the

Fig. 430 burrows has been estimated to be up to 2.5 m .
The a nimals are rarely seen out of their burrows, not even at night, but it seems that after heavy rainfall they may venture outside. They are sluggish and are definitely mud feeders, reports that they also are vegetarian have been doubted. Their burrowing activities take usually place during the night.

Size : Usually up to 16 to 20 cm in total body length, although there are records of up to 30 cm .
Interest to Fisheries : Minor. Already Rumphius (1705:6), when dealing with this species from Amboina, Moluc cas, Indonesia, remarked on its poor culinary qualities: "Hy heeft weinig ja schier geen vleesch, want het geheele lyf en de staert steeken vol groenachtige modder, en slechts in de scheeren vindmen een weinig wit brokkelig vleesch, van geenen byzonderen smaak.... De Inlanders van Celebes eeten het vleesch van de scheeren, 't welk ik hun willende nadoen, hebbe my niet wel daar op bevonden; dies ik hem voor eenen onnutten Kreeft houde, of hy most in andere Landen beterzyn" (It has little, oralmost no meat, as the entire body and the tail are full of a greenish mud, and only in the pincers there is a small a mount of white, crumbly meat, without a partic ulartaste. The natives of Celebes eat the meat of the pincers, but when : myself tried this, the meat did not agree with me, therefore: consider this a useless lobster, unless it is of a better quality in other countries). Motoh \& Kuronuma (1980:64) remarked that there is no special fishery for this species in the Philippines and that it is only occasionally picked up by fish pond workers. It appears only rarely on the Philippine fish markets. Ward (1943, Army, 2(4):30, fig.) in his paper "New Guinea menu" listed Thalassina anomala among the edible crustaceans. Tan \& Ng (1988:85), remarked that in Singapore the animals are considered edible, but are "not popular locally". On a wall chart, issued recently by the Fisheries Division of the Ministry of Primary Industries of Fiji, the present species figures among the "aquatic foods of Fij". In Thailand, as I was informed by Prof. Phaibul Naiyanetr of Chulalongkom University, Bangkok, the species is not eaten but used as medicine a gainst asthma; it is then eitherdnied, ground to powder, and the powder drank with water, or the specimen is placed in a kind of alcoholic liquor and left there for a couple of days, after which the liquor with the beneficial substances dissolved in it is drunk.

The positive qualities of the species from the point of human interest thus are rather small, and its negative qualities seem to be more important. In many areas the species is considered a pest."The animal is notorious for causing severe damage to bunds [of prawn ponds] by its burrowing activities. The paddy fields and backyards of houses in the proximity of the creeks are also subject to this sort of damage" (Sankolli, 1963:604). Also earth roads can suffer from the burrowing of the species. Dammeman (1929:120) reported that "the species has been noticed as destructive to nipa seed lings, which may be protected by surrounding them with small bamboo fences", but the correctness of this observation has later been doubted by Kalshoven \& Van der Vecht (1950:63); the fact that Thalassina is not a vegetarian but mainly a mud feeder supports the view of the latter authors. All in all it seems that Rumphius indeeed was right in considering this as a "useless lobster" from an economic viewpoint.

Local Names : AUSTRALA: Mud lobster, FII: Maná Tola. INDONESIA: Udang katak, Udang tanah; Udang petsje (Amboina); JAPAN: Okinawa-ana-jyako; MALAYSIA: Udang ketak; PHILPPINES: Kolokoy, Kulokoy, Palatak (Tagalog language), Oson, Uson (llongo language); Manla (Cebu language); THAILAND: Mae hop.

Upogebiinae Borradaile, 1903, Annals Magazine Natural History, (7)12:542. Na me placed on the Official List of Family Names in Zoology, in Opinion 434 (published in 1956). Type genus Upogebia Leach, 1814.

Synonyms: Gebiadae Haworth, 1825, Philosophical Maqazine, London, 65: 184. Type genus Gebia Leach, 1815.
The taxonomy of this family is still in a state of uncertainty. Until recently only a single genus, Upogebia, was recognized in it, being divided into several subgenera. In 1982, Sakai added two more Upogebiid genera, while some recent authors have elevated some of the subgenera to full generic status (an action not recognized here).

Of the many (about 100) species of Upogebiidae known at present, this catalogue deals only with the five species that have been reported to be of fisheries interest. All five of these species belong in the nominotypical subgenus Upogebia.

As the number of speciestreated here isso small compared to the total number of Upogebiids, no effort has been made to provide a key, but of each species the most important morphologic al features are presented.

Upogebia Leach, 1814

UPOG Upog

Upogebia Leach, 1814, Brewster's Edinburah Encyclopaedia, 7:400. Gender feminine. Name placed on the Official List of Generic Names in Zoology by the Intemational Commission on Zoological Nomenclature in their Opinion 434 (published in 1956).

Type Species: by monotypy: Cancer (Astac us) stellatus Montagu, 1808.
Synonyms: Gerbios Bosc, 1813, Bulletin Société philomatique , Paris,3(66):233. Type species, selected by Holthuis, 1954, Bulletin zoological Nomenclature, 9(11):335: Thalassina littoralis Risso, 1816 (= junior subjective synonym of Astacus pusillus Petagna, 1792). Gender feminine. Name suppressed under the plenary power of the Intemational Commission on Zoological Nomenclature and placed on the Official Index of Rejected and Invalid Generic Names in Zoology in their Opinion 434 (published in 1956).
Gebia Leach, 1815, Iransactions Linnean Society, London, 11:335, 342. Type species, selected by Lucas, 1835, Dictionnaire pittoresque d'Histoire naturelle, 3:353: Cancer (Astacus) stellatus Montagu, 1808. Gender feminine.

Bigea Na rdo, 1847, Sinonimia modema delle specie reqistrata nell'opera intitolata.: Descrizione de' Crostacei, de Testacei e de' Pesciche abitano le laqune e Golfo Veneto dall'Abate Stefano Chiereqhini: 8 . Type species, by monotypy: Bigea tipica Nardo, 1847. Gender feminine.
Calliadne Strahl, 1862, Monatsberichte Käniglichen_Akademie Wissenschaften_Berlin, 1861: 1064. Type species, by monotypy: Calliadne savignii Strahl, 1862. Gender feminine.

Gebiopsis A. Milne Edwards, 1868, Nouvelles Archives Muséum Histoire_naturelle, Paris, 4:63. Type species, by monotypy: Gebiopsis nitidus A. Milne Edwards, 1868. Gender feminine.
Gebic ula Alc ock, 1901, A Descriptive Cataloque of the indian Deep-Sea Crustacea Decapoda Macrura and Anomala in the Indian Museum: 201. Type species by monotypy: Gebicula exigua Alcock, 1901. Gender feminine.
Neogebicula K. Sakai, 1982, Researches on Crustacea, Tokvo, spec. no. 1:8,72. Type species, by original designation: Upogebia (Neogebic ula) alaini K. Saka i, 1982. Gender feminine.
Acutigebia K. Sakai, 1982, Researches on Crustacea, Tokyo, spec .no. 1:8, 69. Type species, by original designation: Gebia danai Miers, 1876. Gender feminine.

The species of this genus are burrowers in mud or sandy mud. All the species treated here are used as bait for fishing. Only one of them, U. pusilla is said to be used for human consumption. For most Upogebia species, very little or no information on use as food or bait is available. Therefore, it is well possible that many more species than those included in the catalogue are actually consumed and most likely all species inhabiting accessible places in suffic iently great numbers qualify for use as bait.

Remarks: The species of Upogebia can easily be distinguished from those of Callianassa enumerated here, by the following features:the shape of the carapace, which in the present genus ends in a broad, flat rostrum, sometimes tridentate anteriorly and reaching beyond the eyes; the dorsal surface of the rostrum, which continues onto the a nterior part of the carapace, is elongate, flat and wide, and densely packed with tubercles and tufts of short hair.In Callianassa, the carapace is smooth and naked and ends in a short conic al or 3 - to 5 -pronged rostrum. The pereiopods of the first pair are equal in Upogebia, unequal in Callianassa.

The five species of Upogebia enumerated here all belong to the nominotypical subgenus Upogebia, which is characterized by the presence of one ormore spine(s) on the anterolateral margin of the carapace, just behind the eye, and by the pereiopods of the first pair that are subchelate. There are no epipods on the pereiopods.

Upogebia capensis (Krauss, 1843)
Fig. 431
 Province, South Africa). Type material in Sta atliches Museum für Naturkunde, Stuttgart, Gemany, now lost; neotype locality: "Knysna, South Africa"; neotype male in ZMH, no. 29852.
Gebia major capensis Kra uss, 1843, Die Südafrikanischen Crustaceen :54.
Synonyms: Gebia africana Ortmann, 1894; Upogebia africana - Barnard, 1947. Until 1947 usually only a single species of the subgenus Upogebia was recognized in South African waters, the names Gebia major capensis Krauss, 1843, Gebia subspinosa Stimpson, 1860, and Gebia africana Ortmann, 1894, were considered synonyms Bamard (1947:380-381; 1950: 519) then showed that two species are involved and used for them the names Upogebia africana (Ortmann, 1894) and U. capensis (Krauss, 1843). considering U. sobspinosa (Stimpson, 1860) a synonym of U. capensis. The original description of Gebia major capensis is short and to modem standards very incomplete and does not unequivocally point to be based on one or the other of the South African species; there are arguments for the identity of the type material with both \mathbf{U}. subspinosa and \mathbf{U}. africana, while furthemore the type material is no longer extant. K Sakai (1982:43-46) definitely decided the problem by selecting a neotype for Krauss' species. Unfortunately Sakai chose as the neotype a specimen of \mathbf{U}. africana, upsetting thereby the nomenclature for the two species that was rather consistently used since Bamard in 1947 recognized their distinctness. Sakai's action switched the name capensis from one species to the other. As Sakai's decision is perfectly legal, his nomenclature has to be followed. It is good to realite, however, that in most papers since 1948 the present species is indicated as \mathbf{U}. aficana (Ortmann) and that the name \mathbf{U}. capensis during that period was mostly used for \mathbf{U}. subspinosa (Stimpson).

FAO Names: En - Cape mud shrimp
Type : Type locality of Gebia major capensis: "Tafelbai" (= Table Bay, Cape

Type locality of Gebia africana : "Port Elisabeth" (= Port Elizabeth, Cape Province, South Africa). Holotype in MZS, preserved dry, condition very poor.

Diagnostic Features: Rostrum ending in three teeth; the lateral teeth are placed at the end of a ridge that isseparated from the central part of the dorsal surface of the rostrum by a deep grove On the central part itself a very shallow median groove is present. There are no ventral teeth on the rostrum. The anterolateral borderof the carapace with a single spine behind the eye First pereiopods subchelate. Dactylus of adult male with a longitudinal groove on either lateral surface, and without a tooth on the cutting edge. Palm with 2 dorsal denticulate carinae. Merus without an anterodorsal spine. Coxae of first three pereiopods without spines.

Geographical Distribution : Southem Africa from Olifants River estuary (Atlantic coast of Cape Province, South Africa) to Delagoa Bay (= Bay of Lourenço Marques, Mozambique) (Fig. 432).

Habitat and Biology : "Burrows in the sandy mud of estuaries from mid-tide ta LWS [= Low water spring tide]. A detritus feeder" (Day, 1969: 108)

Size : Total body length 15 to 1.6 cm , ovigerous females 2.7 to

Fig. 432

Interest to Fisheries: In South Africa the species is "used extensively as bait" (Day, 1969: 108), but there are restrictions to its collecting, as according to the law each person may collect "not more than fifty perday and the prawns may not be disturbed or removed by means of a shovel, fork or spade" (Tietz \& Robinson, 1974:88).

Local Names: SOUTH AFRICA: Moddergamaal, Mud prawn.
Literature : Ba mard, 1950:519 Sa kai, 1982:43, text-fig. 9c, pl. A fig. 6, pl. D figs 5.6.

Upogebia major (De Ha a n , 1841)
Fig. 433

UPOG Upog 2

Gebia major De Haan, 1841, in P.F. von Siebold, Eauna Japonica, Crustacea, (5):pl. 35 fig. 7. The description, p. 165, appeared in part 6, published in 1849.

FAO Names: En - Japanese mud shrimp.

anterior part of carapace (dorsal view)

lateral view (after Liu, 1955)

Fig. 433

Type : Type locality: "J a ponia", probably near Naga saki, Kyushu, Japan. Type material in RMNH, now lost.

Diagnostic Features: Rostrum ending in 3 teeth, the lateral at the end of a ridge that is separated from the central part of the rostrum by a deep groove; a shallow median longitudinal groove is present in the central part. The lower surface of the rostrum has no spines. Anterolateral border of carapace with a single spine at the level of the eye. First pereiopods subchelate. Dactylus of adult male with 9 to 11 oblique ridges on the outer surface, and with a low tooth in the proximal half of the cutting edge. Two dentic ulate ridges on the Upper surface of the Palm. Merus of first pereiopod with a distinct subdistal anterodorsal spine; coxa of that leg with a spine.

Geographical Distribution : Northwest Pacific region: S.E. coast of Siberia, USSR, from Olga Bay (about 44"N) southward, Korea, N. China, Kuril Isands, Japan (Fig. 434).

Habitat and Biology : In tidal mud flats. The animals make Y-shaped burrows in the mud and are filter feeders.

Interest to Fisheries: Probably used as bait for fishing. Listed by Liu (1955:66, pl. 24 figs I-6) among the "Economic Shrimps and Prawns of North China". Parisi (1917:23) mentioned 3 specimens obtained at the market of Yokohama, Japan.

Local Names: J APAN: Ana-jyako.

Upogebia pugettensis (Dana, 1852)
Fig. 435
UPOG Upog 3
Gebia pugettensis Dana, 1852, ProceedingsAcademy Natural Sciences, Philadelphia, 6: 19.
Synonyms: Gebia califomica Stimpson, 1856.
FAO Names : En - Blue mudshrimp.

first pereiopod
(from Stevenr. 1928)

(from Hart 1982)

Fig. 435

Type : Type locality of Gebia pugettensis: "in freto Pugettensi, Oregoniae" (= Puget Sound, Washington State, USA). Type material in USNM, now lost.

Type locality of Gebia califomica: "from the coast near Monterey",Califomia, USA. Type material probably lost.
Diagnostic Features: Rostrum ending in three teeth, the median tooth broad and triangular, the lateral teeth much shorter. A groove between the median and lateral teeth, also a very shallow median longitudinal groove. Lower surface of rostrum without spines. Anterolateral border of carapace with a very small tooth at the level of the eye. First pereiopods subchelate. Dactylus of adult male on inner surface with a longitudinal row of 6-12 tubercles, that are placed close together. Cap us with some a nterior spines. Merus with a subdistal a nterodorsal spine. Coxae without spines.

Geographical Distribution : N.E. Pacific region from Valdez Narrows, Alaska, USA (about 60N) to Morro Bay, Califomia, USA (about 3SoN) (Fig. 436).

Habitatand Biology : Burrowing in muddy sa nd of the intertidal zone, sometimes under rocks. Burrows Yshaped, and about 0.6 to 1.0 m deep.

Size : Total body length up to 11 cm (Williams, 1986a. who stated the malesto be smaller than females). Hart (1982;53), on the contrary gave.the total length as up to 15 cm (males), 10.5 cm (females).

Interest to Fisheries: The species is dug for bait in Califomia (Frey, 1971:9, 10), perhaps also in other a reas. Williams (1986a:36) listed a specimen obtained in 1876 on the "San Francisco Market". Ac cording to Hart (1982:53) the species is "of some economic importance due to burrowing activities. On certa in types of oyster beds, Young oysters can be smothered by the mud displaced by these animals Also dykes designed to retain a layer of sea water may be riddled with burrows through which water drains at low tide".

Fig. 436

Local Names: CANADA: Mud shrimp; USA: Elue mud shrimp, Ma rine crayfish, Puget Sound ghost crab (Washington State); Blue mud shrimp (Califomia State).

Literature: \quad Stevens, 1928: 318-324, figs 1-5,20-37; Willia ms, 1986a: 35, fig. 13.

Upogebia pusilla (Petagna, 1792)
Fig. 437

UPOG Upog 4

Astac us pusillus Petagna, 1792, Institutiones Entomologicae, 1:418, pl. 5 fig. 5.
Synonyms: Thalassina littoralis Risso, 1816; Gebia littoralis - Desmarest, 1823; Gebios littoralis - Risso, 1827; Gebia lac ustris C osta, 1840; Gebia venetiarum Nardo, 1869; Upogebia littoralis - Thompson, 1901.

FAO Names: En - Mediterranean mud shrimp.

Fig. 437

Type : Type loc ality of Astacus pusillus : "Habitat in nostri maris arena, sed rarior". In nostri maris obviously stands for the seasnearNaples, where Petagna lived. The whereabouts of the type material is unknown, it must be considered lost.

Type loc a lity of Thalassina littoralis: "environs de Nice", dépt. Alpes Maritimes, S. France. Depository of type material unknown.

Type locality of Gebia lacustris: "Vive nel fango del lago Lucrino", west of Naples, Italy. Whereabouts of type material unknown.

Type locality of Gebia venetiarum: "del Veneto Estuario" "nelle nostre lagune" [= lagoon of Venice, Italy]. Depository of types unknown.

Diagnostic Features: Rostrum ending in 3 teeth, the median long with a rounded apexending in two spines; lateral teeth short, much shorter than half the median tooth, and separated from it by a deep groove. The median groove of the median tooth shallow. No spines on the ventral surface of the rostrum. Anterolateral margin of the carapace with a small but distinct tooth at the level of the eye. First pereiopods subchelate. In the adult male the palm is distinctly widened at the base of the fixed finger, so that the height of the chela is only slightly lessthan the length. Movable finger with blunt tubercles on the cutting edge, but otherwise without tubercles, spinesor ridges. Palm with 2 dorsal rows of spinules. Merus with a subdistal a nterodorsal spine.

Geographical Distribution : Eastem Atlantic region from Bretagne (Atlantic coast of France) to Mauntania (N.W. Africa), also in the entire Mediterranean and in the Black Sea (Fig. 438).

Habitat and Biology : Intertidal and subtidal zones down to about 45 m ; sometimes in estuarine areas. The spec ies makes simple Y -shaped burrows with 2 or more entrances in the mud or sandy mud.

Size : Total body length about 4 to 6.5 cm .
Interest to Fisheries: I found only a single reference indicating that the species is used for human consumption: Pesta (1918: 199) after reporting that the animals are used for fish bait in the Adriatic sea, remarked in parentheses "(Auch gegessen!) [= it is eaten!]." On the other hand there are numerous observations that the species is used as bait for fishing. So Chaud (1984: 169) remarked that on the coast of

Fig. 438 Cantabria (north coast of Spain) "la capture de ces crustacés comme excellents appâts naturels pourla pêche assure la tota lité des revenus pourquelquescentainesde famille", and he also suggested that the species could well be used in the laboratory as a test animal for experiments. Cottiglia (1983:79) stated that in Italy the species "viene esclusivamente usata come esca e come tale é molto ricercata" ($=$ it is only used as bait), more or less contradicting Pesta's statement that the animals are also used for human consumption. To obtain the animals, they are usually dug out of their burrows with spades. But when the mud is very soft, the waterand the mud may be stired with the feet so that the burrows become exposed ordamaged and the animals flee and are easily picked up in the murky water. The most modem and effic ient method, however, is that with a suction pump (the so-called yabbie pump; see under Callianassa australiensis), with which the contents of the burrow, including the shrimp is pumped out in a quick and sudden movement. Finally there is a method by which through the application of a certain pressure the contents of the burrow is forced out; this so-called "casserole" method is described by Chaud (1984:22) and used in Arcachon (S.W. France).

Local Names : FRANCE: Crevette fouisseuse; GERMANY: Maulwurfskrebs, Strandkrebs; TTALY: Corbola, Cic aledda, Rufola, Scardobola; SPAIN Grillo real marino; Cadell de mar (Cataluña); TURKEY: Ma mun; YUG OSIAVIA: Karlic.

Upogebia wuhsienweni Yu,1931, Bulletin Fan Memorial Institute Bioloqy, 2(6):89, fig. 2.
FAO Names: En - Chinese mud shrimp.

Fig. 439

Type: Type locality: "Kia ochow bay" (=J iaozhou Wan, nearQingdao, Shandong Province, N. China) syntypes in Fan Memorial institute of Biology, Beijing, China; present whereabouts unknown.

Diagnostic Features: Rostrum ending in 3 teeth, the lateral about half aslong asthe median. The carina behind the lateral teeth intemupted in the male. The groovesbetween central and lateralteeth wide and deep. Lowersurface of the rostrum with a median row of 3 to 5 spines. Anterolateral border of the carapace with several small teeth behind the eye. The first pereiopods are subchelate. The dactylus in the adult male has a longitudinal row of tubercles on either surface. The palm shows an oblique carina in the anterior part of the inner surface near the base of the dactylus. The dorsal margin of the palm hasa row of 9 or 10 small teeth. The merushasa subdistal anterodorsal spine. A spine is present on the coxa

Ceographical Distribution : China: from Shandong Province (Shantung) to Fujian Province (Fukien); Taiwan Island (Fig. 440).

Habitat and Biology : Probably burrowing in the mud like the other economically important species of this genus.

Size : The typesmeasured 3.1 and 4.6 cm and were described as being Young.

Interest to Fisheries: Liu (1955:68, pl. 24 figs 7-12) included this spec ies in his "Ec onomic shrimpsand prawnsof North China", and for that reason it is mentioned here.

Literature : Sa kai, 1982:59, text-figs 1 1d, 12f, g, $13 \mathrm{~g}, \mathrm{~h}, \mathrm{pl} . \mathrm{G}$ figs 1,2.

Fig. 440

Callianassidae Dana, 1852 ProceedingsAcademv Natural Sciences, Philadelphia, 6:12, 14. Na me placed on the Official List of Family Names in Zoology, in Opinion 434 (published in 1956).

Recent studies of the family do not agree on the number of genera to be recognized. De Saint Laurent $(1973,1979)$ divided the family into 9 genera, while Poore \& Griffin (1979) only recognized three, as several of their species of Callianassa S.I. could not be assigned with confidence to any of De Saint Laurent's genera. Poore \& Griffin therefore only recognized the genera Callianassa Leach, 1814, Ctenocheles Kishinouye, 1926, and Gouretia De Saint Laurent, 1973, and placed all the othergenera recognized by De Saint La urent in the synonymy of Callianassa. Recently, Manning \& Felder (1986:437-443) redefined the genus Callichirus Stimpson, 1866, placing in it 4 spec ies formerly assigned to Callianassa; they convincingly showed Callichirus to be distinct from Callianassa s.l. None of the four species at present known to belong to Callichirus has been reported to be of economic importance.

Without taking a definite stand on the generic taxonomy of the Callianassidae, I recognize here, for purely practical reasons, only the genera Callianassa, Callichirus, Ctenocheles and Gouretia. All species reported to be of interest to fisheries belong to the genus Callianassa s.l. as accepted here.

Callianassa Leach, 1814

CALL Call

Callianassa Leach, 1814, Brewster'sEdinburah Encyclopaedia, 7:400. Gender feminine. Name placed on the Official List of Generic Names in Zoology by the Intemational Commission on Zoological Nomenclature in their Opinion 434 (published in 1956).

Type Species: by monotypy: Cancer (Astac us) subterraneus Montagu, 1808. Genderfeminine. Name placed on the Official List of Generic Namesin Zoology by the Intemational Commission on Zoologic al Nomenclature in their Opinion 434 (published in 1956).

Synonyms: Montagua Leach, 1814, Brewster'sEdinburah Encyclopaedia, 7:436. Type species, by monotypy: Cancer (Astacus) subterraneus Montagu, 1808. Gender feminine.

Gebios Risso, 1822, Joumal de Physique, de Chimie, d'Histoire naturelle et desArts, 95:243. Type species, by monotypy: Gebios davianus Risso, 1822 ($=$ junior subjective synonym of Cancer candidus Olivi, 1792). Gender masculine.

Gebius Aga ssiz, 1846, Nomenclator Zoologicus Index universalis:160. Emendation of Gebios Risso, 1822. Gender masculine.

Typaea Dana, 1852, Proceedings Academy Natural Sciences, Philadelphia, 6:14,19. Type species, by monotypy: Trypaea australiensis Da na, 1852. G ender feminine.

Mesostylus Bronn \& Roemer, 1852, Lethaea qeognostica (ed.3) 2 (5):353. Type spec ies, by monotypy: Pagurusfaujasi Desmarest, 1822. Gender masculine.

Glypturus Stimpson, 1866, Proceedings Chicago Academy Sciences, 1:46. Type spec ies, by monotypy: Glypturus acanthochirus Stimpson, 1866. Gender ma sc uline.

Cheramus Bate, 1888,. Report Voyage Challenger (7ool.), 24:x, xi, xlvi, Ixxv, 7, 10,26,28,30,36. Type species, by present designation: Cheramus orientalis Bate, 1888. Gender masc uline.

Scallasis Bate,1888, Reportt Voyage Challenger (Zool.), 24:xi. Ixxv, 7,10,28,34,36. Typespecies,bymonotypy: Sc allasis amboinae Bate, 1888. Gender feminine.

Calliactites Borradaile, 1903, Annals Magazine Natural History, (7)12:54. Type species, by original designation: Callianassa secura Lanchester, 1902. Gender masculine.

Lepidophthalmus Holmes, 1904, ProceedingsCalifomia_Academy Sciences, (3)3:311. Type spec ies, by monotypy: Lepidophthalmus eiseni Holmes, 1904 ($=$ a subjective junior synonym of Callianassa bocourti A. Milne Edwards, 1870). Gender masculine.

Calliax De Saint Laurent, 1973, ComptesRendushebdomadaires séancesAcadémie Sciences, Paris, (D) 277:514. Type species, by original designation and monotypy: Callianassa lobata De Gaillarde \& Lagardère, 1966. Genderfeminine.

Callianopsis De Saint Laurent, 1973, Comptes Rendushebdomadaires séancesAcadémie Sciences, Paris, (D) 277:515. Type species, by original designation and monotypy: Callianassa goniophthalma Rathbun, 1901. Gender feminine.

Anacalliax De Saint La urent, 1973, Comptes Rendushebdomadaires séancesAcadémie Sciences, Paris, (D)277:515. Type species, by original designation and monotypy: Callianassa argentinensis Biffar, 1971. Gender feminine.

Calliapagurops De Saint Laurent, 1973, Comptes RendushebdomadairesséancesAcadémie Sciences, Paris, (D)277:515. Type species, by original designation and monotypy: Calliapagurops charcoti De Saint Laurent, 1973. Gender masculine

Paracalliax De Saint Laurent, 1979, ComptesRendushebdomadaires séancesAcadémie Sciences, Paris, (D)288: 1396. Type species, by original designation and monotypy: Parac alliax bollorei De Saint Laurent, 1979. Gender feminine.

Of the many (about 150) species of Callianassidae known at present, only 9 have, to my knowledge, been reported as being of interest to fisheries (either as bait orfor human consumption). These 9 species are the only ones dealt with in this catalogue. Of each, a short morphological account of the most salient diagnostic features is given.

Eight of these nine species seem to be used exclusively as bait, while the ninth, Callianassa tumerana, is used asfood for humans in W. Afric a. However, since most public ations on Callia nassids do not provide information on utilization, it seems likely that many more species actually are used as bait. Scylr It seemsobviousthat any speciesoccuming-in dense populations in the littoral or sublittoral zones and can easily be taken by digging or by suction pumps, is hence a likely candidate for bait. The present catalogue therefore may be quite incomplete and any additional information Will be welcome.

The species of Callianassa are burrowers in mud or in muddy Sand. They are characterized by their elongate, soft body covered by a thin integument. The carapace is smooth and glabrous, on the abdominal pleura a tuft of hairs may be present, but otherwise the abdomen is also smooth and naked. The rostrum usually issmall and does not reach beyond the eyes, it is triangular, or conical and sometimes reduced to a low central angle of the anterior margin of the carapace; in some species, however, it ends in 3 or 5 large teeth. The eyes are small, placed close to each other, sometimes with the inner margins touching. The pereiopods of the first pair are large and asymmetrical, and have well developed chelae. The legs of the second pairare small, also chelate. The following legs are simple. The abdomen is longer than the carapace

Typaea australiensis Da na, 1852, ProceedingsAcademy Natural Sciences, Philadelphia , 6: 19.
Synonyms: Trypaea porcellana Kinahan, 1856.
FAO Names: En - Australian ahost shrimp.

anterior part of body (dorsal view)

third maxilliped

large cheliped of male

telson and uropods
(all from Poore 13 Griffin, 1979)
lateral view
(after Grant, 1978)
Fig. 441

Type : Type locality of Trypaea australiensis: "in oris Illawa rae Austra liae orientalis" (= mouth of Illa wa ra Lake, S. of Sydney, New South Wales, Australia) Types in USNM, now lost.

Type locality of Trypaea porcellana: "washed up at St Kilda" ($=$ St. Kilda, 37052^{\prime} S $1444^{\circ} 59^{\prime}$ E, at present a district of Melboume, Victoria, Australia). Two syntypes in NMI.

Diagnostic Features: Rostrum a short, blunt and wide triangle, farovereached by the squa rish eyes (almost with their, full length). No antennal spine, but antennal angle low, broad and rounded. Antennularpeduncle reaching with more than half the length of the third segment beyond the antennal peduncle. Third maxilliped with merus and ischium strongly widened, forming an operculum; distal three segments all na row, each three times or more longer than wide.Large chela in adult male with a deep concavity in the anterior margin of the palm just above the base of the fixed finger. Carpus about as long as the palm and slightly longer than high. Merus with a large, curved, bluntly rounded lobe in the basal part of the lower margin. Telson quadrangular, longer than wide with broadly rounded posterolateral angles, without spines. Endopod of uropod broadly oval, only slightly longer than telson.

Geographical Distribution : E. and S.E. Australia, from Townsville (N. Queensland) to Port Phillip Bay (Victoria). The most abundant Callianassid in E. Australia (Fig. 442).

Habitat and Biology : On intertidal Sand- or mud-flats, often in or near estuaries. The animals burrow in the soft substratum.

Size : Total body length 1.5 to 6 cm .
Interest to Fisheries: In E. Australia the species is extensively used as bait for fishing. The so-c alled yabbiepumps received their name from the Australia bait collectors, who were the first to use this suction pump for collecting these burrowing animals. As described by
 Hailstone (1962:29-30) there are 3 types of yabbie-pumps (also called slurpguns). Two of these typesare manual and are "essentially coring tubes, which, when pushed into the sand and extracted, remove a core of about 2 ft . [= about 60 cm$]$ in length and from 2 in . to 4 in . $[=5$ to 10 cm$]$ in diameter. Either pump is then reinserted in the hole So formed and suction is applied (with the aid of a plunger in one model or'by closing off all air outlets a nd withdra wal of the pump in the other model). As a results of this suction, water, Sand and yabbies are drawn into the hole and removed " (Hailstone, 1962:30). The third type is motor-driven and "works on the reverse principle, i.e.,water under pressure is driven deeply into the Sand and yabbies are flooded to the surface". The pump with the plunger is now used extensively in many parts of the world for collecting burrowing Crustacea from sandy or muddy substrates in the intertidal and subtidal Zones asdesc ribed by Manning (1975:318-319).

Local Names: AUSTRALIA: Ma rine yabbie, Burrowing shrimp, G host nippers.
Literature : Hailstone \& Stephenson, 1961:259-285; Poore \& G iffin, 1979:250-256, figs 18-20.

Callianassa biffari new name for Callianassa affinis Holmes, 1900, Occasional Papers Califomia Academy Sciences, 7:162 (a junior primary homonym of Callianassa affinis A. Milne Edwards, 1860, Annales Sciences Naturelles, Paris, (Zool.) (4)14: 188).

Synonyms : Biffar (unpubl. Ph.D. thesis, 1972, University of Miami) pointed out that the well known name Callianassa affinis Holmes, 1900 for a spec ies from C a lifomia is a junior primary homonym of Callianassa affinis A. Milne Edwards, 1860, fora fossil species from the Lutetian of Central France (Pames). Biffar indic ated the species as "Callianassa sp. A, new name". So far as is known to me no subsequent author has proposed a replacement name for the species (most continued to use the name affinis for it). AsDrBiffar informed me, circumstances beyond his control forced him to end his carcinological researches, and he Will not be able to propose a new name himself. Therefore I believe it best to propose such a name here. It gives me great pleasure to dedicate this speciesto Dr Biffar, who was the first to discover the homonymy, and who has done so much useful work in Decapod taxonomy.

FAO Names: En - Beach ghost shrimp.

telson and uropods

large cheliped of female
(all after Biffar, unpubl.)

Fig 443

Type : Type locality (for C. affinis and thus also for C. biffari):"Point Loma, Calif." (= Point Loma near San Diego, southem Califomia, USA). Lec totype male in USNM, no. 86810; 2 pa ralectotypes, probably lost.

Diagnostic Features: The rostrum is a low blunt angle in the median part of the anteriormargin of the carapace, being overreached by the eyes with practic ally their full lengih. The eyes are tria ngular with a blunt top. The antennal angles are low, rounded, without tooth. Antennular peduncle only slightly longer than antennal peduncle. Third maxilliped with ischium and merus strongly widened to form a kind of operculum; the distal three segments much na rower, each about twice as long aswide. Large chela in adult male with a small concavity above the base of the fixed finger. Carpus slightly shorter than Palm, about as high as long. Lower margin of merus with a broad forward directed hook-shaped process, which ends in a tria ngulartop. Telson about as long as wide, gradually narrowing posterionly: the convex lateral margins merge evenly with the posterior margin. Each posterolateral angle bears two very small dentic les, no median denticle present. Endopod of uropod broadly oval, slightly longerthan telson.

Geographical Distribution : Eastem Pacific region: Sa nta Monica Bay (Califomia, USA) to San Quintin Bay (N.W. Baja Califomia, Mexico) (Fig. 444).

Habitat and Biology : On open beaches with a rocky boulder-covered shore (Frey, 1971:9). The speciesthus hasa preference for a different habitat from those chosen by \mathbf{C}. califomiensis and C. gigas (see there). The spec ies constructs rather complic ated burrows in the soft sandy substratum.

Site : Total body length 2.5 to 6 cm .
Interest to Fisheries: In Califomia the species is used as bait together with C. califomiensis a nd \mathbf{C}. gigas, a nd in the accounts of the bait fishery the three are usually treated together. C. califomiensis is the most important of the three (see there for further details). The burrows of \mathbf{C}. biffari are often a mong rocks, which first have to be removed before digging can start

Local Names : USA: Beach ghost shrimp, Ghost shrimp (Califomia).

Literature: Haig \& Abbott, 1980:580, fig. 24.3.
Fig. 444

Callianassa califomiensis Da na, 1854 ProceedingsAcademy Natural Sciences, Philadelphia, 7:175.
Synonyms : Callianassa occidentalis Stimpson, 1856.
FAO Names: En - Bay ghost shrimp.

(all after Biffar, unpubl.)
Fig. 445

Type : Type locality of C. califomiensis: "Califomia". Type material in USNM, now lost.
Type locality of \mathbf{C}. occidentalis: "This species lives in the holes which are seen in such numbers at low water on the smooth sandy beaches near the entrance of San Francisco Bay", Califomia USA. Type material now lost.

Diagnostic Features: Rostrum hardly notic eable, a slight angle in the anteriormargin of the carapace. Eyestriangular, reaching with their full length beyond the rostrum. Antennal angles rounded, without spine. Antennal peduncle somewhat shorter than antennular. Third maxilliped with merus and ischium strongly widened to an operculum; last three segments far na rower, each about twice aslong as wide. Large chela of adult male with a distinct concavity in the anterior margin of the palm above the base of the fixed finger,this concavity absent or inconspic uous in females and juvenile males. Carpus about as long as the Palm, and about as high as long. Merus with a distinct broad and bluntly truncated process in the basal part of the lowermargin; in the female this process is more in the shape of a triangular tooth. Telson about quadrangular, longer than wide and slightly and gradually na rowing posteriorly; the posterolateral angles are broadly rounded; the posterior margin shows a small tria ngular tooth in the middle; no other teeth or spines are present. Endopod of uropod squarish with rounded angles, slightly longer than the telson.

Geographical Distribution : Eastem Pacific from Alaska (USA) to northwestem Baja Califomia, Mexico (Fig. 446).

Habitatand Biology : In tidal flats of Sand and mud on the sea coasts and in estuarine areas. The animals make their burrows in the soft substrate.

Size : Total body length up to about 11.5 cm .
Interest to Fisheries: The species (together with C. biffari and C. gigas) is collected as bait for fishing along the Califomia coast, and sold assuch in bait shopsThe animals are dug out with spades and forks, or by "stomping the mud overthe burrow entrance which puddlesthe mud, seals off the burrow, and forces the shrimp to swim to the surface where it can be easily picked up" (Tumer \& Sexsmith, 1964:37).

Local Names: USA: Bay ghost shrimp, G host shrimp, Saltwater crayfish (Califomia).

Literature : Stevens, 1928:333-340, figs 10-13, 16-17, 5571; Frey, 1971:9-10.

Fig. 446

Callianassa gigas Da na, 1852
Fig. 447
CALL Call 4
Callianassa gigas Dana 1852, ProceedingsAcademy Natural Sciences, Philadelphia , 6:19.
Synonyms: Callianassa longimana Stimpson, 1857; Callianassa (Trypaea) gigas - Borradaile, 1903; Callianassa
(Trypaea) longimana - Borradaile, 1903
FAO Names: En - Giant ghost shrimp

anterior part of body (dorsal view)

lateral view
(after Hart, 1982)
Fig. 447

Type : Type locality of C. gigas: "in freto Pugettensi, Oregoniae" (=Puget Sound, Wa shington State, USA). Type in USNM, now lost.

Type locality of C. longimana: "Puget Sound" (=Steilacoom on Puget Sound between Tacoma and Olympia, Washington State, USA). Type material in the Museum of the Boston Society of Natural History, in ANSP (not located in 1989). and in USNM (lost).

Diagnostic Features: Rostrum a low median angle on the anterior margin of the carapace. Eyeselongate triangular, pointed, reaching with their full length beyond the rostrum. Antennal angles blunt, without spine. Antennal peduncle practically aslong as the antennularpeduncle. Third maxilliped with merus and ischium strongly expanded forming an operculum; the last three segments of the maxiliped less than half as wide as the merus, but not very slender, twice or less than twice aslong as wide.Large chela of adult male with the concave part of the anterior margin of the palm above the base of the fixed finger absent or hardly notic eable. Carpus distinctly longerthan Palm. Merus with a large and ratherwide hook-shaped process in the basal part of the lowermargin;in the females this process is reduced to a small triangular tooth. Telson quadrangular, longer than wide and slightly narrowing posterionly; posterolateral angles rounded. Posterior margin with a small triangular median denticle; no other spines or teeth on telson. Endopod of uropod broad, quadrangularor slightly tria ngular, with rounded angles and slightly longer than telson.

Geographical Distribution : Eastem Pacific region from Vancouver Isand (British Columbia, Canada) to San Quintin Bay (N.W. Baja Califomia, Mexico) (Fig. 448).

Habitat and Biology : Lower intertidal zone of tidal flats on the sea coast and in estuaries. Burrowing in soft substrate of sand and mud. The species is less frequent than \mathbf{C}. califomiensis, which lives in the same habitat.

Size : Total body length about 12.5 to 15 cm ; a larger species than C. califomiensis.

Interest to Fisheries : Like C. califomiensis a nd C. biffari, the present species is taken as fish bait on the Califomia coast and sold in bait shops. The animalsare caught in the same way as C. califomiensis.

Local Names : USA: Ghost shrimp, Long-handed ghost shrimp.

Literature : Stevens, 1928:325-333, figs 6-9, 14-15, 38-54.

Fig. 448

Fig. 449
CALL Call 5

Callianassa japonica Ortmann, 1891
Callianassa subtenanea japonica Ortmann, 1891, Zoologische Jahrbücher (Systematik, Geographie und Biologie), 6: 56.

Synonyms: Callianassa hamandi Bouvier, 1901; Callianassa califomiensis japonica Bouvier, 1901; Callianassa (Typaea) hamandi - Borradaile, 1903; Callianassa (Trypaea) japonica - Borrada ile, 1903; Callianassa califomiensis bouvieri Makarov, 1938.

FAO Names : En - Japanese ghortshrimp
Type : Type locality of C. subteranea japonica: "J apan, Tokiobai"; holotype female, in MZS, preserved in alcohol, condition very poor.

Type locality of \mathbf{C}. hammandi: "Japon"; syntypes (1 male, 3 females) in MP, no. Th 80, in alcohol, condition mediocre.

Type locality of C. califomiensis japonic a (and C. c. bouvieri, which is its replacement name): "Japon"; holotype female in MP, no. Th 70, in alcohol, condition rather good.

Diagnostic Features: Rostrum a low blunt angle of anterior margin of carapace. Eyes triangular, overreaching rostrum with their full length. Antennal spine absent, antennal angle inconspicuous and blunt. Peduncles of antennula and of antenna of about same length. Third maxilliped with merus and ischium considerably widened, forming an operculum; the last three segments narrow, about twice as long as wide. Large chela of adult male with a distinct concavity in the anterior margin above the base of the fixed finger; in females and Young males this concavity is absent or insignificant. Cappus about aslong aspalm and about as long as high. Merus of adult

anterior part of body (dorsal view)

third maxilliped

(all from Lu, 1955)

Fig. 449 males with a distinct rounded,
large cheliped of female

forwards produced lobe in basal half of lower margin, Upper margin of merus serrate; in females and young malesthe lobe is much smaller, more triangular, upper margin of merus smooth or indistinctly serrate. Telson longer than wide at base, quadrangular in outline, narrowing slightly posteriorly; posterolateral angles rounded. A small dentic le present in the middle of the posterior margin, otherwise telson unarmed. Endopod of uropod broadly quadrangular with rounded comers, slightly longer than telson.

Geographical Distribution : Westem Pacific region: S.E. Siberia, Korea, N. China and J apan (Fig. 450) Also found in fossil state in Japan.

Habitat and Biology : On intertidal mud flats in protected habitats. The animal makes its burrows in the soft substrate.

Size : Total body length 1.2 to 6 cm , rarely 7 cm . Ovigerous females with a body length of 2.5 to at least 5 cm .

Fig. 450

Interest to Fisheries : Supposedly this spec ies, like most other Callianassa listed here, is used as ba it for fishing. The only mention of its ec onomic importance known to me is that by Liu (1955:63, pl. 23 figs 1-5) who included the species (under the name Callianassa hammandi) in his "Economie Shrimps and Prawns of North China".
tocal Names: J APAN: Nihon-suna-moguri.

Callianassa kraussi Stebbing, 1900
Fig. 451
CALL Call 6

Callianassa kraussi Stebbing, 1900, Marine_Investigationsin_South_Africa, 1:39, pls 2,3.
Synonyms: Callic hirus kraussi - Stebbing, 1910
FAO Names: En - Pink ghost shrimp.

telson and uropods

(all after Stebbing. 1900)

Fig. 451

Type : Type loc ality: "Cape of Good Hope, Gordon's Bay, a little below high water mark". Syntypes in SAM.
Diagnostic Features: Rostrum broadly triangular, farovereached by the eyesthat are oval. Antennal angle low and blunt, without spine. Antennular peduncle much longer than antennal peduncle, which it overreaches with more than half the length of the last segment. Third maxilliped with merus and ischium strongly widened to form an operculum. Capus somewhat widened, being less than twice aslong as wide; propodus strongly widened, being wider than long; dactylus slender. Large chela of adult male with a deep, but rather wide concavity in the anterior margin of the palm above the fixed finger. Capusabout aslong asPalm, and aslong ashigh. Merus with a rounded lobe in basal part of lower margin. Surface of largercheliped with numerous tubercles. Telson distinctly wider than long and much shorterthan uropods, being only somewhat more than half aslong as endopod. Lateral margins of telson convex, posterolateral comers rounded, posterior margin almost straight, without a spine. Endopod of uropod elongate oval.

Geographical Distribution: Southem Africa from Lambert's Bay (west coast of Cape Province, South Africa) to Delagoa Bay (=Bay of Lourenço Marques, Moza mbique) (Fig. 452).

Habitat and Biology : Littoral zone to 0.5 m deep, in sheltered bays and estuaries. Substrate sand, in which it digs its burrows, the populations usually are very dense.-

Size : Total body length up to 7 cm .
Interest to Fisheries : Day (1969: 108) mentioned that in South Africa the species is considered as forming "good bait" and it is partially protected in so far, that only 50 specimens can be taken per person perday, while the use of spades and forks is prohibited (but yabbie pumpsare not). The importance of the species as bait in southem Africa also is demonstrated by the fact that when in 1984 C iskei issued a series of 4 stamps figuring bait animals, the 11 c stamp showed the present species.

Local Names : SOUTH AFRICA: Pienkgamaal, Pink prawn, Sand prawn.

Fig. 452

Literature : Ba ma rd, 1950: 506-509, fig. 94.

CALL Call 7

Callianassa petalura Stimpson, 1860
Fig. 453
Callianassa petalura Stimpson, 1860, ProceedingsAcademy Natural Sciences, Philadelphia , 1860:23.
Synonyms: Callianassa (Typpaea) petalura - Borradaile, 1903; Callianassa gigasjaponic a Makarov, 1935; Callianassa gigas eoa Makarov, 1938.

FAO Names: En - Flower ghost shrimp

large cheliped of female

Type : Type locality of C. petalura: "In portu "Simoda" J a poniae" (=Shimoda, Izu peninsula, Shizuoka prefecture, Honshu, Japan). Type material probably lost in the 1871 Chicago fire.

Type loc ality of C. gigasjaponica and C. g. eoa (the latter being a replacement name for the preoccupied former): "J a panisches Meer, Meerbusen Peter der Grosse, Bucht Patrokl" (=Patrokol Bight (Bukhta Patrokl) in Peter the Great Bay (Zaliv Petra Velikogo)), S.E. Siberian coast of Sea of J apan. Holotype male in Hydrology Institute, Leningrad, USSR.

Diagnostic Features: Rostrum very inconspic uous, a wide angle in the anteriormargin of the carapace, overreached by the full length of the eyes. The eyes bluntly tria ngular or quadrangular. Antennal angle likewise inconspic uously tria ngular, without antennal spine. Antennular peduncle distinc tly longer than the antennal peduncle, reaching beyond it with more than half the last segment. Third maxilliped with the isc hium and merus expanded to form a distinct operculum. Large chela of adult male with a small concavity in the anteriormargin of the palm above the fixed finger. Carpus somewhat longerthan the palm and longerthan high. Merus with a distinct process in the basal half of the lower margin; this process produced forward, ending in a na rrowing rounded top. In the femalesthis process is reduced to a small triangular tooth. Telson quadrangular slightly shorter than the uropods. The endopod of the uropod broadly triangular with rounded comers.

Geographical Distribution : S.E. Sibenia, N. China, J apan (Fig. 454).
Habitat and Biology : On sand or mud flats of coasts that are more exposed than those where C. japonic a isfound. The species makes its burrows in the soft substrate.

Site : The totalbody lengthis 1.5 to 5 cm (mates), 1 to 5 cm (females), 2.8 to 5 cm (ovigerous females).

Interest to Fisheries: The only reference known to me, conceming this a spect of the species, is its inclusion in Liu's (1955:65, pl. 23 fig. 6-9) "Economic shrimpsand prawns of North China". It is most likely used as fish bait.

Local Names: JAPAN: Suna-moguri.
Citerature : Sakai, 1969:233.

Fig. 454

Callianassa tumerana White, 1861, Proceedings ZoologicalSocietv_ondon, 1861:42, pl. 6.
Synonyms: Callianassa krukenbergi Neumann, 1878; Callianassa diademata Ortmann, 1891; Callianassa (Callichirus) tumerana - Borradaile, 1903; Callianassa (Callichirus) krukenbergi - Borradaile, 1903; Callianassa (Callichirus) diademata - Borradaile, 1903.

FAO Names: En - Cameroon ghost shrimp.
Type : Type locality of C. tumerana: "Afric a occ. (Cameroons)";holotype in BM, no 58.36, in alcohol, condition fair.
Type loc a lity of C. krukenbergi: "Central-Amerika" (this evidently is an incorect statement of the type locality, as the spec ies, before orsince, has never been found outside West Africa); type material in SMF(not located in 1989) where it should be on pemanent loan from the Zoological Museum Heidelberg University, Gemany.

Type locality of C. diademata: "Afrika. Vielleicht aus Westafrika"; holotype male in MZS, preserved in alcohol, condition fair.

(dorsal view)
(from Le Loeuff \& Intes, 1974)

lateral view

large cheliped of male

large cheliped of female
(from De Saint Laurent \& Le Loeuff, 1979)

(from Le Loeuff \& Intes 1974)
Fig. 455

Diagnostic Features: Rostrum very distinct and reaching beyond the comea of the eyes; in adult specimens the rostrum ends in three or five large teeth of equal size. In juveniles the rostrum is a simple elongate na rowly tria ngular tooth which reaches beyond the middle of the eyes. The a ntennal angles are bluntly rounded and unarmed. The antennularpeduncle reaches with about half of the third segment beyond the antennal peduncle. The third maxilliped has the merusand ischium widely expanded to form an operculum. Also the carpus (which is only slightly longerthan wide) a nd especially the propodus (which is much widerthan long) are distinctly widened. The dactylus isvery slender. The large first pereiopod of the female showson the outer surface of the palm nearthe base of the fixed finger, a deep crescent-shaped depression with tubercles and spinules; this depression is not present in the males, where the anterior
margin of the palm showsa ratherwide not too deep concavity. In both sexes the carpus of the larger leg is shorter than the Palm. The merus has a short process in the basal part of the lowermargin, which ends in a few small Sharp teeth. The telson is slightly broader than long and is distinctly shorter than the elongate, roughly diamond-shaped endopod of the uropod. The lateral margins of the telson are convex. In adult specimens the posterior margin of the telson consists of three bluntly rounded lobes; in the Young the posterior margin of the telson is about straight but for a median concavity. No spines are found on the telson.

Geographical Distribution : West Africa from the Ivory Coart to Congo (Fig. 456).

Habitatand Biology : Li ke most, if not all Callianassa species, C. tumerana lives in burrows in the mud. It is found in estuarine areas, sometimes in practic ally fresh water. Every few (3 to 5) years the species swams in enormous numbers in the slightly brackish or almost fresh waters of the estuaries.

Size : Total body length 5.5 to 14.5 cm .

Fig. 456

Interest to Fisheries : The swaming of C. tumerana is the sign for the native population for large scale fishing activities. With baskets and with their bare hands the people from Cameroon catch enormousquantities while wading out into the river. Monod (1927:595-601; 1928:117-121) gave a vivid account of the fishery for these Callianassids in the cameroon River nearDouala. The female shrimps are eaten whole; the malesare said to contain a substance that intates the throat. The male abdomina are pressed and produce a kind of oil. The females are eaten and are highly esteemed asfood. Part of the catch iseaten fresh, part isdried forlater use in sauces and Soups. A little known account of the fishery is given by Mary H. Kingsley (1897:402): "This swa ming of the crayfish oc curs about every five years, and for days the river-water is crowded with them, So that you can bale them out by basketfuls. This the native does, accompanying hisoperations with songs and tom-toms, and he then eats any quantity of them; another quantity he smokes and preserves, in what he pleasesto regard as a dried state, for sauce making; and the greatest quantity of all he chucks in heaps to fester round his dwellings".
local Names: CAMEROON: Mbéatoé, Mbotoré.
Literature : De Saint Laurent \& Le Loeuff, 1979:64, figs 14c, 19e, 20a-d, 23 a-e.
Remarks: This species is probably the only crustacean (and certainly the only Thalassinid) for which a country is named. As reported by Vanhoffen (1911) and Monod (1927, 1928), when the Portuguese in the 15th Century discovered the Cameroon River, they a mived at a time that C. tumerana was swaming; greatly impressed by this phenomenon they named the river Rio dosCamarãos (shnimp river) and a nearby cape Cabo dosCamarãos. The English transiterated this to Cameroons River, and the name Cameroons was used for the country and also adopted in other languages (Cameroun in French, Kamerun in Geman, Kameroen in Dutch, etc.).

Callianassa tymhena (Petagna, 1792)
Fig. 457
CALL Call 9
Astac us tymenus Petagna, 1792, Institutiones Entomologicae, 1:418, pl. 5 fig. 3.
Synonyms: Callianassa laticauda Otto, 1828; Callianassa (Callichirus) stebbingi Borradaile, 1903; Callianassa (Callichirus) latic auda - Borradaile, 1903.

FAO Names: En - Sand ghost shrimp.

anterior part of body (dorsal view)

third maxilliped
(from De Saint Laurent \& Bozic,1976)

Type : Type loc ality of C. tymena: "In nostri maris arena habitat", i.e. the sea nearNaples, Italy, where Petagna was a teacher. Whereabouts of type material unknown.

Typé locality of Callianassa laticauda: "Ich fand diesen Krebs in ziemlicher Anzahl zu Nizz" (=Nice, dépt. Alpes Maritimes, S. France). Depository of syntypes unknown.

Type loc ality of C. stebbingi: Jersey, Channel Islands, UK. Two syntypes in BM, no. 84.18, a lcohol, condition fair.
Diagnostic Features: Rostrum short and broadly triangular with tip blunt. Eyes bluntly triangular, reaching beyond rostrum with practic ally their full length. Antennal angles also bluntly angular, without spine. Antennular peduncle slightly longer than antennal peduncle. Third maxilliped with merus and ischium expanded to form an operculum; last three segments not widened, much na rrower and slenderer than operculum. Large chela without deep concavity in anterior marg in of palm. Carpus as long as or slightly shorter than palm, and about as long as high. Merus with a rounded lobe in the basal part of lowermargin; this lobe crenulate and not ending in a sharp point. Telson about as long as wide. Lateral margins convex, forming a regular curve with posterior margin. No spines present on telson. Endopod of uropod broadly oval orquadrangularwith rounded comers, slightly longerthan telson. Colourpale pink.

Geographical Distribution : Eastem Atlanlic region from the North Sea and the Kattegat to Mauritania (N.W. Africa), also in the entire Mediterranean (Fig. 458). Previous records from the Black Sea may pertain to C. candida (Olivi, 1792) a species also known as C. pontica Czemiavsky, 1884 or C. pestae De Man, 1928.

Habitat and Biology : The species is found from the mesolittoral zone to a depth of a few meters (there are records of depths of 70 m). It burrows in the sand or muddy sand. The burrows may be 40 cm deep or more and have several exits. Water with low salinity is avoided

Size : Total body length up to 7 cm .
Interest to Fisheries : Already Petagna (1792:418) in the original description remarked : "piscium esca praestantissima". Cottiglia (1983:85) also observed that the species and especially the large specimens are

Fig. 458 used as bait by sport fishemen, although it does not show the same resistance to the fish hook as does Upogebia pusilla.

Local Names: G ERMANY: Maulwurfkrebs, Sandkrebs; ITALY: Corbola selvatic a falsa, Scardobola; Corbola salvadega (Veneto); SPAIN: Topo de mar, Talp de mar (Cataluña).

Literature : Cottiglia, 1983:80-85, fig. 27a, 30, 31.
3. LIST OF SPECIES BY MAJOR MARINE FISHING AREAS

Fig. 459 Major fishing areas for statistical purposes

SPECIES	PAGE	GEOGRAPHICAL DISTRIBUTION																		
		MAJOR MARINE FISHING AREAS FOR STATISTICAL PURPOSES																		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
THAUMASTOCHELIDAE Thaumastocheles japonicus	23													-						
Thaumastocheles zaleucus	24				-															
Thaumastochelopsis wardi	25										.					-				
NEPHROPIDAE Acanthacaris caeca	26				-															
Acanthacaris tenuimana	28										-			-		-				
Nephropides caribaeus	31				-															
Nephropsis acanthura	35										\bullet					\bullet				
Nephropsis aculeata	36		-		-															
Nephropsis agassizii	37				-			-												
Nephropsis atlantica	38			\bullet		-			\bullet											
Nephropsis carpenteri	39										\bullet	\bullet		-						
Nephropsis ensirostris	41										-	\bullet				\bullet				
Nephropsis malhaensis	42										\bullet									
Nephropsis neglecta	42				\bullet															

SPECIES	PAGE	GEOGRAPHICAL DISTRIBUTION																		
		MAJOR MARINE FISHING AREAS FOR STATISTICAL PURPOSES																		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Nephropsis occidentalis	43																-		-	
Nephropsis rosea	44				-															
Nephropsis stewarti	45										-	-		-		-				
Nephropsis suhmi	46										-					-				
Nephropsis sulcata	47										-					-				
Thymops birsteini	48							-		-									-	
Thymopsis nilenta	49									-										
Eunephrops bairdii	54				\bullet															
Eunephrops cadenasi	55				-															
Eunephrops manningi	55				-															
Homarus americanus	58		-																	
Homarus capensis	59								-											
Homarus gammarus	60			-		-	-													
Metanephrops andamanicus	66										-	-				-				
Metanephrops arafurensis	67															-				
Metanephrops armatus	67													-						

SPECIES	PAGE	GEOGRAPHICAL DISTRIBUTION																		
		MAJOR MARINE FISHING AREAS FOR STATISTICAL PURPOSES																		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Metanephrops australiensis	68											-								
Metanephrops binghami	70				-															
Metanephrops boschmai	71											-								
Metanephrops challengeri	72																	-		
Metanephrops formosanus	73													-						
Metanephrops japonicus	74													-						
Metanephrops mozambicus	75										-									
Metanephrops neptunus	76					,						-		-						
Metanephrops rubellus	77							-												
Metanephrops sagamiensis	78													-						
Metanephrops sibogae	79															-				
Metanephrops sinensis	80													-						
Metanephrops thomsoni	81													-		-				
Metanephrops velutinus	82											-				-				
Nephrops norvegicus	83			-		-	-													
Thymopides grobovi	85												-							

SPEECIES	PAGE	GEOGRAPHICAL DISTRIBUTION																		
		MAJOR MARINE FISHING AREAS FOR STATISTICAL PURPOSES																		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
GLYPHEIDAE Neoglyphaea inopinata	89															-				
PALINURIDAE Jasus (Jasus) edwardsii	97																	-		
Jasus (Jasus) frontalis	98																		-	
Jasus (Jasus) Ialandii	99								\bullet											
Jasus (Jasus) novaehollandiae	100											-						-		
Jasus (Jasus) paulensis	101										-									
Jasus (Jasus) tristani	103		.						-											
Jasus (Sagmariasus) verreauxi	105											-				-		-		
Justitia japonica	108										-			-						
Justitia longimanus	109				-			-												
Justitia mauritiana	110										-						\bullet			
Linuparus somniosus	112										\bullet									
Linuparus sordidus	113											-		-						
Linuparus trigonus	114											-		\bullet		\bullet		\bullet		

SPECIES	PAGE	geographical distribution																		
		major marine fishing areas for statistical purposes																		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Palinurus charlestoni	116					-														
Palinurus delagoae	117										-									
Palinurus elephas	119			-		-	-													
Palinurus gilchristi	120								-		-									
Palinurus mauritanicus	121			-		\bullet	-													
Palinustus mossambicus	124										-									
Palinustus truncatus	125				-			\bullet												
Palinustus unicornutus	126										-									
Palinustus waguensis	126										-	-		-		-				
Panulirus argus	133				-			-												
Panulirus cygnus	134											\bullet								
Panulirus echinatus	136					-		-	-											
Panulirus gracilis	137																-		-	
Panulirus guttatus	138				-															
Panulirus homarus	139										-	\bullet		-		-	-			
Panulirus inflatus	141																\bullet			

SPECIES	PAGE	GEOGRAPHICAL DISTRIBUTION																		
		MAJOR MARINE FISHING AREAS FOR STATISTICAL PURPOSES																		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Panulirus interruptus	142																\bullet			
Panulirus japonicus	143													-						
Panulirus laevicauda	144				-			-												
Panulirus longipes	145										-	-		\bullet		\bullet	-	\bullet		
Panulirus marginatus	147												.				\bullet			
Panulirus ornatus	148						-				-	\bullet		\bullet		-		\bullet		
Panulirus pascuensis	149																-		-	
Panulirus penicillatus	151										\bullet	-		-		-	-		\bullet	
Panulirus polyphagus	152										-	-				-				
Panulirus regius	153					-	-		-											
Panulirus stimpsoni	155													\bullet		-				
Panulirus versicolor	156										\bullet	-		-		-	-			
Projasus bahamondei	158																		\bullet	
Projasus parkeri	159								-		\bullet							\bullet		
Puerulus angulatus	162										\bullet	\bullet		-		\bullet				

SPECIES	PAGE	GEOGRAPHICAL DISTRIBUTION																		
		MAJOR MARINE FISHING AREAS FOR STATISTICAL PURPOSES																		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Puerulus carinatus	163										\bullet									
Puerulus sewelli	164										\bullet									
Puerulus velutinus	165															-				
Palinurellus gundlachi	168				-			-												
Palinurellus wieneckii	170										-	-		-		-	-			
SCYLLARIDAE Arctides antipodarum																				
Arctides guineensis	176				-															
Arctides regalis	177										-					-	-		-	
Scyllarides aequinoctialis	183				-			-												
Scyllarides astori	184																-		-	
Scyllarides brasiliensis	185							\bullet												
Scyllarides deceptor	186							-												
Scyllarides delfosi	187				-			-												

SPECIES	Page	geographical distribution																		
		MAjor marine fishing areas for statistical purposes																		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Scyllarides elisabethae	188								-		\bullet									
Scyllarides haani	189										-	-		\bullet		-	-	-		
Scyllarides herklotsii	190					-			-											
Scyllarides latus	191			-		-	-													
Scyllarides nodifer	192				-															
Scyllarides roggeveeni	193																		-	
Scyllarides squammosus	194										-	-		-		-	-	-		
Scyllarides tridacnophaga	195										-	-								
Evibacus princeps	196																-		\bullet	
Ibacus alticrenatus	200											-						-		
Ibacus brevipes	201															\bullet				
Ibacus brucei	202															-		-		
Ibacus ciliatus	203											\bullet		-		\bullet				
Ibacus novemdentatus	204										\bullet	\bullet		-		\bullet				
Ibacus peronii	205											\bullet				\bullet		-		

SPECIES	PAGE	GEOGRAPHICAL DISTRIBUTION																		
		MAJOR MARINE FISHING AREAS FOR STATISTICAL PURPOSES																		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
Parribacus antarcticus	209				\bullet			\bullet			-	\bullet		\bullet		\bullet	\bullet			
Parribacus caledonicus	211															\bullet	-			
Parribacus holthuisi	212																\bullet			
Parribacus japonicus	213													-						
Parribacus perlatus	214																		-	
Parribacus scarlatinus	215															-	-			
Scyllarus arctus	217			-		-	-													
Scyllarus batei	219										-	-		\bullet		-				
Scyliarus bertholdii	221											\bullet		\bullet		\bullet				
Scyllarus brevicornis	222													-						
Scyllarus martensii	223										-	-		-		-				
Scyllarus pygmaeus	224					-	-													
Scyllarus rugosus	225										-	\bullet		\bullet		\bullet				
Thenus orientalis	227										-	-		-		\bullet				
THALASSINIDAE Thalassina anomala	229										\bullet	\bullet		\bullet		-	\bullet			

SPECIES	PAGE	GEOGRAPHICAL DISTRIBUTION																		
		MAjor marine fishing areas for statistical purposes																		
		18	21	27	31	34	37	41	47	48	51	57	58	61	67	71	77	81	87	88
UBOGEBIIDAE Upogebia capensis	233								-		-									
Upogebia major	234													-						
Upogebia pugettensis	235														-		-			
Upogebia pusilla	236			-		-	-													
Upogebia wuhsienweni	238													-						
CALLIANASSIDAE Callianassa australiensis	241											-				-		-		
Callianassa biffari	242																-			
Callianassa californiensis	244														-		-			
Callianassa gigas	245														\bullet		\bullet			
Callianassa japonica	246													-						
Callianassa kraussi	248								-		-									
Callianassa petalura	249													-						
Callianassa turnerana	251					-														
Callianassa tyrrhena	252			\bullet		\bullet	\bullet													

4. BIBLOGRAPHY

Abstract

Albert, F., 1898. La langosta de Juan Femandez ila posibilidad de su propagación en la costa Chilena. Revista Chilena Historia natural, 2:5-11, 17-23,29-31, 1 tab

Alcock, A., 1901. A descriptive catalogue of the Indian deep-Sea Crustacea Decapoda Macrura and Anomala in the Indian Museum. Being a revised account of the deep-sea species collected by the Royal Indian Marine Survey Ship Investigator: 1-286, i-iv, pls 1-3

Alcock, A. \& A.R.S. Anderson, 1896. Illustrations of the Zoology of the Royal Indian Marine Surveying Steamer Investigator, under the command of Commander CF. Oldham, R.N. Crustacea (4):pls 1-6-27

Alcock, A. \& A.F. McArdle, 1902. Illustrations of the Zoology of the Royal Indian Marine Survey Ship Investigator, under the command of Captain T.H. Heming, R.N. Crustacea, (10), pls 56-67

Allsopp, W.H.L,
1968. Report to the govemment of British Honduras (Belize) on investigations into marine fishery management, research and development policy for Spiny Lobster fisheries. Report U.N. Development Program FAO, TA 2481 :i-xii, 1-86, figs 1-15

Arana Espina, P. \& C.A. Melo Urutia, 1973. Pesca comercial'de Jasus frontalis en las Islas Robinson Crusoe y Santa Clara. (1971-1972). La Langosta de Juan Fernández II. Investigaciones Marinas, Valpa raiso, 4(5):135-152, figs 1-5. For no. I see next item, for III see Pizarro et al., 1974, for IV see Pavez Carrera et al., 1974

Arana Espina, P. \& M.F. Pizarro Campos, 1971. Caracteristicas morfométricas y distribución de tallas y sexos de Jasus frontalis de la isla Robinson Crusoe. La Langosta de Juan Femandez. I. Investiaaciones Marinas, Valparaiso, 2(5):93-124, figs 1-10. For nos II-IV see previous item

Aubert de la Rüe, E, 1954. Deux ans aux lles de la Désolation, Archipel de Kerguelen: 1-316, pls (R. Juliard, Paris)
Baba, K., K.-I. Hayashi \& M. Toriyama, 1986. Decapod Crustaceans from continental shelf and slope around Japan. The intensive research of unexploited fishery resources on continental slopes: 1-336, figs 1-22, coloured figs 1-176. (J apan Fisheries Resource Conservation Association, Tokyo)

Baez, R.P., \& LR Ruiz, 1985. Crustaceos de las islas oceanic as de Chile depositados en el Museo Nacional de Historia Natural de Santiago. Investigaciones Marinas en el Archipielago de Juan Femandez: 3-108

Balss, H., 1914. Ostasiatische Decapoden II. Die Natantia und Reptantia. In: F.Doflein, Beiträge zur Naturgeschichte Ostasiens. Abhandlungen Bayerischen Akademie der Wissenschaften, Supplement, 2(10):1-101, textfigs 1-50, pl. 1
\qquad , 1921. Diagnosen neuer Decapoden aus den Sammlungen der Deutschen Tiefsee-Expeditionund derJ apanischen Ausbeute Dofleins und Haberers. Zoologische Anzeiger, 52: 175-1178

Barattini, LP. \& E.H. Ureta, 1960. La fauna de las costas Uruguayas del Este (Invertebrados): 1-195, $13 \mathrm{pp} .$, text figs., pls. 1-52. (Museo Damaso Antonio Larrañaga, Montevideo)

Bamard, K.H.,
1926. Report on a collection of Crustacea from Portuguese East Africa. Iransactions Royal Society South Afric a, 13:119-129, pls 10.11
, 1947. Descriptions of new species of South African Decapod Crustacea, with notes on synonymy and new records. Annals Magazine_natural_History, (11)13:361-392
, 1950. Descriptive catalogue of South African decapod Crustacea. Annals South African Museum, 38: 1-837, figs 1-154

Barrellier, J., 1714 Planta per Gallia m. Hispania m et Ita liam observatae, ic onibus aeneis exhibitae, 1: $18 \mathrm{pp}, 1$ 1-140, i-xxvi, figs 1-534-2:figs 535-1323. (S. Ganeau, Paris)

Bate, C.S., 1888. Report on the Crustacea Macrura collected by H.M.S. Challenger during the years 1873-76. Report scientific Results Voyage Challenger, (Zool), 24:i-xc, 1-942, text figs. I-76, pls 1-150

Bate, C.S. \& J.B. Rowe, 1880. Second report of the committee appointed for thepurpose of exploring the marine zoology of South Devon. Report British Association for the Advancement of Science, 50:160-161, 1 fig.

Bemy, P.F., 1969 Rediscovery of the spiny lobster Puerulus carinatus Borradaile (Decapoda, Palinuridea). Crustaceana, 17:239-252, text fig. 1, pls 1-3
\qquad , 1971. The spiny lobsters (Palinuridae) of the east coast of southem Africa: distribution and ecological notes. Investigational Report Oceanographic Research Institute, Durban, 27: 1-23, figs 1-3
, 1979. A new species of deep-water palinurid lobster (Crustacea, Decapoda, Palinuridae) from the east coast of southem Afric a. Annals of South African Museum, 78:93-100, figs 1-3

Bemy, P.F. \& R.W. George, 1972. A new species of the genus Linuparus (Crustacea, Palinuridae) from South-East Africa. Zoologische Mededelingen, Leiden, 46: 17-23, text fig. 1, pls 1,2

Bemy, P.F. \& R. Plante, 1973. Revision of the spiny lobster genus Palinurus, in the South-West Indian Ocean. Transactions Royal Society South Afric a, 40:373-380, text fig. 1, pls 19,20

Biffar, T.A., unpublished. A study on Eastem Pacific representatives of the genus Callianassa (Crustacea, Decapoda, Callia na ssidae). Ph.D. Thesis, 1972, University of Miami, Florida, USA

Bonde, W.. von, 1930. Post-brephalus development of some South African Macrura. Report Fisheries Marine Biologic al Survey South Afric a, 8 (spec ial report 1): 1-42, pls 1-14

Boone, L, 1927. Crustacea from tropical east American seas. Scientific results of the first oceanographic expedition of the "Pawnee". Bulletin Bingham oceanographic Collection, 1(2): 1-147, figs 1-33

Borradaile, LA., 1910. Penaeidea, Stenopidea, and Reptantia from the westem Indian Ocean. The Percy Sladen Trust Expedition to the Indian Ocean in 1905, under the leadership of Mr J. Stanley Gardiner. Iransactions Linnean Society, London (Zool.), (2) 13:257-264, pl. 16

Boschi, E.E., M.I. Iorio \& K. Fischback, 1982. Distributión y abundancia de los Crustáceos Decápodos capturados en las campañas de los B/I"Walther Herwig" y "Shinkai Maru" en el Mar Argentino, 1978-1979. Contribución Instituto National Investigacion Desa rrollo Pesquero, Mar del Plata, 383:233-253, figs 1-3, maps 1-6

Booth, J.D. 1986. Recruitment of Packhorse Rock Lobster Jasus vemeauxi in New Zealand. Canadian Journal Fisheries aquatic Science, 43:2212-2220, figs 1-4

Bouvier, E.L,1917. Crustacés décapodes (macroures marcheurs) provenant des campagnes des yachts Hirondelle et Princesse-Alic e (1885-1915). Résultats Campagnes scientifiques Prince Albert de Monaco, 50:1-140, pls 1-11
, 1925. Les macroures marcheurs. Reports on the results of dredging under the supervision of Alexander Agassiz in the Gulf of Mexico (1877-78), in the Caribbean Sea (1878-79), and along the Atlantic Coast of the United States (1880), by the U.S. Coast Survey Steamer "Blake". Leut.Com. C.D. Sigsbee, U.S.N., and Commander J.R. Bartlett, U.S.N., commanding. XLVIII. Memoirs Museum comparative Zoology, Harvard, 47:397-472, text figs 1-28, pls 1-11
, 1940. Déc apodes marcheurs. Faune de France, 37: 1-404, figs 1-222, pls 1-14
Bowman, T.E \& LG. Abele. 1982. Classification of the Recent Crustacea. in: D.E. Bliss (ed.), The Biology of Crustacea, 1: 1-27

Bremner, H.A.,1985. C SIRO food researchers look at sc ampi. Australian_Fisheries, 44(3):39-42, figs 1-5
Browne, P., 1756. The civil and natural historyof Jamaica: 2 pp, i-vii, $1-503$, pls $1-49,2$ maps
Bruce,A.J., 1965. A new species of Nephrops (Decapoda, Reptantia) from the South China Sea. Crustaceana, 9:274-284, pls 13-15
, 1966. Nephrops australiensis sp.nov., a new species of lobster from northem Australia (Decapoda Reptantia). Crustaceana, 10:245-258, pls 25-27

Bruce, A.J., 1966a. Nephrops sinensis sp.nov., a new species of lobster from the South China Sea. Crustaceana, $10: 155-156$, pls 10-12
\qquad , 1988. Thaumastochelopsis wardi, gen. et sp. nov., a new blind deep-sea lobster from the Coral Sea (Crurtacea: Decapoda: Nephropidea). Invertebrate Taxonomy, 2:903-914, figs 1-7

Burukovsky. R.N. \& B.S. Averin, 1976. Bellator grobovi gen.et sp. n., a new representative of the family Nephropidae (Decapoda, Crustacea) from the Herd Island region in the Subantarctic. Zoologichesky Zhumal, Moscow, 55:296-299, figs 1-4

Calman, W.T., 1913. A new species of the crustacean genus Thaumastocheles. Annals Magazine natural History, (8)12:229-233, figs 1,2

Carus, J.V., 1885. Coelenterata, Echinodermata, Vermes, Arthropoda. Prodromus Faunae Mediterraneae, 1:i-xi, 1-524, addenda

Chan, T.-Y. \& H.-P.Yu., 1986. A report on the Scyllarus Lobsters (Crustacea: Decapoda: Scyllaridae) from Taiwan Loumal Taiwan Museum, 39(2): 147-174, text figs 1,2, pls 1-10
\qquad , 1987. Metanephrops fomosanus sp. nov., a new species of lobster (Dec apoda, Nephropidae) from Taiwan. Crustaceana, 52: 172-186, text fig. 1, pls 1,2
, 1991. Studies on the Metanephrops japonicus group (Decapoda, Nephropidae), with descriptions of two new species. Crustaceana, 60(1): 18-51, text figs 1-3, pls 1-9

Chang, CM., 1964 Notes on lobsters found in Taiwan (Formosa). Biological Bulletin College of Science Tunghai University, 24:1-12, figs 1-7
\qquad , 1965. Edible Crustacea of Taiwan;i,ii, 1-60, 53 figs

Channells, P.W., B.F. Phillips \& R.S. Bell, 1987. The rock lobster fisheries for the Omate Rock Lobster, Panulirus omatus in Torres Strait and on the north-east coast of Queensland, Australia. Fisheries Paper, Australia, 87(8):1-20, figs 1-10, ta bs 1-4

Chaud, A., 1984. Contribution à l'étude de la biologie et de l'ecologie d'U. pusilla (Petagna, 1792) (Thalassinidea, Upogebiidae). Structure et dynamique de la population de la baie de Txingudi: 16 pp, 1-176 figs 1-43. (Thèse de doctorat, Faculté des Sciences, Université Paris VI)

Chilton, C., 1911. The Crustacea of the Kemadec Islands. Transactions Proceedings New Zealand Institute, 43:544-573, figs 1-4

Coleman, N., 1977. A field guide to Australian marine life: 1-223, figs

Cottiglia, M., 1983. Crostacei Decapodi lagunari. Guide per il riconoscimento delle specie animali delle acgue lagunari e costiere Italiane, 10: 1-148, text figs 1-51, pls 1-4

Crosnier. A., 1977. Données sur les Crustacés Décapodes capturés par M Paul Guézé à l'île de la Réunion lors d'essais de pêche en eau profonde. Iravaux Documents ORSTOM, 47:225-256, text-figs 1-9, pls 1,2

Crosnier, A. \& C. Jouannic, 1973. Note d'information sur les prospections de la pente continentale malgache effectuées par le N.O. Vauban. Bathymétrie - Sédimentologie - Pêche au chalut. Documents scientifigues Centre Nosy-Bé ORSTOM, 42: 1-18, pls 1-4, 1 unnumbered plate

Dakin, W.J., 1. Bennett \& E. Pope, 1969. Australian seashores, (ed. 2):i-xii, 1-372, text figs 1-23, pls 1-99, frontispiece

Dammeman, K.W., 1929. The agricultural zoology of the Malay Archipelago. The animals injurious and beneficial to agric ulture, horticulture and forestry in the Malay Peninsula, the Dutch East Indies and the Philip pines:i-xi, 1-473, figs 1-179

Davidson, A., 1977. Seafood of south-east Asia: 1-366, figs.
Davie, P.J.F., 1990. A new genus and species of manine crayfish, Palibythus magnificus, and new records of Palinurellus (Decapoda:Palinuridae) from the Pacific Ocean. Invertebrate Taxonomy, 4:685-

Davis, T.LO. \&T.J. Ward, 1984. CSIRO finds two new scampi grounds off the North West Shelf. Australian Fisheries, 43(8):41-45, figs 1-6,8 unnumbered photographs

Day, J.H., 1969. A guide to marine life on South Afric an shores:i-iii, 1-300, text figs, pis 1-8
Doflein, F., 1906. Mitteilungen Über japanische Crustaceen 1. Das Mannchen von Thaumastocheles zaleucus (Will.-Suhm). Zoologischer Anzeiger, 30:521-525, figs 1-4

FAO, 1990. Yearbook of fishery statistics. 1988 Catches and landings. FAO Statistics series, 92: 1-505.

Farmer, A.S.D., 1975. Synopsis of biologic al data on the Norway lobster Nephrops norvegicus (Linnaeus, 1758). FAO Fisheries Synopsis, 112:i-iv, 1-97, figs 1-24

Fausto Filho, J., 1968. Crustáceos Decápodos de valor comercial ou utilizados como alimento no nordeste brasileiro. Boletim Sociedade Cearense Agronomia, 9:27,28

Fausto Filho, J. H.R. Matthews \& H. de Holanda Lima, 1966. Nota preliminar sôbre a fauna dos bancos de lagostas no Ceará. Arquivos Estaçao Bioiogia Marinha Universidade Federal Ceará, 6(2): 127-130, fig. 1

Faxon, W., 1895 The stalk-eyed Crustacea. Reports on an exploration off the west coasts of Mexico, Central and South America, and off the Galapagos Islands, in charge of Alexander Agassiz, by the US Fish Commission Steamer "Albatross", during 1891, Lieut.Commander ZL. Tanner, U.S.N., commanding. Memoirs Museum comparative Zoology Harvard, 18: 1-292, text figs 1-6, pls A-K 1-57, 1 map

Festa, E, 1909. Nel Darien e nell'Ecuador. Diario di viaggio di un naturalista:i-xvi, 1-397, pls, maps
Fischer, W. (ed.), 1978. FAO species identification sheets for fishery purposes. Westem Central Atlantic (Fishing Area 31), vol. 6:pag.var.

Fischer, W., M.-L Bauchot \& M. Schneider (eds), 1987 Fiches FAO d'identification des espèces pour les besoins de la pêche. Méditerranée et Mer Noire (Zone de Pêche 37), révision 1, vol. 1:293-319, figs

Fischer, W. \& G. Bianchi (eds), 1984. FAO species identification sheets for fishery purposes. Westem Indian Ocean (Fishing Area 51), vol. 5:pag.var.

Fischer, W., G. Bianchi \& W.B. Scott (eds), 1981. FAO species identification sheets for fishery purposes. Eastem Central Atlantic (Fishing Areas 34,47 in part), vol. 5:pag.var.

Forest, J., 1954 Scyllaridea. Crustacés Décapodes Marcheurs des lles de Tahiti et des Tuamotu. - II. Bulletin Muséum National d'Histoire naturelle, Paris, (2)26:345-352, figs 25,26

Forest, J. \& M. de Saint Laurent, 1981. La morphologie exteme de Neopbyphea inopinata, espèce actuelle de Crustacé Décapode Glyphéide. Résultats des campagnes Musorstom. I. Philippines (18 - 28 mars 1976). Tome I no. 2. Collection Mémoires ORSTOM, 91:51-84, figs 1-28

Franca, P. da, 1966 Nota sobre a pesta experimental de" Lagostas" em Angola. Notas mimeografadas Centro Biologia aguatica tropical, Lisboa, 3: 1-71, figs

Frey, H.W., 1971. Califomia's living marine resources and their utilization: 1-148, figs
George, M.J., 1969. Two new records of scyllarid lobsters from the Arabian Sea. Loumal marine biological Association India, 9:433-435
, 1973. The lobster fishery resources of India. Proceedings Symposium Living Resources of the Seas around India, Cochin:570-580

George, R.W.,
1971. Report of the first tour of a Spiny Lobster Survey in Fiji, Westem Samoa,.American. Samoa and Tonga, 20 October-23 December 1970. South Pacific Islands Fisheries Development Agency. FAO, FI:SF/SOP/Reg., 102/4: 1-19
, 1983. New finds of deepwater "Lobsters" on the Northwest shelf. Fins, Fishery News Westem Australia, 16(1): 16-20, 5 figs

George, R.W. \& W. Fischer, 1978. First illustration of the Hong Kong rock lobster, Panulinus stimpsoni (Decapoda, Palinuridae). Crustaceana, 34(1):93-95, fig. 1

George, R.W. \& LB. Holthuis, 1965. A revision of the Indo-West Pacific spiny lobsters of the Panulirus. japonicus group. Zoologische Vemandelingen, Leiden, 72: 1-36, text fig. 1, pls 1-5

Gilc hrist, J.D.F.,
1918. The Cape Lobster and the Cape Crawfish or Spiny Lobster. Marine biological Report South Africa, 4:44-53, 2 pls

Cordon, I., 1960. On the genus Justitia Holthuis (Decapoda, Palinuridae), with a note on allometric growth in Panulirus omatus (Fabric ius). Crustac eana, 1:295-306, figs 1-10

Grant, E.M., 1978. Guide to fishes (ed.4): 1-768, text figs, col. pls 1-325
Grua, P., 1960. Les Langoustes australes (Jasus lalandii). Biologie -milieu - exploitation commerciale. Terres Australes Antarctigues Françaises, 10: 15-40, figs
\qquad , 1963. Maturité, cycle sexuel, soies ovigeres des langoustes australes femelles Jasus paulensis Heller, 1863. Etude statistique. Comité National Français Recherches Antarctiques, 4:i-viii, 135, figs 1.2, graphs 1-14

Gruvel, A., 1911. Contribution à l'étude générale systématique et économique des Palinuridae. Mission Gruvel sur la côte occidentale d'Afrique (1909-1910). Résultats scientifiques et économiques. Annales Institut océanographique Monaco, 3(4):5-56, text figs 1-22, pls 1-6

Haan, W., de, 1833-1850. Crustacea. In: P.F. de Siebold, Fauna Japonica sive descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis superiorum, qui summum in India Batava Imperium tentent, suscepto, annis 1823-1830 collegit, notis, observationibus et adumbrationibus illustravit: ix-xvi, vii-xvii, i-xxxi, 1-243, pls 1-55, A-Q, 2

Haig, J. \& D.P. Abbott, 1980. Macrura and Anomura: The Ghost Shrimps, Hermit Crabs and allies In: R.H. Moris, D.P. Abbott \& E.C Haderlie (eds), Intertidal invertebrates of Califomia, 577-593, figs 24.1-21 and unnumbered figs

Hailstone, T.S., 1962. They're good bait! Australian_natural History, 14(1):29-31,2 figs
Hailstone, T.S. \& W. Stephenson, 1961. The biology of Callianassa (Trypaea) australiensis Dana 1852 (Crustacea, Thalassinidea). Universitv of Queensland Papers Department of Zoology, 1:259285, text figs 1-1 5, pls 1-3

Hale, H.M., 1927. The Crusta cea of South Australia 1: 1-201, figs 1-202
Hart, J.F.L, 1982, Crabs and their relatives of British Colombia. Handbooks British Columbia Provincial Museum, 40:i-iii, 1-266, figs 1-102

Heller, C., 1862. Beiträge zur näheren Kenntniss der Macrouren. Sitzungsberichte Akademie Wissenschaften, mathematisch-naturwissenschaftliche Classe, Wien, 45(1):389-426, pls 1,2

Henriques, G., 1974. Informe biologico pesquero sobre la Langosta de Isla de Pascua (Panulirus pascuensis, Reed, 1954). Infomes Pesqueros Instituto Fomento Pesquero Chile, 56: I-9, figs 1-6, tabs 1-4

Herbst, J.F.W., 1791-1796. Versuch einer Naturgeschichte der Krabben und Krebse nebst einer systematischen Beschreibung ihrer verschied enen Arten, 2:i-viii, 1-226, pls 22-46

Hemick, F.H., 1895. The Americ an Lobster: a study of its habits and development. Bulletin U.S. Fish Commission, 15: 1-252, text figs 1-40, pls 1-54
, 1911. Natural history of the Americ an Lobster. Bulletin U.S. Bureau Fisheries, 29: 149-408, text figs 1-42, pls 28-32

Heydom, A.E.F., 1969. Notes on the biology of Panulinus homarus and on length weight relationships of Jasus lalandii. Investigational Report Division Sea Fisheries South Afric a, 69: 1-26, figs 1-13

Holthuis, LB., 1950. Decapoda (K IX) A. Natantia, Macrura Reptantia, Anomura en Stomatopoda (K X). In: H. Boschma (ed.), Fauna van Nederland, 15: 1-166, figs 1-54, 1 map

Holthuis, LB.,
\qquad
\qquad
\qquad , 1966. On spiny lobsters of the genera Palinurellus, Linuparus and Puerulus (Crustacea Decapoda, Palinuridae). Proceedings Symposium Crustacea Emakulam, India, 1:260-278
1968. The Palinuridae and Scyllaridae of the Red Sea. The Second Israel South Red Sea Expedition, 1965, report no. 7. Zoologische Mededelingen, Leiden, 42:281-301, pls 1,2
1972. The Crustacea Decapoda Macrura (the Alpheidae excepted) of Easter Island. Zoologische Mededelingen, Leiden, 46:29-54, text figs 1,2, pls 1,2
, 1974. The lobsters of the superfamily Nephropidea of the Atlantic Ocean (Crustacea: Decapoda). Biological results of the University of Miami deep-sea expeditions. 106. Bulletin marine Science University Miami, 24:723-884, figs 1-35
1978. Notes on Panulirus stimpsoni Holthuis, 1963 (Decapoda, Palinuridae). Crustaceana. 34:95-100, pl. 1
1985. A revision of the family Scyllaridae (Crustacea: Decapoda: Macrura). I. Subfamily Ibacinae. Zoologisc he Verhandelingen, Leiden, 218: 1-130, figs 1-27
, 1986. J.C. Fabricius' (1798) species of Astacus, with an account of Homarus capensis (Herbst) and Eutrichocheles modestus (Herbst) (Decapoda Macrura). Crustaceana, 50:243-256, fig. 1

Holthuis, LB. \& H. Loesch. 1967. The lobsters of the Galápagos Islands (Decapoda, Palinuridea). Crustaceana, 12:214-222, text fig. 1, pls 7-9
T. Sakai. 1970. Ph. F. Von Siebold and Fauna Japonica. A history of early J apanese zoology: 18 pp, l-323, pls 1-32,7 unnumbered pls, 1 map

Holthuis, LB. \& E. Sivet-tsen. 1967. The Crustacea Decapoda, Mysidacea and Cimipedia of the Tristan da Cunha Archipelago with a revision of the "frontalis" subgroup of the genus Jasus. Results Norwegian scientific Expedition to Tristan da Cunha, 52: 1-55, text figs 1-9, pls 1-5
A. Villalobos, 1962. Panulirus gracilis Streets y Panulirus inflatus (Bouvier), dos especies de langosta (Crustacea, Decapoda) de la costa del Pacifico de America. Anales Institute Biologia Universidad Mexico, 32:251-276, figs 1-19, 1 map

Hügel, A. von, 1903. Charles von Hügel April 25, 1795 - J une 2, 1870:i-xx, 1-76, 8 pls
Ivanov, B.G. \& V.V. Krylov, 1980. Length-weight relationship in some common prawns and lobsters (Macrura, Natantia and Reptantia) from the westem Indian Ocean. Crustaceana, 38:279-289

Johnson, M.W., 1971. The phyllosoma larvae of slipper lobsters from the Hawaiian Islands and adjacent areas (Decapoda, Scyllaridae). Crustaceana, 20:77-103, figs 1-92

Jones, S., 1967 The crustacean fishery resources of India. Proceedings Symposium Crustacea Emakulam, India 4: 1328-40 figs 1-7

Kaestner, A..1970. Crustacea. Invertebrate zoology, 3:i-xi, 1-523, figs 1.1-18.16(Translated by H W. Levi)
Kalshoven, LG.E \& J; van der Vecht, 1950. De plagen van de cultuurgewassen in Indonesië, 1: 1-512, figs 1-297

Kensler, C.B., 1967. The distribution of spiny lobsters in New Zealand waters (Crustacea: Decapoda: Palinuridae). New Zealand Joumal Marine Freshwater Research, 1(4):412-420, figs 1-4
\qquad , 1968. Notes on fecundity in marine spiny lobster Jasus edwardsii (Hutton) (Crustacea: Decapoda: Pa linuridae). New Zealand Joumal Marine Freshwater Research, 2(1):81-89, figs 1-3
1969. Commercial landings of the spiny lobster Jasus edwardsii (Hutton) at Chatham Islands, New Zealand (Crustacea: Decapoda:Palinuridae). New Zealand Joumal Marine Freshwater Research, 3: 506-517, figs 1-5

Kensler, C.B. \& W. Skrzynski, 1970. Commercial landings of the spiny lobster Jasus vemeauxi in New Zealand (Crustacea: Dec apoda: Pa linuridae). New Zealand Joumal Marine Freshwater Research, 4:4654, figs 1,2

King, M.G., 1988. Deep-water benthic organisms caught near Madang, Papua New Guinea. Science in New Guinea, 14(2):107-110, fig.

Kingsley, M.H., 1897. Travels in West Africa, Congo Français, Corisco and Cameroons:i-xvi, 1-743, figs, pls 1,2
Kirk, T.W. 1880. Description of'a new species of Palinurus. Transactions Proceedings New Zealand Institute, 12:313,314, pl 9

Kubo, I., 1963. Two rare species of palinurid lobster Researcheson Crustacea, To kyo, 1:3-11, figs 1-5
Kurian, C.V. \& V.O. Sebastian, 1982. Prawns and prawn isheriesof India, (ed.2):i-xiv, 1-286, figs 1.1-12.1
Lamarck, J.B.P.A. de, 1818. Histoire naturelle des animaux sans vertèbres, 5: 1-612
Latreille, P.A., 1804. Des langoustes du Muséum National d'Histoire Naturelle. Annales Muséum Histoire naturelle Paris, 3:388-395

Ledoyer, M, 1979. Thymopides grobovi (Burukovski et Averin, 1976) (Crustacea, Decapoda, Nephropidae) récolté aux lles Kerguelen au cours des campagnes du M.S."Marion Dufresne" en 1974 et 1975. Téthys, Ma rseille, 9(2): 123-I 28, figs 1,2

Le Loeuff, P. \& A. Intés, 1974. Les Thalassinidea (Crustacea, Decapoda) du Golfe de Guinée. Systématique ecologie. Cahiers ORSTOM (océanogr.), 12(1): 17-69, fig. 1-22

Lesser, J.H.R., 1974. Identific ation of early larvae of New Zealand spiny and shovel-nosed lobsters (Decapoda, Pa linurid ae and Scyllaridae). Crustaceana, 27: 259-277, figs 1-9

Linnaeus, C., 1758 Systema Naturae per Regna tria Naturae, secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis Synonymis, Locis, (ed. 10) 1: 1-824, i-iii

Liu, J.Y., 1955. Economic shrimps and prawns of North China: i-v, 1-73, text figs l-3, pls 1-24. (Text in Chinese)
Longhurst, A.R. 1970. Crustacean resources. in: J.A. Gulland (ed.), The fish resources of the oceans. FAO Fisheries technic al Paper, 97:252-305, 1 map

Lukis, F-C., 1835. Illustrations of a species? Phyllosòma Leach and Latreille, or of an undescribed genus allied to Phyllosòma; and of Squilla Desmarestii Risso; as observed in a living individual of each, taken on the coast of Guemsey. Magazine natural History, 8:459-464, figs 38-40

Lyons, W.G:, 1970. Scyllarid lobsters (Crustacea, Decapoda). Memoirs of the Hourglass cruises, 1(4): 1-74, text figs 1-22, pls 1,2

Macpherson, E.,

1990. Crustacea Decapoda: On a collection of Nephropidae from the Indian Ocean and Westem Pacific. Résultats des campagnes Musorstom. Volume 6. Mémoires Muséuin National d'Histoire naturelle, Pa ris, (Z०ol.),145:289-329, figs 1-17

Man, J.G. de, 1916. Families Eryonidae, Palinuridae, Scyllaridae and Nephropsidae. The Decapoda of the Siboga Expedition. Part III. Siboga Expedition Monogr., 39(a2):1-122, pls 1-4
, 1927. A contribution to the knowledge of twenty-one species of the genus Upogebia Leach. Capita zoologica, The Hague, 2(5): 1-58, pls 1-6

Man, J.G. de, 1928 A contribution to the knowledge of twenty-two species and three varieties of the genus Callianassa Leach. Capita zoologica, The Hague, 2(6): 1-56, pls 1-12

Manning, R.B., 1969. A new genus and species of lobster (Decapoda, Nephropidae) from the Caribbean Sea. Crustaceana, 17:303-309, text fig. 1, pl. 1
, 1970. Notes on the West American Nephropidean lobster, Nephropsis occidentalis Faxon. Proceeding biologic al Society Washington, 82:865-870, figs 1-3
, 1975. Two methods for collecting decapods in shallow water.Crustaceana, 29(3):317-319, pls 1,2

Manning, R.B. \& D.L Felder, 1986. The status of the callianassid genus Callichirus Stimpson, 1866 (Crustacea: Decapoda: Thalassinidae). Proceeding biologic al Society Washington, 99(3):437-443, figs 1-3

McCoy, F., 1890. Natural history of Victoria. Prodromus of the zoology of Victoria; or figures and descriptions of the living species of all classes of the Victorian indigenous a nimals, 2: 1-375, pls 101-200

Melville-Smith, R., 1990. A first record of Projasus parkeri (Stebbing, 1902) (Decapoda, Palinuridae) in the Atlantic Ocean. Crustaceana, 59(3):314-316, fig. 1

Michael, K. \& J.D. Booth. 1985. Rock lobsters at the Auckland Islands. Catch 12(5-9): 18.

Michel, A., 1971. Note sur les puerulus de Palinuridae et les la ves phyllosomes de Panulinus homarus (L).Clef de détermination des larves phyllosomes récoltées dans le Pacifique équatorial et sud-tropical (Déc a podes). Cahiers ORSTOM (océa nogr), 9:459-473, figs 1-6

Miers, E-J., 1882. On some Crustaceans collected. at the Mauritius. Proceedinas zoological Society London, 1882: 339-342, 538-543, pls 20-34

Mitchell, C.T., C.H. Tumer \& A.R. Strachan, 1969. Observations on the biology and behaviour of the Califomia Spiny Lobster, Panulirus intemuptus (Randall). Califomia Fish and Game, 55: 121-131, figs 1-9

Molina, G.I., 1782. Saggio sulla storia naturale del Chili, 1: 1-367, 1 map
\qquad , 1808 The geographical, natural and civil history of Chili, with notes from the Spanish and French versions, and an appendix, containing copious extracts from the Araucana of Don Alonzode Ercilla, l:i-xii, l-271, 1 map

Monod, T., 1927. Sur le Crustacé auquel le Cameroun doit son nom (Callianassa tumerana White). Bulletin Muséum National d'Histoire naturelle, Pa nis, 33:80-85
\qquad , 1928. L'industrie des pêches au Cameroun. Mission Monod (1925-1926) Cameroun, 1: 1-504, (iv), text figs l-96, pls 1-25
_, 1973. Sur quelques Crustacés néo-calédoniens de profondeur. Cahiers ORSTOM (océanogr.), 11(2):117-131, figs l-55

Moreira, C., 1905. Crustaceos. Campagnas de pesca do "Annie". Archivos do Museu Nacional do Rio de Janeiro, 13:121-145,2 text figs,pls 1-5

Morgan, G.R.,\& E.H. Barker, 1974-1982. The Westem Rock Lobster Fishery 1961-1 977. Reports Department Fisheries Wild life Westem Australia, 15: 1-22, figs 1-3, pls 1-6; 19: 1-22, figs 1,2; 22: 1-22, figs 13 ; 28:1-20,figs 1-3; 33:1-20, figs l-3; 48:1-20,figs 1-3; 55:1-41,figs 1,2

Morice, J. 1958. Langoustes et Scyllares des Petites Antilles. Revue Travaux Institut Pêches maritimes, 22(1):105-1 14, figs 1-13

Motoh, H. \& K. Kuronuma, 1980. Field guide for the edible Crustacea of the Philippines: i, ii, 1-96, figs 1-37
Motoh, H., M. Dimaano \& N. Putian, 1978. Ecological survey of the giant tiger prawn, Penaeus monodon and other edible crustaceans in Mindanao (Sept. 3 to 18, 1978):1-40, figs 1-17 (Aquaculture Department SEAFDEC, lloilo).

Ogilby, J.D., 1893 Edible fishesa nd Crustaceans of New South Wales:i-ii, 1-212, pls 1-51
Opresko, L., D. Opresko, R. Thomas, G. Voos \& F.M. Bayer, 1973. Guide to the lobsters and lobster-like
animals of Florida, the Gulf of Mexico and the Caribbean region. Sea Grant Field Guide Series,

Palombi.A. \& M. Santarelli, 1961. Gli animali commestibili dei mari d'Italia. Descrizione - biologia - pesca valore economico e nomi italiani dialettali e stranieri dei pesci - tunicati - echinodemi molluschi - crostacei ad uso dei pescatori di professione, dilettanti e subacquei (ed. 2): 1-xi, 1437, figs

Papavero, N., 1971. Essays on the history of neotropical dipterology, with special reference to collectors (1750-1905), 1:i-vii, 1-216, figs, maps

Parisi, B., 1917 Galatheidea e Reptantia. I Decapodi Giapponesi del Museo di Milano, V. Atti Società Italiana Scienze naturali Milano, 56: 1-24, figs 1-7

Paterson, N.F., 1968. The anatomy of the Cape Lobster, Jasus lalandii (H. Milne Edwards). Annals South African Museum, 51:1-232, figs 1-81

Pavez Carrera, P. \& J.E. Illanes Bucher, 1974. Descriptión de la pesqueria de la langosta (Jasus frontalis, M. Edwards, 1837) en el Archipielago de Juan Femández. La Langosta de Juan Femández. IV. Investigaciones Marinas, Valparaiso, 5(1):53-84, figs 1-6. For nos. I-III see Arana Espinosa, P., et al.

Pesta, O., 1918. Die Decapodenfauna der Adria. Versuch einer Monographie: i-x, 1-500, text figs 1-1 50, map 1
Petagna, V.. 1792 Institutiones entomologicae: i-xii, 1-718, pl. 1-10

Pfeffer, G., 1881. Die Panzerkrebse des Hamburger Museum. Verhandlungen naturwissenschaftichen Vereins Hamburg, 5:22-55

Pizarro, C., M.F. \& M. Tiffou M, 1974. Sinopsis sobre la biologia de la Langosta de Juan Femández Jasus frontalis (Milne-Edwards, 1937). La Langosta de Juan Femández. III. Investigaciones Marinas, Valparaiso, 5(1): 1-52, figs 1-8. For nos. I, II, IV see Arana Espina et al.

Pollock, D.E, 1981. Population dynamics of rock lobster Jasus tristani at the Tristan da Cunha group of Islands. Fishery Bulletin South Afric a, 15:49-66, figs 1-12

Pollock, D.E. \& C.J. 0 Augustyn, 1982. Biology of the rock lobster Palinurus gilchristi with notes on the South Afric an Fishery. Fishery Bulletin South Afric a, 16:57-73, figs 1-13

Poore, G.C.B. \& D.J.G. Griffin, 1979. The Thalassinidea (Crustacea: Decapoda) of Australia. Records. Australian Museum, 32:217-321, figs 1-56

Ramadan, M.M., 1938. The Astacura and Palinura. Scientific Reports John Murray Expedition, 5(5):123-145,12 figs

Ramos, F. de P. Andrade, 1950. Estudo a nalitico sobre Nephrops rubellus Moreira (Crustaceo - Decapodo Ma c ruro) Boletim_Instituto Paulista Oceanografia.1(2) 83-91, figs 1-3
, 1951. Nota sôbre Scyllarides brasiliensis Rathbun e sua ocorrência no litoral do Estado de Sao Paulo. Boletim Instituto Paulista Oceanografia, 2(2): 125-133, pls 1.2

RathbuOn, R., 1884. Crustaceans, worms, radiates and sponges. Natural history of useful aquatic a nimals. Part V. in: G.B. Goode, The fisheries and fishery industries of the United States, 1:759-850, pls 260-277

Retam0al, M.A., 1977. Los Crustèceos Decápodos Chilenos de importancia economica. Gayana, (Zool.) 39: 1-50, figs 1-19
, 1981. Catalogo ilustrado de los Crustaceos Decapodos de Chile. Illustrated catalog for the dec apod crusta ceans of Chile. Gayana, (Zool.), 44: 1-110, figs 1-208

Risso, A. 1816. Histoire naturelle des Crustacés des environs de Nice: 1-175, pl. 1-3
Robertson, P.B.,
1969. Phyllosoma larvae of a scyllarid lobster, Arctides guineensis, from the westem Atlantic. Biological investigations of the deepsea. No. 48. Manne Biology, Berlin, 4(2): 143-151, figs 1-17

Rolland, E., 1881. Les reptiles, les poissons, les mollusques, les crustacés et les insectes. Noms vulgaires, dictons, proverbes, légendes, contes et superistions. Faune populaire de la France, 3:i-xv, 1-354

Roscoe, M.J., 1979. Biology and exploitation of the rock lobster Jasus tristani at the Tristan da Cunha Islands. South Atlantic, 1949-1976. Investigational Report Sea Fisheries Branch South Africa, 118: 1-47, figs 1-14

Rumphius, G.E., 1705. D'Amboinsche rariteitkamer, behelzende eene beschryvinge van allerhande zoo weeke als harde schaalvisschen, te weeten ra are krabben, kreeften, en diergelyke zeedieren, als mede allerhande hoomtjes en schulpen, die men in d'Amboinsche zee vindt: daar beneven zommige mineraalen, gesteenten, en soorten van aarde, die in d'Amboinsche, en zommige omleggende eila nden gevonden worden, 1-340, pls 1-60

Saint Laurent, M. de, 1973. Sur la systematique et la phylogénie des Thalassinidea: définition des familles des Callianassidae et des Upogebiidae et diagnose de cinq genres nouveaux (Crustacea Decapoda). Comptes-rendushebdomadaires Académie des Sciences Paris, (D)277:513-516
1979. Sur la classification et la phylogenie des Thalassinidea: définitions de la superfamille des Axioidea, de la sous-famille des Thomassiniinae et deux genres nouveaux (Crustacea Decapoda). Comptes-rendushebdomadairesAcadémie des SciencesParis, (D)288: 1395-1397

Saint Laurent, M., de \& B. Bozic, 1976. Diagnoses et tableau de détemination des Callianasses de l'Atlantique nord oriental et de Méditérranée (Crustacea, Decapoda, Callianassidae). Proceedings of the First Colloquium Crustacea Dec apoda Mediterranea. Thalassia Jugoslavica, 8: 15-40, figs 1-35

Saint Laurent, M., de \& P. Le Loeuff, 1979. Upogebiidae et Calliana ssidae. Crustacés Déc apodes Thalassinidea. I. Campagnes de la Calypso au large des côtes Atlantiques Africaine (1956 et 1959). 22. Résultats scientifiques des campagnes de la Calypso. XI. Annales Institut océanographique Monaco, 55 (suppl.):29-101, figs 1-28

Sakai, K., 1969. Revision of Japanese Callianassids baséd on the variations of larger cheliped in Callianassa petalura Stimpson and C. japonica Ortmann (Decapoda: Anomura). Publications Seto marine biological Laboratory, 17:209-252, text figs 1-8, pls 9-15
, 1982. Revision of Upogebiidae (Decapoda, Thalassinidea) in the Indo-West Pacific region. Researcheson Crustacea, Tokyo, special number, 1: 1-106, text figs 1-20, pls A-G

Sankolli, K.N., 1963. On the occurrence of Thalassina anomala (Herbst), a burrowing crustacean in Bombay waters, and its burrowing methods. Loumal Bombay natural History Society, 60(3):600-605, 1 text fig., pls 1,2

Say, T., 1817, 1818. An account of the Crustacea of the United States. Loumal Academy natural Sciences Phila delphia,1:57-80 97-101,155-169, pl. 4(1817); 235-253,313-319,374-401,423-441,445458(1818)

Sekiguchi, N. \& S. Okubo, 1986. Notes on Justitia japonica (Kubo, 1955) and Palinustus waguensis Kubo, 1963 (Dec a poda, Palinuridae). Proceedings) apanese Society systematic Zoology, 34: 19-26, fig. 1

Selbie.C.M.. 1914 Palinura, Astacura and Anomura (except Paguridea). The Decapoda Reptantia of the Coasts of Ireland. Part I. Scientific Investigations Fisheries Branch Ireland, 1914(1): 1-116, pls 1-15.

Sheard, K., 1962. The Westem Australian crayfishery, 1944-1961: 1-107, figs 1-29
Skottsberg, C., 1956. A geographical sketch of the Juan Femandez Islands. in: C. Skottsberg (ed.), The natural history of J uan Femandez and Easter Island, 1:89-192, figs 1-100

Smith, S.I., 1882. Report on the Crustacea. Part I Decapoda. Reports on the results of dredging, under the supervision of Alexander Agassiz, on the East coast of the United States, during the summer of 1880, by the U.S. Coast Survey Stea mer "Blake", commander J.R. Bartlett U.S.N., commanding. Bulletin Museum comparative Zoology Harvard, 101-108, pls 1-15

Squires, H.J., 1990. Decapod Crustacea of the Atlantic coast of Canada. Canadian Bulletin Fisheries aguatic Sciences, 221 :i-viii, 1-532, text figs 1-270, col. pls 1-11

Stephensen, K,
1923. Decapoda-Macrura excl. Sergestidae. Reports Danish oceanographic al Expeditions 190810 Mediteranean, 2 (D3): 1-85, figs 1-27, maps 1-8

Stevens, B.A., 1928. Callianassidae from the west coast of North America. Publications Puget Sound marine biologic al Station, 6:316-366, figs 1-71

Sunier,A.LJ., 1922. Contribution to the knowledge of the natural history of the mane fish-ponds of Batavia. Treubia, 2: 157-400, text figs 1-59, pls 6-24, maps 1,2

Tan, LW.H. \& P.K.L Ng, 1988. A guide to seashore life, Singa pore: 1-160, figs
Tapparone Canefi, C.,1873. Intomo ad una nuova specie di Nephrops genere di Crostacei Decapodi Macruri. Memorie R. Accademia Scienze Torino, (2)27:325-329, 1 pl.

Tietz, R.M. \& C.A. Robinson, 1974. The Tsitsikama shore. A guide to the marine invertebrate fauna of the Tsitsika ma coastal National Park: (i-vi), 1-111, pls 1-50

Tinker, S.W., 1965. Pacific Crustacea. An illustrated handbook on the reef-dwelling Crustacea of Hawaii and the South Seas: 1.134, pls 1-52

Tumer, C.H. \& J C. Sexsmith, 1964. Marine baits of Califomia: 1-71, figs
Uchida, T. \& Y. Dotsu, 1973, On the larva hatching and larval development of the lobster, Nephropos thomsoni. Collection of the T.S. Nagasaki Maru of Nagasaki University. IV. Bulletin Faculty Fisheries Naka sa ki University, 36:23-35, figs 1-7

Vanhöffen, E, 1911. Ueber die Krabben, denen Kamerun seinen Namen verdankt. Sitzungsberichte Gesellsc haft naturforschender Freunde Berlin, 1911:105-110, 1 fig.

Vemill, A.E, 1922. Decapod Crustacea of Bermuda. Part II. Macrura. Iransactions Connecticut Academy Arts Sciences, 26: 1-179, text figs 1-12, pls 1-48

Vinogradov, L.G., 1950. Opredeliteli krevetok, rakov i krabov Dalnego Vostoka. Keys to the lobsters, shrimps, and crabs of the Far East. Izvestia TINRO, 33: 179-358, pls 1-53

Wallner, B \& B. Phillips, 1980. From scampi to deepwater prawns: developments in the NorthWest Shelf deepwater trawl fishery. Australian Fisheries, 47(9):34-38, figs 1-3

Walter, R. 1776. A voyage round the world in the years MDCCXL, I, II, III, IV, by George Anson, Esq.; afterwards Lord Anson, Commander in Chief of a squadron of His Majesty's ships, sent upon an expedition to the South-Seas., (ed.15):i-xx, 1-417, pls 1-42

Ward, M., 1943. New Guinea menu. Army, 2(4):28-31,74 figs
Ward, T.J., in press. Diel variability in catches of the deep-water lobster Linuparus trigonus on the continental slope of Queensland, Australia. Marine Ecology Progress Series

Wear, R.C., 1980. Crusta cean culture - its prospects in New Zealand. Proceedings of the Aquaculture Conference. Occasional Public ations Fisheries Research Division, 27:23-27

Webber, W.R. \& J.D. Booth, 1988. Projasus parkeri (Stebbing, 1902) (Crustacea, Decapoda, Palinuridae) in New Zealand and description of a Projasus puerulus from Australia. National Museum New Zealand Records, 3(8):81-92, figs 1-9

White, A.. 1847. List of the spec imens of Crustacea in the collec tion of the British Museum: i-viii, 1-143
Williams, A.B.,
1984. Shrimps, lobsters, and crabs of the Atlantic Coast of the Eastem United States, Maine to Florida: i-xviii, 1-550, figs 1-380
, 1986. Lobsters - Identification, world distribution, and U.S. trade. Marine Fisheries Review, 48(2): 1-36, figs 1-80
_, 1986a. Mud shrimps, Upogebia, from the Eastem Pacific (Thalassinoidea: Upogebiidae). Memoirs San_Diego Society natural History, 14: 1-60, figs 1-21

Winkler, T.C., 1881 Etude carcinologique sur les genres Pemphix, Glyphea et Araeostemus. Archives Musée Teyler, Ha rlem, (2) 1(2): 73-124, text figs 1-6, pl. 1

Wulfen, F.X. de, 1791. Descriptiones zoologicae ad Adriatici littora maris concinnatae. Nova Acta Academiae Caesareae Leopoldino-Carolinae Germaniae Naturae Curiosorum, 8:235-359

Yaldwyn, J.C., 1954. Nephrops challengeri Balss, 1914 (Crustacea, Decapoda, Reptantia) from New Zealand and Chatham Island Waters.Transactions Royal Society New Zealand, 82:721-732, figs 1,2

Zarenkov, N.A. \& V.N. Semenov, 1972. Novyi vid roda Nephropides (Decapoda, Macrura) iz yugo-zapadnoi Atlantiki. A new species of the genus Nephropides from the South-West Atlantic. Zoologic heskii Zhurnal, Moskwa, 51:599-601, figs1-6

Zttel, K.A. von, 1885. Ha ndbuch der Palaeontologie (Palaeozoologie), 2(2):525-721

5. INDEX OF SCIENTIFIC AND VERNACULAR NAMES

A

Abricanto 60
Acanthacaris 26
Acanthacaris caeca 26Acanthacaris opipara
Acanthac aris tenuimana 2828
acanthura, Nephropsis 35
acuelata, Nephropsis 36
acuelatus, Nephropsis 36
Acutigebia 232
adriaticus, Palaemon 119
adriatic us, Palinurus 119
aequinoctialis, Sc yllanides 183
Aesop slipper lobster 189
aesopius, Scyllarus 216
affinis, Callianassa 242
African lobster 75
African spear lobster 112
africana, Gebia 233
africana, Upogebia 233
Afrikanische Languste 100
Agassiz's lobsterette 38
agassizii, Nephropsis 37
Agusta 120
Akamaru 212
Akaza 74
Akaza-ebi 74
Aligusta 120
Allpap 210
altic renatus, lbacus 200
altic renatus septemdentatus, lbacus 200
amabilis, Scyllarus 216
American blunthorn lobster 125
American lobster 58
americanus, Arctus 216
americanus, Astacus 58
americanus, Homarus 58
americanus, Palinurus 133
americanus, Scyllarides 192
americanus, Scyllarus 216
Ana-jyako 235
Anacalliax 240
Anadaman lobster 66
amdamanic us, Metanephrops 66
anadamanicus, Nephrops 66
angulatus, Panulirus 162
angulatus, Puer 162
angulatus, Puerulus 162
anomala, Thalassina 229
anomalus, Cancer (Astacus) 229
antarctic us carinatus, Pamibacus 209
antarcticus, Ibacus 209
antarcticus, Pamibacus 209
antarcticus, Scyllarus 209
antipodarum, Arctides 175
aoteanus, Scyllarus 216
Arabian whip lobster 164
ARAEOSTERNIDAE 166
Araeostemus 168
Araeostemus wieneckii 170
Arafura lobster 67
arafurensis, Metanephrops 67
arafurensis, Nephrops 67
Aragosta 120
Aragosta bianca 122
Aragosta mauritanica 122
Aragosta mediterranea 120
Arctides 173
Arctides antipodarum 175
Arctides guineensis 176
Arctides regalis 177
ARCTIDINAE 173
Arctus 216
Arctus americanus 216
arctus, Arctus 218
Arctus arctus 218
arctus, Astacus 218
Arctus bic uspidatus 216
arctus, Cancer 217
Arctus crenatus 216
Arctus crenulatus 218
Arctus delfini 216
Arctus depressus 216
Arctus gibberosus 217
Arctus immaturus 224
arctus lutea, Sc yllarus 218
Arctus mawsoni 217
Arctus nobilii 217
Arctus orientalis 219
arctus paradoxus, Scyllarus (Arctus) 217
Arctus pygmaeus 224
Arctus rubens 217
Arctus rugosus 222
arctus, Scyllarus 217
Arctus sordidus 217
Arctustuberculatus 225
Arctus ursus 218
Arctus vitiensis 217
argus, Palinurus 133
argus, Palinurus (senex) 133
argus, Palinurus 133
Arigusta 120
amatus, Metanephrops 67
Armoured lobster 67,68
asper, Nisto 218
ASTACIDEA 19
ASTACIN 19
Astacus americanus 58
Astacusarcus 218
Astac us capensis 59
Astacus elephas 119
Astacus europaeus 60
Astacus fulvus 59
Astacus gammarus 60
Astacus homanus 139
Astacus marinus 58,60
Astac us novegicus 83
Astac us penic illatus 151
Astacus pusillus 236
Astac us rugosus 83
Astac us tynhenus 252
Astacus zaleucus 24
Astakis 120
Astakos 120
Astakós 60
Astakoudáki 219
Astice 60
astori, Scyllarides 184
Atlantic deep-sea lobster 26
Atlantic pincer lobster 24
atlantica, Nephropsis 38
atlanticus, Puer 153
aureus, Scyllanus 216
aurora, Scyllarus 216
Australian crayfish 106
Australian ghost shrimp 240
Australian pincer lobster 25
Australian spiny lobster 135
australiensis, Callianassa 240
australiensis, Metanephrops 68
australiensis, Nephrops 68
australiensis, Typaea 240
australis, Scyllanus 194
Avus 111
Avus trigonus 114Azeffane84,120,122,154
B
bahamondei, Projasus 158
bairdii, Eunephrops 54
Bakhouche 120,122,154
Balmain bug 206
Banag 153,157
Banagan 140,147,149,152,153,157
Banded lobster 55
Banded spiny lobster 147
Banded whip lobster 162
Bangkang pak 228
barfif, Cancer 209
Barking crayfish 114
batei arbic us, Scyllarus 219
batei, Scyllarus 219
Bay ghost shrimp 244,245
Bay lobster 228
Beach ghost shrimp 242,243
Beerkeeft 183
Bellator 85
Bellator grobovi 85
Bellator lobster 85
Bermuda spiny lobster 134
bertholdii, Scyllarus 221
Beudic 120
bic uspidatus, Arctus 216
bic uspidatus, Scyllarus 216
biffari, Callianassa 242
Bigea 232
Bight lobster 71
Bight scampi 71
binghami, Metanephrops 70
binghami, Nephrops 70
birsteini, Nephropides 48
birsteini, Thymops 48
bispinosus, Panulinus 145
Blind deep-sea lobster 27
Blu back locust lobster 222
Blue crawfish 154
Blue lobster 138
Blue mudshrimp 235,236
Blue spiny lobster 141
Blue spot rock lobster 147
Blunt slipper lobster 194
Bocek 120
Bogavante 60
Bogavante americano 58
Bogavante del Cabo 59
Bogstavhummer 84
Bokstavhummer 84
Boot boster 196
Boschma's scampi 71
boschmai, Metanephrops 71
boschmai, Nephrops 71
Braber 210
brasiliensis, Scyllarides 185
Brazilian lobster 145
Brazilian slipper lobster 185
brevic omis, Scyllarus 222
brevipes, lbacus 201
brevirostris, Phoberus 28
Broad lobster 219
Brown spiny lobster 136
brucei, lbacus 202
Buchstabenkrebs 84
buergeri, Palinurus (Senex) 139
buergen, Panulinus 139
Buffalo blunthorn lobster 124
Bug 228
Bujías 219
Bulldozer 192
burgeri megasc ulpta, Panulinus 139
burgeni, Palinurus 139
Burrowing shrimp 242
Butterfly fan lobster 205
Butterfly lobster 206,211

C

Cacahou`ete 84
Cacahou ete caraibe 168
Cacahou'ete indo-pacifique 170
Cadell de mar 237
cadenasi, Eunephrops 55
caeca, Acanthacaris 26
caecus, Neophoberus 26
caecus, Phoberus 26
caecus sublevis, Phoberus 28
Caledonian mitten lobster 211
caledonic us, Pamibacus 211
California lobster 143
California marine crayfish 143
California spiny lobster 142,143
califomica, Gebia 235
califomiensis bouvieri, Callianassa 246
califomiensis, Callianassa 244
califomiensis japonica, Callianassa 246
Calliactites 240
Calliadne 232
Callinassa 239
Callinassa affinis 242
Callinassa australiensis 240
Callinassa biffari 242
Callinassa califomiensis 244
Callinassa califomiensis bouvien 246
Callinassa califomiensis japonica 246
Callinassa (Callichirus) diademata 250
Callinassa (Callichirus) krukenbergi 250
Callinassa (Callichirus) laticauda 252
Callinassa (Callichinus) stebbingi 252
Callinassa (Callichirus) tumerana 250
Callinassa diademata 250
Callinassa gigas 245
Callinassa gigas eoa 249
Callinassa gigas japonica 249
Callinassa hamandi 246
Callinassa japonica 246
Callinassa kraussi 248
Callinassa krukenbergi 250
Callinassa latic auda 252
Callinassa longimana 245
Callinassa occidentalis 244
Callinassa petalura 249
Callinassa subterranea japonica 246
Callinassa (Trypaea) gigas 245
Callinassa (Typaea) hamandi 246
Callinassa (Typaea) japonica 246
Callinassa (Typaea) longimana 245
Callinassa (Typaea) petalura 249
Callinassa tumerana 250
Callinassa tymhena 252
CALLIANASSIDAE 239
Callianopsis 240
Calliapagurops 240
Calliax 240
Callichinus kraussi 248
Camarón de lo alto 109
Camarón gigante 44
Camarón gigante de profundidad 44
Cameroon ghosi shrimp 250
Cancerarctus 217
Cancer (Astacus) anomalus 229
Cancer (Astacus) capensis 59
Cancer (Astacus) fulvus 59
Cancer (Astacus) polyphagus 152
Cancer (Astacus) ursus major 209
Cancer (Astacus) ursus minor 218
Cancerbarffi 209
Cancercassideus 170
Cancerelephas 119
Cancergammarus 60
Cancerhomarus 139
Cacer locusta 119
Cancernorvegicus 83
Cancertheresae 151
caparti, Scyllarus 246
Cape crawfish 100
Cape crayfish 100
Cape jagged lobster 159
Cape lobster 59
Cape mud shrimp 233
Cape rock lobster 99
Cape rocklobster 100
Cape slipper lobster 188
Cape spiny crayfish 100
Cape spiny lobster 100
Cape Verde spiny lobster 116
capensis, Astacus 59
capensis, Cancer (Astacus) 59
capensis, Homanus 59
capensis, Upogebia 233
Caravida 191
caribbaeus, Nephropides 34
Caribbean furry lobster 168
Caribbean lobster 70
Caribbean lobsterette 70
Caribbean spiny lobster 133
carinatus, Puerulus 163
carinatus, Scyllarus 209
capenteri, Nephropsis 39
Carrasco 191
cassideus, Cancer 170
Cava-cava do Cabo 188
Cava-cava esculpida 210
Cava-cava lisa 205
Cava-cava scamosa 194
Cava-cava triangular 228
Ccala hamra 191
Ccala seula 191
chacei, Scyllarus 216
challengeni, Metanephrops 72
challengeri, Nephrops 72
Chambre 219
Champagne lobster 114
charlestoni, palinurus 116
Cheramus 269
Chilean jagged lobster 158
chilensis, Thalassina 229
China lobster 80
Chinese lobster 196
Chinese mud shrimp 238
Chinese spiny lobster 155
Chineza 210
Chkal 219
Chrysoma 216
Chrysoma meditenaneum 218

Cicada, Scyllarus	218
Cicala di mare	191,219
Cicala grande	191
Cicaledda	237
Cigala	83,84,219
Cigala colorada	54
Cigala de Andamán	66
Cigala de Florida	36
Cigala de fondo	26
Cigala de grano	38
Cigala del Caribe	80
Cigala del Oceano Indico	45
Cigala del Pacifico	43
Cigala gran	191
Cigala raspa	28
Cigale	191
Cigale blanche	219
Cigale chambré	192
Cigale courte	191
Cigale de Galapagos	184
Cigale de mer	210,219
Cigale douce	219
Cigale du Cap	188
Cigale écusson	196
Cigale glabre	204
Cigale grenue	194
Cigale marie-carogne	183
Cigale naine	224
Cigale noire	191
Cigale raquette	227
Cigale rouge	190
Cigale savate	209
Cigarra	183,191,219
Cigarra blanducha	219
Cigarra chata	227
Cigarra chato	196
Cigarra chinesa	209
Cigarra de mar	191
Cigarra de quilla	192
Cigarra del Cabo	188
Cigarra do mar	190
Cigarra enana	224
Cigarra español	183
Cigarra liso	204
Cigarra roja	190
Cigarre ñato	194
Cigarro de Galápados	184
ciliatus, lbacus	203,209
ciliatus pubescens, lbacus	203
ciliatus, Scyllans	203
Clamkiller slipper lobster	195
Common crayfish	97,106
Common flapjack lobster	228
Common lobster	60
Commo Slipper lobster	119,134
Common Sydney crayfish	106
commune, Phyllosoma	153
Copper lobster	169
Coral cray	152
Coral Crayfsh	147,149
Corbola	237
Corbola salvadega	253
Corbola selvatica falsa	253
comubiensis, Nephropsis	83
Crawfish	104,120,134

Cray 101
Crayfish
214
crenatus, Arctus 216
crenatus, Scyllarus 216
crenulatus, Arctus 218
crenulaurs, Scyllarus (Arctus) 218
Crevette fouisseuse 237
Criquet 109
cultrifer meridionalis, Scyllarus 216
cultrifer, Scyllarus 216
Cupapa 204,228
cygnus, Panulirus 134

D

Dalmacita 159
dasypus, Palinurus 139
dasypus, Senex 139
deceptor, Scyllarides 186
Deep water bug 200
Deep water scampi 72
delagoae, Palinurus 117
delfini, Arctus 216
delfini, Scyllarus 216
delfini, Scyllarides 187
demani, Panulirus 156
demani, Scyllarus 216
depressus, Arctus 216
depressus, Scyllarus 216
depressus, Yalomus 218
diademata, Callianassa 250
diademata, Callianassa (Callichirus) 250
Digging lobster 188,205
digueti, Palinurus 141
Double-spined rock lobster 152
dubius, Scyllarus 216
Dublin bay prawn 84
Dublin prawn 84
duperreyi, Phyllosoma 205

E

Easter Island lobster 214
Easter Island mitten lobster 214
Easter Island slipper lobster 193
Easter Island spiny lobster 149
Eastern crayfish 106
Eastern rock lobster 106
echinatus, Panulirus 136
edwardsii, J asus (Jasus) 97
edwardsii, Palinurus 97
ehrenbergi, Palinurus 151
ehrenbergi, Palinurus (Panulirus) 151
Elefante di mare 60
elegans, Phyllamphion 170
elephas, Astacus 119
elephas, Cancer 119
elephas, Palinurus 119
elisabethae, Scyllarides 188
ensirostris, Nephropsis 41
Eolinuparus 111
ERYONIDEA 88
ERYONOIDEA 88
Escamarlanc 84
Eunephrops 53
Eunephrops bairdii 54
Eunephrops cadenasi 55
Eunephrops manningi 55
europaeus, Astacus 60
Europaische languste 120
Europaische Hummer 60
European lobster 60
Evibacus 195
Evibacus princeps 196
F
Farzit 191
fasciatus, Palinurus 152
faxoni, Scyllarus 216
femoristriga, Palinurus 145
femoristriga, Senex 145
Fenix lobster 89
Feritah 191
Flapjack 206
Flat lobster 196
Flathead lobster 227
Florida lobsterette 36
Florida spiny lobster 134
Flower ghost shrimp 249
Formosa lobster 73
formosanus, Metanephrops 73
Fradinho 183
French Iobster 183
frontalis, J asus (J asus) 98
frontalis, Palinostus 98
frontalis, Palinurus 98
fulvus, Astac us 59
fulvus, Cancer (Astacus) 59
fulvus, Homarus 59
G
Galapagos slipper lobster 184
gammarus, Astacus 60
gammarus, Cancer 60
gammarus, Homanus 60
Gebia 232
Gebia africana 233
Gebia califomica 235
Gebia lac ustris 236
Gebia littoralis 236
Gebia major 234
Gebia major capensis 233
Gebia pugettensis 235
Gebia subspinosa 233
Gebia venetiarum 236
GEBIADAE 232
Gebicula 232
Gebiopsis 232
Gebios 239
Gebios littoralis 236
Gebius 239
Gemeine languste 120
Gerbios 232
gerstaeckeni, Pseudibacus 183
Ghost nippers 242
Ghost shrimp 243,245,246
Giant ghost shrimp 245
gibberosus, Arctus 217
gibberosus, Scyllanus 217
Gibbon furrow lobster 110
giganteus, Palinurus 105
gigas, Callianassa 245
gigas, Callianassa (Trypaea) 245
gigas eoa, Callianassa 249
gigas japonica, Callianassa 249
gigas, Palinurus 151
Gilchrist's crayfish 121
gilchrist delagoae, Palinurus 117
gilchrist natalensis, Palinurus 117
gilchrist, Palinurus 120
Glabrous fan lobster 202
Gladiator lobsterette 41
GLYPHAEIDAE 88
GLYPHEIDAE 88
GLYPHEOIDEA 88
Glypturus 239
godoffiroyi, Palinurus 155
Golden rock lobster 152
Goshiki ebi 157
Goshiki-ise-ebi 157
gracilis, Panulinus 157
gracilis, Puerulus 137
gracilis, Thalassina 162
Grand Scyllare 229
Grande cigale 191
Green cray 106
Green crayfish 106
Green lobster 106
Green rock lobster 105
Green spiny lobster 137
Grillenkrebs 219
Grillo real marino 237
grobovi, Bellator 85
grobovi, Thymopides 85
Grooved lobsterette 47
Grosse cigale 191
Grosse langouste porcelaine 149
Grosser Barenkrebs 191
Grosses brésiliennes 145
Grosses tétes 152
guerini, Phyllosoma 203
Guinea chick lobster 139
Guinea lobster 139
guineensis, Arctides 176
guineensis, Scyllarides 176
guineensis, Scyllarus 176
Gulf lobster 228
gundlachi, Palinurellus 168
gundlachi, Scyllarus 216
gundlachi wieneckii, Palinurellus 170
Gusaku-ebi 162
guttatus brasiliensis, Panulirus 136
guttatus, Palinurus 138
guttatus, Palinurus (Senex) 138
guttatus, Panulirus 138
H
haanii, Scyllaride 189
haanii, Scyllarus 221
Hako-ebi 114
hamandi, Callianassa 246
hamandi, Callianassa (Typaea) 246
Havskrafta 84
herklotsii, Scyllarides 190
herklotssi, Scyllarus 190
Hlap 60
holthuisi, Parribacus 212
Homar 60
Homard 58,60
Homard améeicain 58
Homard bissie 139
Homard blanc 134
Homard brésilien 109,139
Homard d'indien 145
Homard du Cap 59
Homard européen 60
Homard plat 191
Homard sans cornes 228
HOMARIDAE 26
Homarus 57
Homarus americ anus 58
homarus, Astac us 139
homarus, Cancer 139
Homarus capensis 59
Homarus fulvus 59
Homarus gammarus 60
Homarus mainensis 58
Homarus marinus 60
Homarus novegic us 83
homarus, Palinurus 139
homarus, Panulirus 139
homarus rubellus, Panulinus 139
Homarus vulgaris 60
Hooded slipper lobster 186
Hoornkreeft 120
Horsesshoe crab 210
huegelii, J asus 105
huegelii, Palinosytus 105
huegelii, Palinurus 105
Huwpaak mun lung ha 157
Hummer 60,84
hunchback locust lobster 225
hybridica, Synaxes 168
I
IBACINAE 195
Ibacus 197
lbacus altic renatus 200
lbac us altic renatus septemdentatus 200
Ibacus antarctic us 209
lbacus brevipes 201
lbacus brucei 202
Ibacus ciliatus 203,209
lbac us ciliatus pubescens 203
Ibacus novemdentatus 204
lbacus parrae 209
lbacus peronii 205
lbacus pictus 203
lbacus verdi 201
immaturus, Arctus 224
immaturus, Scyllarus 224
incisus, Scyllarus 205
Indian Ocean lobsterette 45
indicus, Thenus 227
Indo-Pacific furry lobster 170
inemis, Panulirus 136
inflatus, Palinurus 141
inflatus, Panulinus 141
inopinata, Neoglyphea 89
inemmedius, Nephros 78
intemuptus, Palinurus 142
intemuptus, Panulinus 142
Ise-ebi 144
Ishi-ebi 114
Isopuerulus 158
Isopuerulus parker 159
Istakoz 60
Ivinibila 211
Japanese blunthorn lobster 126
Japanese crayfish 144
Japanese fan lobster 203
Japanese furrow lobster 108
Japanese ghost shrimp 247
Japanese lobster 74
Japanese mitten lobster 213
Japanese mud shimp 234
Japanese spear lobster 114
Japanese spiny lobster 143
japonica, Callianassa 246
japonica, J ustitia 108
japonica, Callianassa (Trypaea) 246
japonicus lobgipes, Panulinus 145
japonic us, Metanephrops 74
japonicus, Nephrops 74
japonicus, Nupalinus 108
japonicus, Palinurus 143
japonicus, Panulinus 143
japonicus, Panibacus 213
japonicus, Senex 143
japonic us, Tha umastocheles 23
Jarradh el bahr 84,120
Jastog 120
Jasus 95
Jasus huegelii 105
Jasus (Jasus) 95
Jasus (J asus) edwadsi 97
Jasus (Jasus) frontalis 95
J asus (Jasus) lalandii 99
J asus (J asus) novaehollandiae 100
Jasus (Jasus) paulensis 101
Jasus (J asus) tristani 103
J asus novaehollandiae 100
Jasus parken 159
Jasus (Sagmariasus) 104
Jasus (Sagmariasus) vereauxi 105

La porcelaine 157
Labugante 60
lac ustris, Gebia 236
Lady crab 183
laevicauda, Palinurus 144
laevic auda, Panulinus 144
laevicauda, Senex 144
laevis, Nisto 218
Lagosta 120,186,191
Lagosta cabo verde 145
Lagosta carinada 163
Lagosta cornuda 152
Lagosta da pedra 190,219
Lagosta de coral 147
Lagosta de pedra 191
Lagosta de profundidae 118
Lagosta encarnadinha 137
Lagosta escamosa 140
Lagosta japonesa 185,187
Lagosta lanceira 112
Lagosta listrada 162
Lagosta Iluisa 219
Lagosta ornamentada 149
Lagosta peluda 170
Lagosta pintada 137,157
Lagosta roxa 137
Lagosta sapateira 183,185,187
Lagosta verde 154
Lagosta vermelha 137
Lagostim 77,84,183,186
Lagostim espinhoso 28
Lagostim indico 46
Lagostinho 137
lalandii, J asus (J asus) 99
lalandii, Palinostus 99
lalandii, Palinosystus 99
lalandii, Palinurus 99
Lameiro 219
Langoest 120
Langosta 120,134,214
Langosta azul 138,141
Langosta barbona 137,138
Langosta cabezona 141
Langosta caribe 138,141
Langosta chata 196
Langosta china 196
Langosta colorada 143
Langosta colorete 156
Langosta común 119
Langosta común del Caribe 133
Langosta de aguas profundas 48
Langosta de arena 183,196
Langosta de Australia 135
Langosta de Cabo Verde 116
langosta de fusta arabica 164
Langosta de Isla Socorro 152
Langosta de Juan Fernández 98,99
Langosta de muelas 109
Langosta de Oceanía 105
Langosta de Pascua 150
Langosta de playa 138
Langosta de roca 141
Langosta de St. Paul 101

Langosta de tiempo	99
Langosta de Tristan	103
Langosta de Valparaiso	159
Langosta del Cabo	99
Langosta del Golfo	134
Langosta del Indo-Pacifico	170
Langosta del Natal	117
Langosta del sur	120
Langosta duende	145
Langosta enana	159
Langosta española	183
Langosta fanguera	152
Langosta festoneada	139
Langosta filipina	196
Langosta guera	138
Langosta horquilla	151
Langosta jabalina africana	112
Langosta japonesa	143
Langosta manchada	139
Langosta marron	136
Langosta mexicana	142
Langosta mora	121
Langosta moteada	138
Langosta ñata	125
Langosta ornamentada	149
Langosta prieta	141
Langosta real	153
Langosta roja	122,143,152
Langosta rosada	122
Langosta verde	138,139,144
Lanfostina	183
Langostinha	77
Lanfostinha do Mar	77
Langostino	184,210
Langostita del Caribe	168
Langousta	122
Langouste	120
Langouste aliousta	125
Langouste américaine	134
Langouste argus	134
Langouste australe	103
Langouste barriolée	156
Langouste blanche	133
Langouste bleue	141
Langouste bordée	147
Langouste brune	136
Langouste brune des Iles du Cap Vert	137
Langouste caraibe	109
Langouste commune	120
Langouste d'Amérique	134
Langouste d'Australie	135
Langouste d'Océanie	105
Langouste de Cap Vert	116
Langouste de St. Paul	101
Langouste de Tristan	103
Langouste de vase	152
Langouste diablotin	145
Langouste du Cap	99,100
Langouste du large	122
Langouste du Natal	117
Langouste du Sud	120
Langouste européenne	120
Langouste festonnée	139
Langouste fouet arabe	164
Langouste fourchette	151

Langouste gibbon 110
Langouste indienne 144
Langouste japonaise 143
Langouste javelot d'Afrique 112
Langouste Juan Fernandez 98
Langouste mexicaine 142
Langouste ornée 149
Langouste rose 121,122
Langouste rouge 119,147
Langouste royale 153
Langouste tachetée 138
Langouste verte 137
Langoustine 83,84
Langoustine andamane 66
Langoustine arganelle 26
Langoustine bicolore 44
Langoustine caraibe 70
Langoustine de Floride 36
Langoustine du Pacifique 43
Langoustine épineuse 37
Langoustine indienne 45
Langoustine rouge 54
Langoustine spinuleuse 28
Langust 120
Langusta 154
langusta, Palinurus 119
Languste 120
laticauda, Callianassa 252
latic auda, Callianassa (Callichirus) 252
latus, Scyllarides 191
latus, Scyllarus 191
Lavagante 60
Leguban 60
Lengusta 120
Lengustina 84
Lepidophthalmus 240
Letur humar 84
lewinsohni, Scyllarus 217
Linuparus 11
Linuparus somniosus 112
Linuparus sordidus 113
Linuparus trigonus 114
littoralis, Gebia 236
littoralis, Gebios 236
littorales, Thalassina 236
littorales, Upogebia 236
Liunfant 60
Llagosta 120
Llangant 60
Lobster 58,60
Locust lobster 183
locusta, Cancer 119
locusta, Palinurus 119
Long armed lobster 109
Long armed spiny lobster 109
Long handed ghost shrimp 246
Long handed spiny lobster 110
Long legged crayfish 147
Long legs 137
Long tailed crab 183
longidactylus, Scyllarus 217
longimana, Callianassa 245
longimana, Callianassa (Trypaea) 245
longimana ma uritania, J ustitia 110
longimanus, J ustitia 109
Longimanus mauritianus, Palinurus 110
longimanus, Palinurus 109
longipes cygnus, Panulinus 134
longipes, Palinurus 145
longipes, Palinurus (Senex) 153
longipes, Panulius 145
longitarsus, Palinurus 145
Longlegged spiny lobster 145
Lubricante 60
Luk-Sik-Lung-Ha 155
Lupicante 60
Lupo di mare 60
M
Macietta 191
MACRURA REPTANTIA 17
maculatus, Pagurus 119
Mae hop 231
Maganto 84
magnificus, Palibythus 167
magnosa 191
magnosella 219
Maine lobster 58
mainensis, Homarus 58
major capensis, Gebia 233
major, Gebia 234
major, Upogebia 234
malhaensis, Nephropsis 42
Maman homard 183,210
Mamun 237
Mané 231
Manla 231
manningi, Eunephrops 55
Marbled mitten lobster 215
marginatus, Palinurus 147
marginatus, Panulinus 147
Marie-carogne 183,210
Marine crayfish 106,147,157,236
Marine spiny crayfish 97
Marin yabbie 242
marinus, Astacus 58,60
marinus, Homarus 60
marinus, palinurus 119
martensii, Scyllarus 223
Maulwurfkrebs 237,253
mauritanic us, Palinurus 121
mauritiana, J ustitia 110
mawsoni, Arctus 217
mawsoni, Scyllarus 217
maxima, Thalassina 229
Mbéatoé 252
Mbotoré 252
Mediterranean mud shrimp 236
Mediterranean slipper lobster 191
meditemaneum, Chrysoma 218
meditenaneum, Phyllosoma 218
Melbourne crayfish 101
Mére homard 183
Mesostylus 239
Metanephrops 61
Metanephrops andamanicus 66
Metanephrops arafurensis 67
Metanephrops ammatus 67
Metanephrops australiensis 68
Metanephrops bighami 70
Metanephrops boschmai 71
Metanephrops challengeri 72
Metanephrops formosanus 73
Metanephrops japonic us 74
Metanephrops mozambic us 75
Metanephrops meptunus 76
Metanephrops rubellus 77
Metanephrops sagamiensis 78
Metanephrops sibogae 79
Metanephrops sinensis 80
Metanephrops thomsoni 81
Metanephrops velutinus 82
Minami akaza-ebi 82
Mitten lobsterette 31
Miyu uhut 210
Moddergarnaal 234
modestus, Scyllanus 217
Mole lobster 170
Montagua 239
Moreton Bay bug 228
mossambicus, Palinustus 124
Mother Iobster 183
mozambic us, Metanephrops 75
Mud lobster 231
mud prawn 234
Mud shrimp 236
Mud spiny lobster 152
Musical furry lobster 167
N
Natal spiny lobster 117
Navegante 60
nearctus, Scyllarus 216
neglecta, Nephropsis 42
Neogebicula 232
Neoglyphea 89
Neoglyphea inopinata 89
NEOPHOBERINAE 26
Neophoberinae 26
Neophoberus caecus 26
NEPHROPIDAE 26
Nephropides 30
Nephropides birsteini 48
Nephropides caribaeus 31
NEPHROPINAE 19,26,50
NEPHROPOIDEA 19
Nephrops 83
Nephrops andamanic us 66
Nephrops arafurensis 67
Nephrops australiensis 68
Nephrops binghami 70
Nephrops boschmai 71
Nephrops challengeri 72
Nephrops intermedius 78
Nephrops japonic us 74
Nephrops neptunus 76
Nephrops norvegic us 83
Nephrops norvegic us menidionalis 83
Nephrops rubellus 77
Nephrops sagamiensis 78
Nephrops sibogae 79
Nephrops sinensis 80
Nephrops thomsoni 80
Nephrops thomsoni andamanic us 66
Nephropsis 31
Nephropsis acanthura 35
Nephropsis ac uelata 36
Nephropsis ac uleatus 36
Nephropsis agassizi 37
Nephropsis atlantic a 38
Nephropsis capenteri 39
Nephropsis comubiensis 83
Nephropsis ensirostris 41
Nephropsis malhaensis 42
Nephropsis neglecta 42
Nephropsis occidentalis 43
Nephropsis orientalis 46
Nephropsis rosea 44
Nephropsis stewarti 45
Nephropsis suhmi 46
Nephropsis sulcata 47
Neptune lobster 76
Neptune's scampi 76
neptunus, Metanephrops 76
neptunus, Nephrops 76
New South Wales spiny lobster 106
New Zaeland lobster 72
New Zealand scampi 72
Nihon-suna-moguri 248
Nilenta lobsterette 49
nilenta, Thymopsis 49
Nishiki-ebi 149
Nisto 216
Nisto asper 218
Nisto laevis 218
nitidus, Scyllarus 217
No-ebi 144
nobilii, Arctus 217
nobilli, Scyllans 217
nodifer, Scyllarides 192
nodifer, Scyllarus 192
Noorse kreeft 84
Northern bay lobster 228
Northern lobster 58
Northwest lobster 68
Northwest scampi 69
nonegicus, Astacus 83
norvegicus, Cancer 83
novegic us, Homanus 83
norvegic us meridionalis, Nephrops 83
norvegicus, Nephrops 83
Norway lobster 83
Norwegischer 84
novaehollandiae, J asus 100
novaehollandiae, J asus (J asus) 100
novemdentatus, lbacus 204
Nupalinus 107
Nupalinus japonic us 108
0
occidentalis, Callianassa 244
occidentalis, Nephropsis 43 43
Ohba uchiwa ebi 205
Okina-ebi 46
Okinawa-ana-jyako 231
Omar 60
Opapa 212
opic ara, Acanthacaris 28
Oriental spear lobster 113
orientalis, Arctus 219
orientalis, Nephropsis 46
orientalis, Panulinus 152
orientalis, Sagaristis 227
orientalis, Sc yllarus 219
orientalis, scyllibacus 227
orientalis, Thenus 227
Ornate crayfish 149
Ornate rock lobster 149
Ornate spiny lobster 149
omatus decortatus, Palinurus (panulinus) 156
omatus laevis, Panulirus 156
omatus laevis, Senex 156
omatus, Palinurus 148
omatus, Panulinus 148
omatus, Scyllarus 217
omatus, Senex 148
Oson 231
Oula 147
Oura mit 152
P
Pacific lobsterette 43
Pacific pincer lobster 23
Pacific sand lobster 196
Packhorse crayfish 106
Packhorse lobster 106
Pagurus maculatus 119
Painted cray 149
Painted crayfish 147
Painted lobster 149
Painted rock lobster 157
Painted spiny lobster 156
Palaemon adriatic us 119
Palatak 231
Palibythus 166
Palibythus magnific us 167
Palinostus 95
Palinostus frontalis 98
Palinostus lalandii 99
Palinosytus 95
Palinosytus huegelii 105
Palinosytus lalandii 99
Palinurellus 168
Palinurellus gundlachi 168
Palinurellus gundlachi wieneckii 170
Palinurellus wieneckii 170
PALINURIDAE 91
PALINURIDEA 87
PALINURINI 87
PALINUROIDEA 90
Palinurus 115
Palinurus adriatic us 119
Palinurus americ anus 133
Palinurus argus 133
Palinurus burgen 139
Palinurus charlestoni 116
Palinurus dasuypus 139
Palinurus delagoae 117
Palinurus digueti 141
Palinurus edwardsii 97
Palinurus ehrenbergi 151
Palinurus elephas 119
Palinurus fasciatus 152
Palinurus femoristriga 145
Palinurus frontalis 98
Palinurus giganteus 105
Palinurus gigas 151
Palinurus gilchrist 120
Palinurus gilchristi delagoae 117
Palinurus gilchristi natalensis 117
Palinurus godeffioyi 155
Palinurus guttatus 138
Palinurus homarus 139
Palinurus huegelii 105
Palinurus inflatus 141
Palinurus intemumptus 142
Palinurus japonicus 143
Palinurus laevic auda 144
Palinurus lalandii 99
Palinurus langusta 119
Palinurus loc usta 119
Palinurus longimanus 109
Palinurus longimanusmauritianus 110
Palinurus longipes 145
Palinurus longitarsus 145
Palinurus marginatus 147
Palinurus marinus 119
Palinurus mauritanucus 12
Palinurus omatus 148
Palinurus (Panulinus) ehrenbergi 151
Palinurus (Panulirus) omatus decoratus 156
Palinurus paschalis 149
Palinurus paulensis 101
Palinurus penic illatus 151
Palinurus polyphagus 152
Palinurus quadricomis 119
Palinurus ricordi 133
Palinurus rissonii 153
Palinurus (Senex) argus 133
Palinurus (Senex) buergeri 139
Palinurus (Senex) guttatus 138
Palinurus (Senex) longipes 153
Palinurus (Senex) penic illatus 15
Palinurus (Senex) sulcatus 148
Palinurus spinosus 139
Palinurus sulcatus 148
Palinurus taeniatus 156
Palinurus thomsoni 121
Palinurus trigonus 114
Palinurus trumc atus 125
Palinurus tumidus 105
Palinurus vemeauxi 105
Palinurus versic olor 156
Palinurus vulgaris 119
Palinurus vulgaris inflata 121
Palinurus vulgaris mauritanic us 121
Palinustrus 123
Palinustrus mossambicus 124
Palinustus phoberus 153
Palinustus truncatus 125
Palinustus unic omutus 126
Palinustus waguensis 126
Pallinurus 115
Panulius 128
Panulinus angulatus 162
Panulinus argus 133
Panulirus bispinosus 145
Panulirus buergeri 139
Panulinus burgeri megasculpta 139
Panulirus cygnus 134
Panulinus dasypus 139
Panulinus demani 156
Panulinus echinatus 136
Panulirus gracilis 137
Panulinus guttatus 138
Panulirus guttatus brasiliensis 136
Panulius homarus 139
Panulinus homarus rubellus 139
Panulinus inemis 136
Panulinus inflatus 141
Panulinus intemuptus 142
Panulinus japonic us 143
Panulinus japonic us longipes 145
Panulinus laevic auda 144
Panulius longipes 145
Panulirus longipes cygnus 134
Panulinus marginatus 147
Panulinus orientalis 152
Panulinus omatus 148
Panulinus omatus laevis 156
Panulirus pascuensis 149
Panulinus penicillatus 151
Panulirus polyphagus 12
Panulirus regius 153
Panulirus stimpsoni 155
Panulinus sulc atus 148
Panulinus taeniatus 156
Panulinus versicolor 156
Papata 210
papyraceus, Pamibacus 209
Paracalliax 240
pardoxus, Scyllarus 217
Parker's crayfish 160
parken, Isopuerulus 159
parkeni, Jasus 159
parkeni, Projasus 159
parkeni, Puerulus 159
parrae, lbacus 209
parrae, Pambacus 209
parae, Scyllarus (lbacus) 209
Pamibacus 207
Parribacus antarcticus 209
Pamibac us antarctic us carinatus 209
Pamibacus calejonic us 211
Panibacus holthuisi 212
Paribacus japonic us 213
Panibacus papyraceus 209
Pamibacus parae 209
Pamibac us perlatus 214
Parribac us scarlatinus 215
Parribacus ursus major 209
parthenopaeum, Phyllosoma 218
paschalis, Palinurus 149
pascuensis, Panulirus 149
Patahonian lobsterette 48
paulensis jasus (J asus) 101
paulensis, Palinurus 101
paulsoni, Scyllarus 217
Pawharu 106
Pei pa ha 228
pellucidus, Puer 143
pellucidus, Puerulus 143
penicillatus, Astacus 151
penicillatus, Palinurus 151
penicillatus, Palinurus (Senex) 151
penicillatus, panulinus 151
perlatus, Panibacus 214
Péron's Ibacus crab 206
peronii, lbacus 205
petalura, Callianassa 249
petalura, Callianassa (Typaea) 249
Petit Scyllare 219
Petite cigale 218,219
Petite cigale de mer 219
pfefferi, Pseudibacus 194
PHOBERINAE 26
Phoberus 26
Phobenus brevirostris 28
Phoberus caecus 26
Phoberus caec us sublevis 28
phoberus, Palinustus 153
Phoberus tenuimanus 28
Phyllamphion 168
Phyllamphion elegans 170
Phyllamphion reinhardti 168
Phyllamphion santuccii 164
Phyllosoma 128
Phyllosoma commune 153
Phyllosoma dupemeyi 205
Phyllosoma guerini 203
Phyllosoma mediterraneum 218
Phyllosoma parthenopaeum 218
Phyllosoma samiense 218
Phyllosoma utivaebi 203
pictus, lbacus 203
Pienkgarnaal 249
Pink ghost shrimp 248
Pink prawn 249
Pink spiny lobster 121
Pinto lobster 141
Pitik pitik 204,228
planorbis, Scyllarus 217
Po-sesaw 190
Podocratus 111
POLYCHELIDAE 88
polyphagus, Cancer (Astacus) 152
polyphagus, Palinurus 152
polyphagus, Panulinus 152
Popinée 211
Porcelain crayfish 157
porcellana, Typaea 240
Port Elizabeth crawfish 188
Port Elizabeth rock lobster 188
posteli, Scyllarus 217
Potiquiquiya 137
Potiquiquyixe 210
Prawn killer 200,206
Prickly deep sea lobster 28
Prickly lobsterette 37
princeps, Evibacus 196
Projasus 158
Projasus bahamondei 158
Projasus parken 159
Pronghom spiny lobster 151
Pseudibacus 178
Pseudibacus gerstaeckeri 183
Pseudibacus pfefferi 194
Psedibacus veranyi 191
Puer 161
Puer angulatus 162
Pueratlanticus 153
Puer pellucidus 143
Puer spiniger 156
Puerulus 161
Puerulus angulatus 162
Puerulus carinatus 163
Puerulus gracilis 162
Puerulus parkeri 159
Puerulus pellucidus 143
Puerulus sewelli 164
Puerulus spiniger 156
Pueenulus velutinus 165
Puget Sound ghost crab 236
pugettensis, Gebia 235
Pugettensis, Upogebia 235
pumilus, Scyllarus 217
pusilla, Upogebia 236
pusillus, Astacus 236
pygmaeus, Arctus 224
pygmaeus, Scyllarus 224
Pygmy loc ust lobster 224
Q
quadric omis, Palinurus 119
R
Raiklius 152
Raperape 193,214
Red and white lobsterette 46
Red banded lobster 81
Red crab 120
Red cray 147
Red crayfish 97
Red flapjack 175
Red lobster 54,101,143,152
Red rock lobster 97
Red slipper lobster 190
Red spiny lobster 97
Red spotted mitten lobster 212
Red squat lobster 190
Red whip lobster 163
regalis, Arctides 177
regius, Panulirus 153
reinhardti, Phyllamphion 168
REPTANTIA MACRURA 17
ricordi, Palinurus 133
Ridge back lobsterette 39
Ribged slipper lobster 192
rissonii, Palinurus 153
Rock lobster 97,139
roggeveemi,Scyllarides 193
rosea, Nephropsis 44
Rote languste 100
Rough Spanish lobster 175
Royal slipper lobster 177
Royal Spanish lobster 177
Royal spiny lobster 153
rubellus, Metanephrops 77
rubellus, Nephrops 77
rubens, Arctus 217
rubens, Scyllarus 217
Ruby lobsterette 42
Rufola 237
rugosus, Arctus 222
rugosus, Astacus 83
rugosus, Scyllarus 225
Ryomaebi 108
S
Sagami akaza-ebi 78
sagamiensis, Metanephrops 78
sagamiensis, Nephrops 78
Saganitis 227
Sagaritis orientalis 227
Saltwater crayfish 245
Samehada ise-ebi 140
Sand crayfish 206,228
Sand ghost shrimp 252
Sand lobster 139,196,206,228
Sand prawn 249
Sandkrebs 253
Sandy bug 200
Santiaguiño 218
Santiaguiño 219
santic cii, Phyllamphion 164
Sapa 191
Sapata 187
Sapateira 185
Saratan il bahr 60
samiense, Phyllosoma 218
Savate 183,210
Saya de Malha lobsterette 42
scabra, Thalassima 229
Scallasis 240
Scalloped spiny lobster 139
Scaly slipper lobster 194
Scampo 84
Scampolo 84
Scardobola 237,253
scarlatinus, Paribacus 215
Scarlet lobsterette 38
Schoenkreeft 183
Scorpion mud lobster 22
scopionides, Thalassina 229
SCORPIONOIDAE 229
sculpta, Stereomastis 88
Sculpted lobster 78
Sculptured lobster 55
Sculptured mitten lobster 209
sculptus bermudensis, Scyllarides 176
sculptus, Sc yllarides 176
sculptus, Scyllarus 176
SCYLLARIDAE 171
SCYLLARIDES 171
Scyllarides 178
Scyllarides aequinoctialis 183
Scyllarides americ anus 192
Scyllarides astori 184
Scyllarides brasiliensis 185
Scyllarides deceptor 186
Scyllarides delfosi 187
Scyllarides elisabethae 188
Scyllarides guineensis 176
Scyllarides haanii 189
Scyllarides herklotsii 190
Scyllarides latus 191
Scyllarides nodifer 192
Scyllarides roggeveeni 193
Scyllarides sculptus 176
Scyllarides sculptus bemudensis 176
Scyllarides squammosus 194
Scyllarides tridac nophaga 195
Scyllaridia 178
SCYLLARINAE 216
Scyllarus 216
Scyllarus aesopius 216
Scyllarus amabilis 216
Scyllarus americ anus 216
Scyllarus antarcticus 209
Scyllanus aoteanus 216
Scyllarus arctus 217
Scyllarus (Arctus) arctus paradoxus 217
Scyllarus (Arctus) crenulatus 218
Scyllarus arctus Iutea 218
Scyllanus aureus 216
Scyllarus aurora 216
Scyllarus australis 194
Scyllarus batei 219
Scyllarus batei arbicus 219
Scyllarus bertholdii 221
Scyllarus bic uspidatus 216
Scyllarus brevicomis 222
Scyllarus caparti 216
Scyllarus carinatus 209
Scyllarus chacei 216
Scyllarus cicada 218
Scyllanus cilictus 203
Scyllanus crenatus 216
Scyllarus culthifer 216
Scyllarus culthifer meridionalis 216
Scyllarus delfini 216
Scyllarus demani 216
Scyllarus depressus 216
Scyllarus dubius 216
Scyllarus faxoni 216
Scyllanus gibberosus 217
Scyllarus guineensis 176
Scyllarus gundlachi 216
Scyllarus haanii 221
Scyllarus herklotsii 190
Scyllarus (lbacus) panae 209
Scyllarus immaturus 224
Scyllarus incisus 205
Scyllarus kitanovinosus 217
Scyllarus latus 191
Scyllarus lewinsohni 217
Scyllarus longidactylus 217
Scyllarus martensii 223
Scyllarus mawsoni 217
Scyllarus modestus 217
Scyllarus nearctus 216
Scyllarus nitidus 217
Scyllarus nobilii 217
Scyllanus bodifer 192
Scyllarus orientalis 219,227
Scyllarus omatus 217
Scyllarus Iparadoxus 217
Scyllarus paulsoni 217
Scyllarus planorbis 217
Scyllarus posteli 217
Scyllarus pumilus 217
Scyllarus pygmaeus 224
Scyllarus rubens 217
Scyllarus rugosus 225
Scyllarus sc ulptus 176
Scyllarus sieboldi 194
Scyllarus sinensis 22
Scyllarus sordidus 217
Scyllarus squammosus 194
Scyllarus subarctus 217
Scyllarus thiniouxi 217
Scyllarus timidus 217
Scyllarus tridentatus 218
Scyllarus tuberc ulatus 225
Scyllarus umbilicatus 217
Scyllarus vitiensis 217
Scyllibacus 227
Scyllibacus orientalis 227
Sea cockroach 210
Sea crawfish 94,106,120,183
Semi-ebi194
Semi-gani 194
Senex 128
Senex dasypus 139
Senex femoristriga 145
Senex japonic us 143
Senex laevic auda 144
Senex omatus 148
Senex omatus laevis 156
Serrate fan lobster 201
sewelli, Puerulus 164
Shield fan lobster 196
Shima ise-ebi 152
Shovel nosed lobster 177
Shovelnosed lobster 228
Siboga lobster 79
Siboga's scampi 80
sibogae, Metanephrops 79
sibogae, Nephrops 79
Sid 120
sieboldi, Scyllarus 194
sinensis, Metanephrops 80
sinensis, Nephrops 80
sinensis, Scyllarus 221
Sjako-ebi 194
Sjekreps 84
Skamp 84
Slipper lobster 183
Small European locust lobster 218
Small Spanish lobster 176
Smooth fan lobster 204
Smooth tailed crawfish 145
Smooth tailed crayfish 106
Smooth tailed spiny lobster 145
Smoothtail spiny lobster 144
Socorro spiny lobster 152
Soft locust lobster 219
somniosus, Linuparus 112
sordidus, Arctus 217
sordidus, Scyllarus 217
sordidus, Linuparus 113
Saum 122,154
Soumpé 122,154
South African rock lobster 100
South-eastern shovel nosed crayfish 175
South-eastern squat crayfish 175
Southern crawfish 97,101
Southern marine crayfish 101
Southern rock lobster 100,101
Southern shovel nosed cray 175
Southern shovel nosed lobster 206
Southern spiny lobster 101,120
Spanish lobster 139,175,177,192
Spanish slipper lobster 183
spear lobster 113,114
Spinetail lobsterette 35
spiniger, Puer 156
spiniger, Puerulus 156
spinosus, Palinurus 139
Spiny crayfish 97
Spiny lobster 120,134,152
Spotted crawfish 139
Spotted lobster 139
Spotted spiny lobster 138,139
Squagga 206
squammosus, Scyllarides 194
squammosus, Scyllarus 194
Squat crayfish 175
St. Paul rock lobster 101
St. Paul spiny lobster 103
Stacoz 60
Star lobster 139
stebbingi, Callianassa (Callichirus) 252
Stereomastis sculpta 88
stemarti, Nephropsis 45
sterwart's scampi 46
stimpsoni, Panulius 155
Strandkrebs 237
Striated locust lobster 223
Striped crayfish 157
Stump 183
subarctus, Scyllaurus 217
subspinosa, Gebia 233
subspinosa, Upogebia 233
subterranea japonica, Callianassa 246
suhmi, Nephropsis 46
sulcata, Nephropsis 47
sulcatus, Palinurus 148
sulcatus, Palinurus (Senex) 148
sulcatus, Panulinus 148
Suna moguri 250
Sydney crayfish 106
Syllarus 216
Synaxes 168
Synaxes hybridic a 168
SYNAXIDAE 166
T
taeniatus, Palinurus 156
taeniatus, Panulinus 156
Taille de boeuf 210
Takuma-ebi 204
Talp de mar 253
talpa, Thalassina 229
Tapa tapa 210
Tappa tappa 210
Taroucht 60
Tasmanian crayfish 101
Tasmanian lobster 101
Te-Chia Shia 73,82
Te Mnawa 210
tenuimana, Acanthacaris 28
tenuimanus, Phoberus 28
Thalassina 229
Thalassina anomala 229
Thalassina chilensis 229
Thalassina gracilis 229
Thalassina littoralis 236
Thalassina maxima 229
Thalassina scabra 229
Thalassina scopionides 229
Thalassina talpa 229
THALASSINIDAE 229
THALASSINIDEA 229
THALASSINIDES 229
Thaumastocheles 22
Thaumastoc heles japonic us 23
Thaumastocheles zaleucus 24
THAUMASTOCHELIDAE 22
Thaumastochelopsis 24
Thaumastochelopsis wardi 25
THENINAE 227
Thenops 111
Thenus 227
Thenus indicus 227
Thenus orientalis 227
theresae, Cancer 151
thiriouxi, Scyllanus 217
thomsoni andamanic us, Nephrops 66
thomsoni, Metanephrops 81
thomsoni, Nephrops 81
thomsoni, Palinurus 121
Three spot slipper lobster 187
Thymopides 85
Thymopides grobovi 85
THYMOPINAE 29
Thymops 48
Thymops birsteini 48
Thymopsis 49
Thymopsis nilenta 49
Tianée 210,212
timidus, Scyllarus 217
Tola 231
Tôm hum 152,153,157
Topo de mar 253
Toribio 219
tidac nophaga, Sc yllarides 195
tridentatus, Scyllarus 218
trigonus, Avus 114
trigonus, Linuparus 114
trigonus, Palinurus 114
Tristan crawfish 104
Tristan da Cunha crayfish 104
Tristan da Cunha spiny lobster 104
Tristan rock lobster 103
tistani, Jasus 103
tristani, J asus (J asus) 103
Tropical rock lobster 147,149
Tropical spiny lobster 147
truncatus, Palinurus 125
truncatus, Palinustus 125
Typaea 239
Trypaea australiensis 240
Trypaea porcellana 240
tuberculatus, Arctus 225
tuberculatus, Scyllanus 225
Tufted spiny lobster 152
tumidus, Palinurus 105
tumerana, Callianassa 250
tumerana, Callianassa (Calichirus) 250
Turtle lobster 183
Two-spot locust lobster 221
Two toned lobsterette 44
tynhena, C allianassa 252
tynhenus, Astacus 252
U
Uchiwa-ebi 204
Uchiwa-ebi-modoki 228
Udang barong 152,153,157
Udang karang 140,152,157
Udang katak 231
Udang ketak 231
Udang laut lebar 210
Udang labok 228
Udang pasir 228
Udang pasir laut 210
Udang petsje 231
Udang tanah 231
Uhut 210
Ula 110,148,152
Ulapápapa 177,194,210
umbilic atus, Scyllarus 217
Unicorn blunthorn lobster 126
unic omutus, Palinustus 126
Upogebia 232
Upogebia afric ana 233
Upogebia capensis 233
Upogebia littoralis 236
Upogebia major 234
Upogebia pugettensis 235
Upogebia pusilla 236
Upogebia subspinosa 233
Upogebia wuhsienweni 238
UPOGEBIIDAE 232
UPOGEBIINAE 232
Ura 150,214
Ura raperape 193,214
Uraber 210
Uraubola 149
Uraudina 157
Uraukula 152
Urautamata 149
Urauvatuvatu 152
ursus, Arctus 218
ursus major, Cancer (Astac us) 209
ursus major, Paribacus 209
ursus minor, Cancer (Astacus) 218
Urugavian lobster 77
Uson114,231
Utiva-ebi 204
utivaebi, Phyllosoma 203
V
Variegated crayfish 152
Vavaba 211
velutinus, Metanephrops 82
velatinus, Puerulus 165
Velvet fan lobster 200
Velvet lobster 82
Velvet whip lobster 165
venetiarum, Gebia 236
veranyi, Pseudibacus 191
verdi, lbacus 201
verreauxi, J asus (Sagmariasus) 105
verreauxi, Palinurus 105
versicolor, Palinurus 156
versicolor, Panulinus 156
vitiensis, Arctus 217
vitiensis, Scyllarus217
Vraie langouste de métropole 169
Vraie langouste verte 152
vulgaris, Homarus 60
vulgaris inflata, Palinurus 121
vulgaris mauritanic us, Palinurus 121
vulgaris, Palinurus 119

w

Wagu-ebi 127
waguensis, Palinustus 126
wardi, Tha umastoc helopsis 25
West Indian furrowd lobster 109
West Indian langouste 134
West Indian spiny lobster 134
Western Australian crayfish 136
Western cray 136
Western rock lobster 136
Whip lobster 162
White whiskered rock lobster 147
wieneckii, Araeostemus 170
wieneckii, Palinurellus 170
wuhsienweni, Upogebia 238
X
Xuius 219
Y
Yalomus 216
Yalomus depressus 218
Z
zaleuc us, Astac us 24
zaleuc us, Thaumastoc heles 24
Zandkreef 183
Zapatera 196
Zeekreeft 60
Zezavac 219
Ziz-il-bahr 219
Zori-ebi 213

[^0]: It proved not very easy to establish who has to be cited as the author of the name Crustacea. This name actually dates from the earliest published books dealing wrth these animals. Belon (1553. De aquatilibus Libri duo: 343) used the name Crustata for lobsters, shrimps and crabs One year later G Rondelet (1554, Libri de Piscibus Marinis: 534) used the actual spelling Crustacea for the group ("De Piscibus Liber XVIII. Quae drcantur Crustacea") Many subsequent authors adopted this name However, Linnaeus (1758, Systema Naturae (ed. 10)1) Ignored the term Crustacea and placed the crustaceous animals together with the spiders, millepeds, etc. in his "Insecta Aptera". The name Crustacea can be found in some early post-Irnnean non-brnomrnal works like those by Roesel von Rosenhof (1755-1759. Monatlrche Insektenbelustrgungen, 3:305; and its 1764-1768 Dutch translation, De Natuurlijke Historie der Insecten, 3 (2):267), and the one by Brisson (1762, Regnum Animale rn Classes IX:6) The first nomenclaturally available work to use the term Crustacea IS. to my knowledge, that by Brünnich (1772, Zoolograe Fundamenta Prdelectronrbus Academicis Accomodata. Grunde I Dyrelaeren: 174, 184). who separated the Crustacea (in which he included Chelicerata and Crustacea in the modern sense) from the Insecta Aptera (in which he left true insects like Lepisma, Podura, Temmes, Pediculus and Pulex) Pennant (1777, British Zoology (ed.4)4) listed the groups dealt wrth in this fourth volume as "Crustacea Mollusca Testacea", and carried the term again on the title page preceding p. 1 of the text of Class V "Crustacea Crustaceous Animals" In the same year also Scopoli In his 1777 book "Introductio ad Historiam Naturalem" on p 404 used the term Crustacea namely for his Gens I of Tribus IV "Crustacea Brunnich".

[^1]: * The abbreviation q.v. (for "quod vide"=which see), placed after a tem is a cross reference to that tem in the

[^2]: Type : Type localities:"Albatross" Station 3418, off Acapulco, Mexico, 16033 ' N 99052 ' 30 " W ; 660 fms [$=1207$.m], brown sand, broken specks; syntype in USNM, no. 21081. "Albatross" Station 3424, nearTres Marias Islands, Mexic o, 21015'N 106023'W, 676 fms [= 1236 m], grey sand, broken specks; syntype in USNM, no. 21082.

[^3]: Literature : Palombi \& Santa relli, 1961:365-365 (local Italian names); Farmer, 1975; Fischer, Bianchi \& Scott (eds),

[^4]: * This list is still tentative, more new specieswill be desc ribed in the near future.

[^5]: Diagnostic Features: Carapace with 3 distinct acute teeth in the median line before the cervical groove (the gastric, pregastric and rostral teeth). Region between the postrostral and branchial carinae with only a few tubercles, and with extensive smooth areas. Abdomen without a map median ridge, but each of somites 2 to 5 with an elongate lobulate figure in the middle. The exposed part of somites 2 to 5 with an arborescent arrangement of very narrow grooves. Somite 1 with a complete transverse groove, behind which there are numerous short longitudinal grooves that are rather iregular in shape, may divide and sometimes are interconnected by transverse grooves; this posterior half of somite 1 of equal length throughout its width, not longer in the middle that at the sides. The smooth anterior half of abdominal somites 2 to 6 (i.e., the part of the somite that disappears under the previous somite when the abdomen is fully stretched) without any indication of grooves or rows of hairs. Fourth segment of antenna with a single oblique median carina. Outer margin of the segment with 2 teeth, the inner margin with 3 or 4 (not including the apical tooth). Thoracic stemum anterionly V -shapedly incised in the middle. A blunt and low median tubercle on the last thoracic stemite; this tubercle somewhat flattened posteriorly, not conic al as in S. pygmaeus. Dactyli of legs without fringes of hair Colour. reddish brown with a dark brown pubescence. A dark brown, not sharply delimited spot in the central part of abdominal somite 1 . Segments of the pereiopods with a dark blue band each.

