FAO SPECIES CATALOGUE

VOL. 13 MARINE LOBSTERS OF THE WORLD

An Annotated and illustrated Catalogue of Species of Interest to Fisheries Known to Date

The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy.
© FAO Rome 1991

Cover illustration: the Atlantic deep-sea lobster (Acantacharis caeca) in aggressive posture outside its burrow. Drawing by M. D'Antoni.

FAO SPECIES CATALOGUE

VOL, 13 MARINE LOBSTERS OF THE WORLD

An Annotated and Illustrated Catalogue of Species of Interest to Fisheries Known to date

prepared by
L.B. Holthuis

Nationaal Natuurhistorisch Museum
Leiden, The Netherlands

PREPARATION OF THIS DOCUMENT

Lobsters are among the most prized of fisheries resources and of signific a nt commerc ial interest in many countries. Because of their high value and esteemed culinary worth, much attention has been paid to lobsters in biological, fisheries, and systematic literature. The present volume represents a comprehensive treatment of the identific ation, taxonomy, distribution, biology and ecology of the world's lobsters that are of interest to fisheries.

The author of this catalogue, DrLB. Holthuis, is one of the world'sforemost authorities on crustaceans. He prepared the first volume in the FAO species catalogue series,"Shrimps and Prawns of the World" published in 1980. He also hascollaborated with FAO in the preparation of crustacean speciesidentific ation sheets for the eastem central Atlantic, the westem Indian Ocean, and the Mediterranean/Black Seas, and by revising the information on crustaceans formost of FAO's national field guides to commercial marine resources in Afric a and Asia. One of his areas of spec ialization is lobsters and since 1946 he has been the sole orsenior author for over 25 taxonomic artic les conceming this group; more than any other author, past or present. His work on lobsters has included the examination of specimens from the major museums of the world and extensive travels to examine and collect them firsthand.

Technical Editors: W. Fischer, L Garibaldi and K. Capenter, Fisheries Resources and Environment Division, FAO

Illustrators: M. D'Antoni and P. Lastrico, FAO, Rome
Page composition: G. Sciarappa-Demuro, FAO, Rome

Abstract

Holthuis, LB. FAO species catalogue. Vol. 13. Marine lobsters of the world. An a nnotated and illustrated catalogue of species of interest to fisheries known to date. FAO Fisheries Synopsis. No. 125, Vol. 13. Rome, FAO. 1991. 292 p.

Abstract

This is the thirteenth issue in the FAO senies of world-wide annotated and illustrated catalogues of major groups of organisms that enter marine fisheries. The present volume on marine lobsters includes 149 species in 3 infraorders, 10 families and 33 genera. There is an introductory section that supplies general remarks on the biology and fisheries of lobsters, a glossary of technical terms, illustrated keys to infraorders, superfamilies, families, subfamilies and species, and detailed accounts on species. Species accounts include illustrations of the species and their distributions, and information on scientific and vemacular names, types, distribution, habitat, biology, size, interest to fisheries, and relevant literature. Following the species accounts is a table of species by major fishing area, an index, and a bibliography. Two original contributions to nomenclature are presented in this volume. A new subgenus, Sagmariasus, is erected under the palinurid genus Jasus. In addition, the new name, Callianassa biffari, is proposed to replace the junior primary homonym C. affinis Holmes, 1900.

Distribution

Authors

FAO fisheries Officers
Regional Fisheries Councils and Commissions
Selector SC

TABLE OF CONTENTS

Page

1. INTRODUCTION

1.1 Plan of the Catalogue31.2 General Remarks on Lobsters 5
1.2.1 Morphology 5
1.2.2 Size 8
1.2.3 Habitat and Biology 8
1.2.4 Interest to Fisheries 8
1.3 Illustrated Glossary of Technical Terms 9
2. SYSTEMATIC CATALOGUE OF SPECIES 17
SUBORDER MACRURA REPTANTIA 17
Key to the three Infraorders and their Superfamilies 17
2.1 INFRAORDER ASTACIDEA 19
SUPERFAMILY NEPHROPOIDEA 19
Key to the Familyand Subfamilies of Nephropoidea 19
Code
2.1. Family Thaumastochelidae THAU 22
Key to Genera 22
Thaumastocheles 22
Key to Species 22
Thaumastocheles japonicus THAU Thau 1 23
Thaumastocheles zaleucus THAU Thau 2 24
Thaumastochelopsis THAU Thaup 24
Thaumastochelopsis wardi THAU Thaup 1 25
2.1.2 Family Nephropidae 26
Subfamily Neophoberinae 26
Acanthacaris NEPH Acant 26
Key to Species 26
Acanthacaris caeca NEPH Acant 1 26
Acanthacaris tenuimana NEPH Acant 2 28
Subfamily Thymopinae 29
Key to Genera 29
Nephropides NEPH Nephid 30
Nephropides caribaeus NEPH Nephid 1 31
Nephropsis NEPH Nephps 31
Key to Species 32
Nephropsis acanthura NEPH Nephps 12 35
Nephropsis aculeata NEPH Nephps 1 36
Nephropsis agassizii NEPH Nephps 37
Nephropsis atlantica NEPH Nephps 4. 38
Nephropsis carpenteri NEPH Nephps 5 39
Nephropsis ensirostris NEPH Nephps 6 41
Nephropsis malhaensis NEPH Nephps 7. 42
Nephropsis neglecta NEPH Nephps 8. 42
Nephropsis occidentalis NEPH Nephps 9 43
Nephropsis rosea NEPH Nephps 10 44
Nephropsis stewarti NEPH Nephps 3 45
Nephropsis suhmi NEPH Nephps 11 46
Nephropsis sulcata NEPH Nephps 13. 47
Thymops NEPH Thym 48
Thymops birsteini NEPH Thym 1 48
Thymopsis NEPH Thymop 49
Thymopsis nilenta NEPH Thymop 1 49
Subfamily Nephropinae 50
Key to Genera 50
Eunephrops NEPH Euneph 53
Key to Species 53
Eunephrops bairdii NEPH Euneph 1 54
Eunephrops cadenasi NEPH Euneph 2 55
Eunephrops manningi NEPH Euneph 3 55
Homarus 57
Key to Species 57
Homarus americanus NEPH Horn 2 58
Homarus capensis NEPH Horn 3 59
Homarus gammarus .NEPH Horn 1 60
Metanephrops NEPH Metan 61
Key to Species 61
Metanephrops andamanicus NEPH Metan 2 66
Metanephrops arafurensis NEPH Metan 3 67
Metanephrops armatus NEPH Metan 15 67
Metanephrops australiensis NEPH Metan 4 68
Metanephrops binghami NEPH Metan 1 70
Metanephrops boschmai NEPH Metan 5 71
Metanephrops challengeri NEPH Metan 6 72
Metanephrops formosanus NEPH Metan 7 73
Metanephrops japonicus NEPH Metan 8 74
Metanephrops mozambicus NEPH Metan 16 75
Metanephrops neptunus NEPH Metan 9 76
Metanephrops rubellus NEPH Metan 10 77
Metanephrops sagamiensis NEPH Metan 11 78
Metanephrops sibogae NEPH Metan 12 79
Metanephrops sinensis NEPH Metan 13 80
Metanephrops thomsoni NEPH Metan 14 81
Metanephrops velutinus NEPH Metan 17 82
Nephrops NEPH Neph 83
Nephrops norvegicus NEPH Neph 1 83
Thymopides NEPH Thy 85
Thymopides grobovi NEPH Thy 1 85
2.2 INFRAORDER PALINURIDEA 87
Key to recent representatives of the three Superfamilies of Palinuridea 87
SUPERFAMILY ERYONOIDEA 88
2.2.1 Family Polychelidae POLY 88
SUPERFAMILY GLYPHEOIDEA 88
2.2.2 Family Glypheidae 88
GLYPH
Neoglyphea 89
GLYPH Neog
Neoglyphea inopinata 89
SUPERFAMILY PALINUROIDEA 90
Key to Families 90
2.2.3 Family Palinuridae PALIN 91
Key to Genera 91
Jasus PALIN Jas 95
Subgenus Jasus 95
Key to Species 95
Jasus (Jasus) edwardsii PALIN Jas 2 97
Jasus (Jasus) frontalis PALIN Jas 3 98
Jasus(Jasus) lalandii PALIN Jas 4. 99
Jasus (Jasus) novaehollandiae PALIN Jas 5. 100
Jasus (Jasus) paulensis PALIN Jas 1 101
Jasus (Jasus) tristani PALIN Jas 6 103
Subgenus Sagmariasus 104
Jasus (Sagmariasus) verreauxi PALIN Jas 7. 105
Justitia PALIN Just 107
Key to Species 107
Justitia japonica PALIN Just 3 108
Justitia longimanus PALIN Just 1 109
Justitia mauritiana PALIN Just 2 110
Linuparus PALIN Lin 111
Key to Recent Species 111
Linuparus somniosus PALIN Lin 1 112
Linuparus sordidus PALIN Lin 2 113
Linuparus trigonus PALIN Lin 3 114
Palinurus PALIN Palin 115
Key to Species 115
Palinurus charlestoni PALIN Palin 2 116
Palinurus delagoae PALIN Palin 4 117
Palinurus elephas PALIN Palin 1 119
Palinurus gilchristi PALIN Palin 5 120
Palinurus mauritanicus PALIN Palin 3 121
Palinustus PALIN Palinus 123
Tentative Key to Species 123
Palinustus mossambicus PALIN Palinus 2 124
Palinustus truncatus PALIN Palinus 1 125
Palinustus unicornutus PALIN Palinus 3 126
Palinustus waguensis PALIN Palinus 4 126
Panulirus PALIN Panul 128
Key to Species 128
Panulirus argus 133
PALIN Panul 1
Panulirus cygnus 134
Panulirus echinatus PALIN Panu14 136
Panulirus gracilis PALIN Panul 13 137
Panulirus guttatus PALIN Panu12 138
Panulirus homarus PALIN Panu16 139
Panulirus inflatus .PALIN Panul 14 141
Panulirus interruptus PALIN Panul 15 142
Panulirus japonicus PALIN Panul 16 143
Panulirus laevicauda PALIN Panul 3 144
Panulirus longipes PALIN Panul 7 145
Panulirus marginatus PALIN Panul 17 147
Panulirus ornatus PALIN Panu18 148
Panulirus pascuensis PALIN Panul 18 149
Panulirus penicillatus PALIN Panul 9 151
Panulirus polyphagus PALIN Panul 10 152
Panulirus regius PALIN Panul 5 153
Panulirus stimpsoni .PALIN Panul 19 155
Panulirus versicolor PALIN Panul 11 156
Projasus 158
Key to Species 158
Projasus bahamondei 158
Projasus parkeri 159
Puerulus 161
Key to Species 161
Puerulus angulatus 162
Puerulus carinatus 163
Puerulus sewelli 164
Puerulus velutinus. 165
2.2.4 Family Synaxidae 166
Key to Genera 166
Palibythus 166
Palibythus magnificus 167
Palinurellus 168
Key to Species 168
Palinurellus gundlachi 168
Palinurellus wieneckii 170
2.2.5 Family Scyllaridae SCYL 171
Key to Genera 171
Subfamily Arctidinae 173
Arctides SCYL Arct 173
Key to Species 174
Arctides antipodarum SCYL Arct 1 175
Arctides guineensis SCYL Arct 2 176
Arctides regalis SCYL Arct 3 177
Scyllarides SCYL Scyld 178
Key to Species 178
Scyllarides aequinoctialis SCYL Scyld 2 183
Scyllarides astori SCYL Scyld 7 184
Scyllarides brasiliensis SCYL ScyId 8 185
Scyllarides deceptor SCYL Scyld 9 186
Scyllarides delfosi SCYL Scyld 10 187
Scyllarides elisabethae SCYL Scyld 5 188
Scyllarides haanii SCYL Scyld 11 189
Scyllarides herklotsii. SCYL ScyId 4 190
Scyllarides latus SCYL ScyId 1 191
Scyllarides nodifer SCYL Scyld 3 192
Scyllarides roggeveeni SCYL Scyld 12 193
Scyllarides squammosus SCYL Scyld 6 194
Scyllarides tridacnophaga .SCYL Scyld 13 195
Subfamily Ibacinae 195
Evibacus SCYL Ev 195
Evibacus princeps SCYL Ev 1 196
Ibacus SCYL Ib 197
Key to Species 197
Ibacus alticrenatus SCYL Ib 2 200
Ibacus brevipes 201
Ibacus brucei 202
Ibacus ciliatus 203
lbacus novemdentatus 204
lbacus peronii 205
Parribacus 207
Key to Species 207
Parribacus antarcticus 209
Parribacus caledonicus 211
Parribacus holthuisi 212
Parribacus japonicus 213
Parribacus perlatus 214
Parribacus scarlatinus 215
Subfamily Scyllarinae 216
Scyllarus 216
List of Species 216
Scyllarus arctus 217
Scyllarus batei 219
Scyllarus bertholdii. 221
Scyllarus brevicornis 222
Scyllarus martensii 223
Scyllarus pygmaeus 224
Scyllarus rugosus 225
Subfamily Theninae 227
Thenus 227
Thenus orientalis 227
2.3. INFRAORDER THALASSINIDEA 229
2.3.1 Family Thalassinidae THAL 229
Thalassina THAL Thal 229
Thalassina anomala THAL Thal 1 229
2.3.2 Family Upogebiidae UPOG 232
Upogebia UPOG Upog 232
Upogebia capensis UPOG Upog 233
Upogebia major UPOG Upog 2 234
Upogebia pugettensis UPOG Upog 3 235
Upogebia pusilla UPOG Upog 4 236
Upogebia wuhsienweni UPOG Upog 5 238
2.3.3 Family Callianassidae CALL 239
Callianassa CALL Call 239
Callianassa australiensis CALL Call 1 241
Callianassa biffari CALL Call 2. 242
Callianassa californiensis CALL Call 3 244
Callianassa gigas CALL Call 4 245
Callianassa japonica CALL Call 5 246
Callianassa kraussi CALL Call 6 248
Callianassa petalura CALL Call 7 249
Callianassa turnerana CALL Call 8 250
Callianassa tyrrhena CALL Call 9 252
3. LIST OF SPECIES BY MAJOR MARINE FISHING AREAS 254
4. BIBLIOGRAPHY 265
5. INDEX OF SCIENTIFIC AND VERNACULAR NAMES 277

1. INTRODUCTION

This cata logue intends to include all those species of marine lobsters that are of interest to fisheries, according to the following three criteria: (i) all species known to be used for food, (ii) species known to be sold for bait and as subproducts, (iii) species not exploited at present but considered by experts to be of potential commercial value. The last category includes deep-sea forms which during exploratory fishing cruises were found to be suffic iently abundant, large enough in size, and suffic iently accessible to fishing gear so that a fishery for them might be profitable.Edible speciesfound in markets asan admixture to the main catch are included, even if they only make up a negligible percentage of the catch.

The classification adopted here is a traditional one. The marine lobsters are considered to form part of the suborder Mac rura Reptantia Bouvier, 1917, which is recognized here as one of the four suborders of the order Decapoda Latreille, 1802. The Decapoda form one of the many orders of the Class Crustacea, Brunnich, 1772*. Aside from the Macrura Reptantia, there are the following three suborders in the Decapoda: Macrura Natantia (shrimps), Anomura (hermit crabs, etc.) and Brachyura (crabs). In several modem handbooks(e.g. Bowman \& Abele, 1982, in Bliss, Biology of Crustacea,1:21-25) the Decapoda are divided into two suborders, the Dendrobranchiata (conta ining the Penaeidea) a nd the Pleocyemata (containing all the other Deca poda). The suborderMac rura Repta ntia is disc arded in this modem classific ation, but the infra orders Asta cidea, Pa linuridea and Thalassinidea are kept assuch;the fomersubordersAnomura and Brachyura are demoted to infraorders and are on the same level as the Astacidea, Palinuridea and Thalassinidea. The closerlink between these last 3 infra orders as indic ated in the traditional classific ation is ignored in the modem classification. From the infraorders down, the classification of the Macrura Reptantia is the same in the two systems.

The present catalogue is largely based on data obtained from the literature and often it is diffic ult to evaluate the reliability of published data. Sometimes a uthors working far from a dequate library facilities have diffic ulty in correctly identifying the speciesthey encounter in the field. Moreover, the disc overy of new species, the more correct delimitation of known species, or even the introduction of nomenc latural changes, may cause confusion and lead to the use of scientific namesthat are incorect by modem standards, orapply to more than one species. For instance, recent taxonomic investigations showed that the name Panulirus japonicus had long been used for specimenswhich now prove to belong to five distinct species (P. japonicus, P. marginatus, P. pascuensis, P. cygnus a nd \mathbf{P}. longipes), and the subspecies \mathbf{P}. longipes femoristriga. Some a uthors used the name longipes for what is now recognized as P. cygnus and P. longipes, considening them distinct from P. japonicus. Therefore old rec ords of \mathbf{P}. japonicusand \mathbf{P}. longipeshave to be treated with some reserve, although several of these specieshave a quite restricted distribution, and their provenance may give a clue to their true identity. A similarsituation involves the species of the subgenusJ asus (J asus), which in the older literature were considered to be a single species, orat the most two, but which now are recognized as six distinct species (J. lalandii, J. frontalis, J. edwardsii, J. paulensis, J. tristani, and J. novaehollandiae). Quite recently all but one of the species of Nephrops were transferred to the genus Metanephrops, with the result that the na mes of those species had to be changed accordingly. All such name changes, due to changing taxonomic views, are unavoidable and will also occur in the future. Name changesdue to purely nomenclatural reasonshave become quite rare in Macrura Reptantia.

[^0]The question whether the generic name of the common lobster should be Homarus or Astac us wasa controversial topic in the end of last century, but has since been definitely decided. Some well known specific nameshave been changed for reasons of priority, e.g., Palinurus vulganis Latreille, 1804, to Palinurus elephas (Fabric ius, 1787), and Homarus vulgaris H. Milne Edwards, 1837, to Homarus gammarus (Linnaeus, 1758), but most of these problems have been straightened out long ago and no longer cause any difficulties.

In the nomenclature of the spiny lobsters, there is a curious source of considerable confusion. This is the similarity of the two generic names Palinurus Fabricius, 1798, and Panulins White, 1847, for two closely related genera. White (1847), when splitting the genus Palinurus into three genera, chose two new taxa names that are anagrams of Palinurus, viz., Panulinus and Linuparus. Linuparus is suffic iently different from either of the other names that it caused no difficulties, but Panulirus and Palinurus were frequently confused. Pfeffer (1881) tried to solve the problem by replacing Panulirus by a new generic name Senex, but this action is against the rules of nomenclature and Senex lapsed. Panulirus, being the valid name, has to be used, and at present it is generally accepted and has become firmly entrenched in carcinological nomenclature.

In taxonomic literature (with which I am best acquainted) information on the economic importance of species is rather scarce and of a very general nature. Relevant fisheries literature, being less fa miliar to me, was often difficult to locate. Notwithstanding the great help that I received in obtaining literature and information from Dr W. Fisc her, FAO, Rome and from fishery a uthorities all over the world, I may have overlooked important sources.

ACKNOWLEDGEMENTS

Thanks are due to Dr Walter Fischer, Fishery Resources and Environment Division, FAO, Rome, for his enormous help with the composition of this catalogue. It was through his insistence that keys a nd illustrations were added, against my strong objections; the result shows how right he was. Ms M. D'Antoni and MrP. Lastrico had the thankless task of supervising and producing the illustrative work, often an almost impossible undertaking when they had to work from published photographs in which details could hardly ornot at all be discemed; it is due to their capability and patience that most of the figurescame out so well. The outlay, editing and word processing of the catalogue wasdone by DrLuca Garibaldiand MsGiulia Sciarappa-Demuro and I am most indebted to their expertise and for their patience with me.

A serious attempt has been made in this catalogue to ascertain the location and condition of the type specimens of the speciestreated, including those of their synonyms. Forthis project I received the most valuable help from the following persons, whose names are followed by the abbreviations used for the names of their institutes (see p. 4): Dr Maya Deb (ZSI), Prof. J acques Forest (MP), Dr D.J .G. G riffin (AMS), Dr H.-E. Gruner (ZMB), DrJ .M.C. Holmes (NMI), Dr R.W. Ingle (BM), Mme E. Lang (MZS), DrE.A. Lazo-Wasem (YPM), Dr Raymond B. Manning (USNM), Mrs M.G. van der Merwe (SAM), Mr D. Platvoet (ZMA), Dr Earle E. Spamer (ANSP), Dr R.J. Symonds (ZMC), Dr Ludwig Tiefenbacher (ZSM), Dr Michael Türkay (SMF), Dr Torben Wolff (UZM), Dr John C. Yaldwyn (DWM); I am very grateful to all for giving so much of their time to find the required information.

From various persons I received information about lobsters, both oral and written, published and unpublished, which I have used in this catalogue. I am most grateful to all, and should like to mention especially MrJ.D. Booth, Fisheries Research Centre, Wellington, New Zealand (information on Jasus and Projasus), Prof. Phaibul Naiyanetr, Chulalongkom University, Bangkok, Thailand (occurrence, use and vemacular names of Thai lobsters), Mr T.J. Ward, CSIRO, Hobart, Ta smania, Australia (unpublished information on Linuparus) and DrTakao Yamaguchi, Aitsu Marine Biological Station, Kuma moto University, Japan (J apanese names of the J apanese lobsters).

1.1 Plan of the Catalogue

The presentation of each systematic category always includes the valid scientific name, reference to the original 'description, synonyms, and keys to, or lists of, the lower categories concemed. A brief diagnosis is given for Infraorders. The information by species is a ranged under the following paragraphs:
(1) Scientific Name: The heading foreach species gives the valid name followed by the reference to its original description.
(2) Synonyms: All known synonyms of the valid name are listed, as well asthe new combinations made with the valid and synonymous specific names. In the new combinations, the scientific name and the name of the author who first used the combination are separated by a dash (-) while in the synonyms no such interpunction is present.inc orect identifications of the species are not listed asa rule, but, in caseswhere the inc orrect name has frequently been used for the species, it is briefly disc ussed.
(3) FAO Names: English, French and Spanish namesfor each species, to be used primarily within FAO, were selected on the basis of the following criteria: (i) each name must apply to one speciesonly, in a worldwide context; (ii) the name must conform to FAO spelling nomenclature; (iii) the name should not lead to confusion with crustaceans other than lobsters; e.g., the word langostino is not used for Spanish FAO names, although in some Spanish speaking countries it isemployed for some lobster species; the reason for this is that in Spain and Venezuela the word langostino is used for some spec ies of shrimp. Wherever possible, the denominations selected were based on vemacularnames (orparts of names) already in existence within the areas where the species is fished. FAO names are of course not intended to replace local species names, but they are considered by FAO necessary to overcome the considerable confusion caused by the use of a single name for many different species, or several names for one species.

In some casesprevious FAO names have been changed in thiscatalogue. In most instancesthiswas done to obtain more consistency at the generic level. In the present catalogue, all species of one genushave the same na me provided with an appropriate prefix foreach: e.g., all species of the genusJasusare named "rock lobster", Jasus edwardsii having the name red rock lobster. These "generic" FAO names as used in this catalogue are the following (in systematic sequence): pincer lobster (the genera of Tha umastochelidae:
Thaumastocheles and Thaumastochelopsis), deep-sea lobster (Acanthacaris), lobsterette (all genera of Thymopinae: Nephropides, Nephropsis, Thymops, Thymopsis), lobster (all genera of Nephropinae: Eunephrops, Homarus, Metanephrops, Nephrops, Thymopides), fenix lobster (Neoglyphea), rock lobster (Jasus), furrow lobster (Justitia), spear lobster (Linuparus), spiny lobster (Palinurus and Panulirus), blunthom lobster (Palinustus), jagged lobster (Projasus), whip lobster (Puerulus), fury lobster (the genera of Synaxidae: Palibythus and Palinurellus), Spanish lobster (Arctides), slipper lobster (Scyllarides), fan lobster (Evibacus a nd ibacus), mitten lobster (Pamibacus), loc ust lobster (Scyllarus), flat lobster (Thenus), mud lobster (Thalassina), mud shrimp (Upogebia), ghost shrimp (Callianassa).
(4) Type: The type locality of the species (and of its synonyms) is provided. As a rule the indic ation of the type locality as given in the original publication is verbally quoted; if necessary, to this quotation explanatory or corrective detailsare added. The depository of the primary types is listed;if possible the present depository is given, but if that is unknown the depository at the time of the original description is indicated.
(5) Diagnostic Features: This topic is omitted for almost all the species presented in this catalogue bec ause the key is c onsidered suffic ient for identification. For spec ies of the genus Scyllarus, Thalassina, Upogebia, and Callianassa however, where no key is included, diagnostic features are included to aid in Identification.
(6) Geographical Distribution: The entire known geographic range of the species is given, inc luding areas where it is not of commercial importance. Of each species, the known range is illustrated on a map. These mapsare only meant to give a general impression of the distribution of the species.
(7) Habitatand Biology: The known depth range of the species, and information on types of substrate and salinity of its habitat are given here. In most instances this information is rather incomplete. Also, if a vailable, the most important data on the biology of thisspecies are mentioned.
(8) Size: The known totallength (tl.), as well asthe known carapace length (cl.) of both males and fema les, are provided where possible. Total length is mea sured from the tip of the rostrum to the extremity of the telson, but due to the curvature of the body this measurement usually is not very accurate. The carapace length genera lly includes the rostrum, but very often the actual extent of this length (whether measured from the tip of the rostrum, or from the posterior margin of the orbit to the posterior margin of , the carapace) is not indicated in the literature. Where total and carapace lengths are both given, the respective figures do not nec essa rily perta in to the same specimens but may have been obtained from different sources. As often the available information on the size attained by some species is very meagre, the figure cited here may be well below the actual maximum size, or may be a size ra rely attained.
(9) Interest to Fisheries: This paragraph gives an account of the a reas where the species is fished and of the nature of the fishery; its importance is either estimated (minor, moderate, major, or potential) or actual figures of annual landings are provided. Data on utilization (fresh, dried, cooked, frozen, canned, etc.) are also given where a vailable.Here too, the quality a nd quantity of the a vailable information vary considerably with the species.
(10) Local Names: These are the namesused locally forthe various species. The localspecies denomination is preceded by the name of the country concemed (in capital letters), and, where necessary, followed (in parentheses) by the geographical specific ation orby the language of the transcribed vemacular names. When known, the most commonly used vemacularname is listed first after each country, otherwise the namesare in alphabetical order. The catalogue was compiled from many sources, but where vemacular na mes are concemed it doubtlessly is incomplete. Where a large number of local names are used for one species in a restric ted area, only the most common are included.
(11) Literature : Reference is made to those papers giving good descriptions a nd illustrations of the species or treating it extensively (e.g., Species Synopses published by FAO a nd CSIRO, FAO Species Identification Sheets, etc.), or giving a helpful account of it.
(12) Remarks: Important information conceming the speciesand not fitting in any of the previous paragraphs is given here.

Abbreviations used : The following abbreviationsare used to indic a te the depositories of type material: AMS: The Australian Museum, Sydney, Australia. ANSP: The Academy of Natural Sciences of Phila delphia, Phila delphia, Pennsylvania, USA. BM: British Museum (Na tural History) (now: The Natural History Museum), London, England, UK. DMW: Dominion Museum (now: National Museum), Wellington, New Zealand. MCZ: Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA. MNRI: Museu Nacional, Rio de J aneiro, Brazil. MOM: Institut Oceanographique, Monaco. MP: Museum National d'Histoire Naturelle, Paris, France MT: Det Kongelige Norske Videnska bers Selskabs Museum, Trondheim, Norway. MZS: Musée Zoologique de I'Université, Stra sbourg, France. MZT: Museo ed Istituto di Zoologia Sistematica dell'Universitá di Torino, Italy. NMI: National Museum of Ireland, Natural History Division, Dublin, Ireland. NMW: Naturhistorisches Museum (formerly K.u.K. Naturhistorisches Hofmuseum), Wien, Austria. NTOU: National Taiwan Ocean University, Keelung, Taiwan QM: Queensla nd Museum, South Brisba ne, Qld, Austra lia. RMNH: Rijksmuseum van Natuurlijke Historie (now: Nationaal Natuurhistorisch Museum), Leiden, The Netherlands. SAM: South African Museum, Capetown, South Africa. SMF: Natur-Museum Senckenberg, Frankfurt, Gemany. TRN: Taiwan Fisheries Research Institute, Keelung, Taiwan. UMML: University of Miami Marine Laboratory (now: Institute of Marine and Atmospheric Science, University of Miami), Miami, Florida, USA. USNM: United States National Museum (now: National Museum of Natural History), Smithsonian Institution, Wa shington, DC, USA. UZM: Universitetets Zoologiske Museum, Copenhagen, Denmark. WAM: Westem Australian Museum, Perth, Westem Australia, Australia. YPM: Peabody Museum of Natural History, Yale University, New Haven, Connecticut, USA. ZMA: Zoologisch Museum, Universiteit van Amsterdam, Amsterdam, The Netherlands. ZMB: Zoologisches Museum der Humboldt-Universitat, Berlin, Germany. ZMC: University Museum of Zoology, Cambridge, England, UK. ZMH: Zoologisches.Museum und Institut, Hamburg, Gemany. ZML: Zoologisches Museum, Lübeck, Germany. ZMUG: Zoologisc hes Museum der Universität, Gottingen, Gema ny, at present on permanent loan to Natur-Museum Senckenberg, Fra nkfurt am Main, Gema ny. ZSI: Zoologic al Survey of India, Calc utta, India. ZSM: Zoologische Sta a tssa mmlung, München, Ba va ria, Germa ny.

1.2 General Remarks on Lobsters

1.2.1 Morphology

Even though the various major groups of lobsters show obvious differences in general appearance (see Fig. 1), their basic morphology is essentially the same

Nephropoidea Nephropidae
Meta nephrops andamanic us

Palinuroidea
Synaxidae
Pa linurellus wieneckii

Fig. 1. Major types of lobsters, showing differences in shape

The body of a lobster consists of two recognizable parts: the cephalothorax (=the entity formed by the fusion of cephalon, or head, with the thorax) with its appendages, and the abdomen (=tail) with its appendages(Fig. 2).

Fig. 2 Schematic illustration of the body and appendages of a lobster (Nephropoidea)

The 14 somites (orbody-segments) of the cephalothorax (the first 6 forming the cephalon, the last 8 the thorax) are fused and only in a few placesthere are visible indic ations of the lines between the somites. Each somite carmies one pair of appendages. These appendages are the following: Somite 1 ($=$ ophthalmic somite) camies the eyes, that are usually movable and consist of a stalk, formed by one ortwo segments, the distal of which ca mies the pigmented comea with visual elements;the eyes sometimes are reduced, viz., the comea may lack pigment or visual elements, such a reduced functionless eye may even be immovably fused with the body or be altogether absent. Somite 2 (=antennular somite) camies the a ntennulae, each of these consisting of a three-segmented peduncle carying two flagella, the length of the flagella often is of taxonomic importance; the antennulae sometimes are called "first antenna", like the antennae or second antennae they are tactile organs. Somite 3 (= antennal somite) cariesthe antennae (orsec ond antennae), which consis of a peduncle of 5 segments and a single flagellum. Through fusion of the segments with one a nother or with the body, the number of actually visible peduncular segments is smaller than 5 . The flagellum may be supple or whip-like, or (e.g., in Palinuridae) may be very stiff and strong;in the Scyllaridae the flagellum is transformed to a single plate-like segment, which makes the antennae six-segmented. In some speciesthere is scaphocente or antennal scale attached to the second segment of the peduncle. Somites 4 to 9 (i.e., the last 3 cephalon somites and the first 3 of the thorax) camy the mouth parts, appendages which have a function with the dissection and ingestion of food. Somite 4 camies the mandibles, strongly calcified, often molar-like organsthat are used forbreaking up the more solid food particles, and for chewing. Somites 5 and 6 camy the maxillulae (or first maxillae) and maxillae (or second maxillae) respectively, both are flat leaf-like organs. Somites 7 to 9 (= thoracic somites 1 to 3) camy the first to third maxillipeds, the first is leaf-like like the maxilla, the second and third are more leg-like, especially the third. Somites 10 to 14 (=thoracic somites 4 to 8) camy the five pairs of pereiopods or true legs. The first pereiopod, and sometimes also the second and the third, often (but not always) ends in a chela or pincer. The first leg usually is the largest of the true legs. The legsthat do not have pincers are indicated aswalking legs asthey are mainly used for locomotion.

Dorsally the cephalothorax is encased by the carapace, a single shield-like cover, which extendsall the way from the eyes to the last thoracic somite, and sometimes projects beyond the eyes as a na row median rostrum. Laterally, the carapace extendsto the bases of the legs, enclosing the branchial chamberwhich isa space between the body and the carapace housing the branchia orgills, and situated above the bases of all legs. In some groups, part of the antennular somite is visible dorsally asa triangular plate in front of the anterior margin of the carapace. In the Palinuridae, this so-called antennularplate may camy spines, the number and a mangement of which is of taxonomic importance. In some genera of Palinuridae, the lateral margins of the antennular plate are ridge-like, and swollen, forming a stridulating organ with a process on the innermargin of the antennal peduncle, which rubs overthis ridge; when the animal movesits antennae in a certain way, a rasping sound is produced by thisorgan.

Ventrally, the cephalothorax shows, between the basal parts of the appendages, a central plate, the thoracic stemum, on which the lines between the thoracic somites are usually indicated as grooves. In the females, the sexual openings are visible on the basis (the sixth segment of the leg counting from the tip) of the third pereiopods, in the males these openings are on the basis of the fifth pereiopods. This difference usually is the characterthat most easily distinguishes male and female lobsters.

The abdomen consists of six separate somites (numbers 15 to 20 on Fig. 2), which are not fused, but movably connected with each other. Each somite is surrounded by a chitinous a mour. the dorsal part is called tergite, the ventral part, stemite, and the two lateral parts, pleura (sing. pleuron). The combined abdominal stemites form the abdominal stemum, the combined abdominal tergites, the abdominaltergum. The pleura usually are downwarddirected lateral plates, covening extemally the pleopods. The shape and omamentation of the pleura is of taxonomic interest. The appendages of the first 5 abdominal somites (numbers 15 to 19) are the pleopods or swimmerets; they are implanted on the borderline between the stemite and the pleuron. In the male, the first and second pairof pleopods may be transformed into copulation organs, the so-called copulatory stylets, which are often stiff and of characteristic shape. The other pleopodsusually consist of a single-segmented peduncle carying two leaf-like appendages at the top. The pleopodsmay be reduced oreven entirely lacking on some somites. The sixth abdominal somite (=somite 20, being the last body segment) bears the tail fan, which consists of a pair of uropods and the unpaired telson. The uropods actually are the sixth pair of pleopods; they are rather wide and well calcified and usually about as long as the telson. The telson is a plate-like median appendage of the sixth abdominal somite, and sometimes it is considered to represent the seventh abdominal somite. The tail fan, when spread out, can be used for propulsion.

Important taxonomic characters are provided by the carapace (shape, surface sculpturation, spinatibn), eyes (absent, reduced or well developed, position of the orbits), antennulae (length of flagella), antennae (size, shape, dentition, and shape, length and structure of the flagellum), a ntennular plate (number and a arangement of spines, presence or absence of a stridulating organ), pereiopods (whether or not chelate, size and structure of chelae), thoracic stemum (general shape, shape of anteriormargin, presence orabsence of tubercles or spines), and abdomen (dorsal sculpturation, shape of the pleura, shape of the tail fan, number of pleopods). Also the colour, and especially the colourpattem of the speciesmay be of great help in rapid identification in the field.

1.2.2 Size

The largest Crustaceans are found among the lobsters. The Americ an lobster (Homarus americanus) has been reported to attain a total body length of 64 cm , while the Green rock lobster (Jasus vemeauxi) may reach a total body length of 60 cm . Several other species of Pa linuridae reach sizes between 40 and 50 cm . The smallest lobsters are found among the Scyllaridae: e.g., adult specimens of Scyllarus martensii, reach a total body length of 2.5 cm .

1.2.3 Habitat and Biology

Apart from the freshwatercrayfishes (superfamilies Asta coidea and Parastacoidea, which are not treated in this catalogue), all lobsters are marine animals, only a few species enter brackish water. Marine lobsters are found in practic ally all temperate and tropical seas (between about 65\%N and 60ㅇ), being most numerous in the tropics. They occur from the intertidal zone all the way to the deep sea (the deepest record being from almost 3000 m depth). Many species prefer a rocky substrate with cavities for shelter, but others are found on muddy or sandy bottoms in which they may dig their own burrows.Eelgrass meadows also form a habitat for some species.

The sexes in lobsters are mostly separate, although cases of hemaphroditism (both natural and abnomal) are known. The males impregnate the females (sometimes with the help of the copulatory stylets of the first abdominal somites), and in some species, spematophores, visible as black or transparent flat masses, are deposited on the female'sthoracic stemum. The females produce eggs, which are camied on the pleopodsand which usually form a conspic uous mass under the abdomen. After hatching, the larvae pass through several, usually pelagic stages, before molting to the postla rva which is most often benthic. The larvae often bear very little resemblance to the adults, e.g., in the Palinuridea, where the larvae (phyllosoma) are small, flat and perfectly transparent. Larvae are sometimes found faroffshore, but the importance of ocean curents in the zoogeography of the lobsters has often been grossly exaggerated.

The greaterpart of the lobsters seem to be omnivores and scavengers, but few detailed observations are available on feeding habits. Some species are attracted by dead fish put as bait in lobstertraps, but others are hardly ever caught in such traps. The Thalassinidea are mostly detritus feeders. Some lobsters also eat live animals; e.g.,
Scyllarides tridacnophaga has been observed to attack, open and eat spec imens of the giant clam Tidacna.

1.2.4 Interest to Fisheries

Lobsters are among the most highly esteemed seafood delicacies. The world catch of lobsters recorded in 1988 (FAO Yearbook of Fishery Statistics, 1990) exceeded 205000 tons, of which about 127000 tons corresponded to true lobsters (Family Nephropidae), about 78000 tonsto spiny lobsters (Fa mily Palinuridae) and about 2100 tons to slipper lobsters (Fa mily Scyllaridae). Although the greatest number of commercial species occurs in tropical waters, the largest lobster catches come from cold-temperate regions like the northwestem Atlantic (Fishing Area 21) with 62000 tons, and the northeastem Atlantic (Fishing Area 27) with 58000 tons. Species of genera like Homarus (about 64000 tons in 1988), Jasus (about 14000 tons) and Panulirus (about 56000 tons) form the subject of specialized fisheries and are the basis for important industries. Other spec ies (like Nephrops, Metanephrops and Palinurus) often form an important part of mixed catches (e.g. with shrimps), and are sold separately on markets. Many species cannot be obtained in great quantities, but the size of the specimens makes the capture and sale of single individuals profitable locally; in tourist areas such specimens are often sold directly to resta urants, hotels, etc. Several of the deep-sea species need specially equipped ships for their capture, and at present most are not commercially exploitable because of the high operating costs, but better knowledge of their biology and ecology might make them of commercial interest in the future. The species occuring on flat (muddy or sandy) bottom can be obtained by trawls] but a high percentage of lobsters is taken with lobster pots or other traps. Diving and spearing of shallow-water species is mostly done for local consumption or as a sport; spearfishing of lobsters at night with the light of torches, is a traditional way of fishing throughout the tropics. Species burrowing in sand or mud of the intertidal zone can often be captured by digging, or with yabbie pumps or slum guns (see p.242).

Since in all lobsters the tail is well developed, the abdominal muscles form the main edible part of the animal. In some Nephropids, the large clawsprovide enough meat to justify the rather laborious job of cracking the usually very heavy shell of these appendages. The Nephropoid and Pa linuroid lobsters are considered a delic acy almost everywhere. They are used almost exclusively for human consumption, seldom as bait. The Thalassinoidea, on the other hand, are only rarely used as food, but farmore often as bait.

1.3 Illustrated Glossary of Tec hnical Terms

Abdomen - The posterior part of the body (tail) of a lobster consisting of 6 well disc emable somites with their a ppendages, and including the tail fan (Figs 2,3).

Fig. 3 Abdomen (tail) in lateral view
Antenna (pl. a ntennae) -The appendage of the third cephalon somite, consisting of a five-segmented peduncle and a flagellum (Figs 2,4,6,9,11,14). Through fusion of the segments with the body or with each other, the peduncle may seem to consist of fewer segments. The flagellum is usually multi-a rticulated, it may be supple or very stiff; in the Scyllaridae the fla gellum is transformed into a single plate-like segment, similar to the peduncular segments. The antenna sometimes is named"second antenna", and the antennula, "first antenna". Both, the antenna and the antennula are tactile organs (feelers).

Antennal angle - An a ngular curve on the anterior margin of the carapace just below the orbit. On this place, the a ntennal spine (q.v.*), if present, is impla nted.

Antennl flagellum, see antenna

Antennalplate - Sometimes used for antennular plate (q.v.).

Antennalsomite - The third somite of the body (Fig. 2) (at the same time the third cephalon somite). It ca mies the antennae.

Antennal spine - A spine on the a nterior margin of the carapace just below the orbit (Fig. 5).

Antennula (pl. antennulae). - The appendage of the second cephalon somite, consisting of a threesegmented peduncle and two flagella (Figs 2,4,6,9, $11,14)$. The length of the flagella in some groups is of taxonomic importance. The antennula also is called first antenna; the antenna then is named second antenna.

Antennular plate, see a ntennular somite.
Antennular somite - The second somite of the body (Fig. 2) (at the same time the second cephalon somite). It camies the a ntennulae (Figs 4,6). Sometimes the dorsal surface of the antennular somite is visible in front of the carapace and between the bases of the antennae asa triangularplate, the so-called antennularplate, which in Palinuridae may be a med with dorsal spines or spinules, and which in some genera has the lateral margins swollen and forming part of a stridulating organ (q.v.) (Fig 4). The antennular plate sometimes is referred to a s a ntennal plate or inter-a ntennal plate.

Fig. 4 Antennular somite of a palinurid lobster (left antenna and eye omitted)

Anterolateral teeth - In Scyllaridae, the teeth of the lateral margin of the carapace, in front of the cervical incision (Pig. 6).

Arthrobranch, see branchium.
Basis- The sixth segment of a pereiopod, counted from the tip of the leg; it is situated between the ischium and the coxa (Fig 7,12). See pereiopod.

Branchial carina - A longitudinal carina over each lateral half of the carapace, in Scyllaridae extending from the orbit backward and bisected by the cervical groove into an anterior and a posterior part (Fig. 6,29).

Branchial chamber - The space between the thoraxand the lateral part of the carapace above the bases of the legs. The respiratory water current is pumped through the full length of the branchial chamber by action of some of the mouth parts.

[^1] glossary

Branchiostegal spine - A spine on the a nterior margin of the carapace below the antennal spine (Fig. 5).

Branchium (pl. branchia) - Gill. The gills are found on and nearthe bases of the thoracopods in the branchial chamber. They are whitish, plumiform organs that are placed on the epipods (the podobranchia), at the artic ulation of the leg with the body (arthrobranchia), or on the body itself (pleurobranchia) (Fig. 12). Water is pumped through the branchial chamber and gas exchange takes place through the thin wall of the gill fila ments.

Carapace, or dorsal shield (Figs 5,6) - A shield-like lateral extension of the thoracic somites, which covers the cephalothorax dorsally and extendsfrom the eyes to the posterior margin of the last thoracic somite. It is cylindrical or angular, and laterally fits snugly against the bases of the pereiopods, enclosing the branchial chamber above the bases of the pereiopods. The carapace may end anterodorsally in a rostrum which is placed between the eyes. The structure, pubescence, sculpturation (grooves and spines) of the carapace are of taxonomic importance.

Fig. 5 Lateral view of a nephropid carapace

Fig. 6 Schematic dorsal view of right half of scyllarid carapace and cephalic appendages showing various regions, spines, grooves, teeth, etc.

Cardiac tooth - In Scyllaridae, the median tooth on the dorsal surface of the carapace immediately behind the cervical groove (Fig. 6). Sometimes the tooth is low and knob-like, and then may be indic ated ascardiac knob.

Carina (pl. carinae) - Ridge or crest.
Cappus - The third segment of a pereiopod counted from the tip of the leg; it is situated between the propodus and merus (Figs 7,12). See pereiopod.

Cephalic - Belonging to the cephalon (q.v.)
Cephalon, orhead - In the Decapoda, the cephalon is formed by the first 6 somites of the body, and is fused with the 8 thoracic somites to the cephalothorax. The first cephalic somite (=the ophthalmic somite) camies the eyes, the second (= antennular somite), the antennulae, the third (= antennal somite), the antennae, the fourth, the mandibles, the fifth, the maxillulae, and the sixth, the maxillae (Fig. 2).

Cephalothorax - The a nterior 14 somites of the Decapod body, consisting of the 6 cephalon somites and the 8 thoracic somites (Figs 2,9,11,14). These 14 somites are fused to a single entity and the division between them can only rarely be obsenved (e.g., on the thoracic stemum). As each of the somites bears a single pair of appendages, the position of the fused somites can be ascerta ined by the position of these appendages. See also cephalon and thorax. Sometimes, but incorectly so, the term cephalothorax is used instead of carapace.

Cenvical groove - An often deep, transverse groove over the middle of the carapace, the lateral parts of which are usually curved forward (Figs 5,6).

Cenvical incision - An incision on the lateral margin of the carapace in Scyllaridae at the point where the cervical groove would meet that margin (Fig. 6).

Chela (pl. chelae), or pincer (Figs 7,9) - A sc issor-like organ caried by many lobsters on the first pereiopods, sometimes also found on some or all of the other pereiopods, sometimes entirely lacking. The chela is formed by the last two segments of the leg, viz., propodus and dactylus, a nd consists of a palm and two fingers. The upper or movable finger is formed by the dactylus, which a riculates with the propodus at the end of the palm; it opposes the fixed finger, which is immovably connected with the palm and forms with it the propodus. The opposing edges of the two fingers, the cutting edges, may camy teeth. The presence or absence of chelae, as well as their shape, size and omamentation, can be of great taxonomic value. The Nephropoidea have chelae on the first three pairs of pereiopods, the first of which usually is very large. In the Palinuroidea the first 4 legs have no true chelae, but the females of most species have a small chela on the fifth pereiopod. The Thalassinidea sometimes have a true chela on the first and second pereiopods, but often they only have a subchela (q.v.).

Chelate - Carying a chela orpincer.

Cheliped - A leg camying a pincer or chela (Figs 2,7); e.g., the first three pereiopods in Nephropidae are chelipeds.

Fig. 7 Schematic illustration of a cheliped

Copulatory stylets - The first pleopod of the male in several Nephropoidea, which has been transformed into an often slender, rigid organ that plays a role in the copulation (Fig. 8).

Fig. 8 First pair of pleopods of Homarus transformed into copulatory stylets

Comea - The distal part of the eye that camies the visual elements and is usually pigmented (Figs 2,4).

Coxa -The basal segment of a pereiopod, the seventh counted from the tip of the leg; it is followed by the basis (Figs 7,12).

Crushing claw - The larger first chela of some Nephropidae, in which the teeth on the cutting edge are wide and molar-like (Fig. 9). The crushing claw is used to crack molluscs and other hard objects.

Fig. 9 Anterior part of cephalothorax of Homarus (dorsal view)

Cutting claw - The smaller first chela of some Nephropidae, in which the cutting edges are semated, having a single row of na rrow sharp teeth (Fig. 9). This claw is used for cutting and breaking. It usually forms a pair with the crushing claw (q.v.).

Dactylus - The ultimate segment of a pereiopod; in a chela the dactylus is the movable finger (Figs 7,10,12, 16).

Fig. 10 Dactylus and propodus of a walking leg

Diaeresis - A transverse artic ulation in the distal part of the exopod of a uropod. The diaeresis is visible as a complete or incomplete line, sometimes with a row of small spinules along its anterior margin; the outer margin of the exopod of the uropod may have a spine or tooth at the spot where the'diaeresis joins it (Fig. 17). The presence or absence of a diaeresis is of taxonomic importance.

Distal - Farther away from the body (or centre of the body). The distal part of an appendage is its tip, i.e. the part farthest away from the articulation of the appendage with the body. The distal part of the abdomen is the tail fan, i.e. the part farthest away from centre of the body. Opposite term: proximal.

Endopod, or endopodite - The inner branch of a biramous leg (Figs 2,12,15,17). Most, or all appendages can be derived from a biramous leg, which consists of a peduncle of 2 or 3 segments, camying two appendages, the endopod and the exopod. In the thoracic appendages of the lobsters, the exopod has disappeared or is present as a reduced flagellum-bearing organ, while the distal 5 segments of the pereiopods represent the endopod. In most pleopods and in the uropod the bira mous construction of the appendage is still clearly apparent, and here the exo-and the endopod can be of about the same size. Opposite term: exopod.

Epipod - A usually small, oval or elongate leaf-like appendage on the outer margin of the first segment (coxa) of a thoracopod (Fig. 12). Sometimes the epipod camies a gill, the so-called podobranch.

Epistome - The median area on the ventral surface of the cephalothorax situated between the anteriormargin of the oral field and the bases of the antennae and antennulae (Fig. 11).

Fig. 11 Anterior part of cephalothorax of Nephrops (ventral view)

Exopod, or exopodite - The outer branch of a biramous appendage (see underendopod) (Figs 2,12,15,17). In the lobsters, the exopod is absent from the pereiopods, but still present in the maxillipeds where it forms an often flagellum-carying appendage of the endopod. In most pleopodsand the uropods the exopod isabout aslarge as, or sometimes even larger than, the endopod. Opposite term: endopod.

Eye - Organ of vision. A pair of eyes is placed on the first somite (= first cephalon somite). In most cases the eye is movably connected with the body and consists of a stalk of one or two segments, the distal of whic c camies the comea (Figs 2,4,9,1 1). The comea (q.v.) consists of the optical elements and usually is pigmented. In some species the eye is reduced, the optic al elements may be few or entirely absent, and also the pigment can be absent; the eye then usually becomes small and bulletshaped and may even become immovably fused to the body.

Fixed finger, see chela.

Ragellum (pl. flagella) - A usually whip-like, multiarticulated appendage of the antennula or the antenna, implanted at the top of the peduncle (Figs 2,6). The antenriula carmes two flagella, the antenna one. In most .Nephropoidea the antennal flagellum is flexible and whip-like, in most Palinuridae it is rather rigid and may be spinulate. In the Scylla ridae, the flagellum is reduced to a single large plate, which looks as if it were the 6th segment of the antenna (Fig. 6). Flagella are also found on some of the exopods of the mouth parts (Fig. 12).

Frontal hom - In Palinuridae, a large, and broad, often curved tooth, that is placed on the anteriormargin of the carapace just behind and above the eyes. The frontal homsusually are the largest teeth on the carapace and are directed over the orbit (Figs 4,14).

Gastric tooth - In Scylla ridae, a tooth in the median line of the carapace before the cervical groove. It usually is placed rather close to the cenvical groove and may be preceded by the pre-gastric tooth (q.v.) (Fig. 6).

Gastric tubercle - A tubercle on the dorso-median line of the carapace of some Nephropidae, situated between the base of the rostrum and the cenvical groove (Fig. 5).
Gill, see branchium.
Head, see cephalon.
Hepatic groove - A groove in the anterolateral part of the carapace branching off from the lateral part of the cervical groove and directed forward (Fig. 5).

Interantennal plate, see a ntennular somite

Intermediate carina- A longitudinal carina over the posterior part of the carapace behind the cervical groove, placed between the median carina and the branchial carina (Fig. 29)

Intestinal teeth or tubercles - The median row of teeth (ortubercles) on the carapace between the post-cervical groove and the posteriormargin of the carapace (Figs $6,14)$.

Ischium - The fifth segment of a pereiopod counted from the tip of the leg; it is situated between merus and basis (Figs 7,12). See pereiopod.

Lateral carina - A longitudinal carina overthe posterior part of the carapace behind the cenvical groove. The lateral carina is situated between the, branchial carina and the lateral margin of the carapace (Fig. 29).

Mandible - The first of of the mouth parts, located on the fourth somite (= cephalon somite 4), near the opening of the mouth (Fig. 2). It is a sturdy, heavily chitinized organ consisting of one piece that ends in a row of teeth and has a tubercular, molar-like area; it camies a usually three-segmented palp. It is used for breaking up and chewing the food.

Marginal posterior ridge of the carapace - The ridge that forms the extreme posteriormargin of the carapace, often becoming lessdistinct laterally (Figs 5.14).

Maxilla, or second maxilla - The third of the mouth parts, placed on the sixth somite (this is the sixth, and last, cephalon somite) (Fig. 2): Like the maxillula, and in contrast to the mandible, the maxilla is a flat and flexible organ.

Maxilliped - The three maxillipeds (first, second, and third) are appendages of somites 7 to 9 (=thoracic somites 1 to 3) (Fig. 2) and are considered to belong to the mouth parts because of their role with the ingestion of food. The first maxilliped is flat and leaf-like, somewhat similar to the maxilla; the second and the third, espec ially the latter, are more leg-like in sha pe (Fig. 11).

Maxillula, or first maxilla - The second of the mouth parts, being the appendage of the fifth somite (= fifth cephalon somite) (Fig. 2). It is sma Il, flat and flexible and placed close to the mandible.

Median carina - In Nephropidae the longitudinal dorsomedian carina of the carapace behind the cervical groove (Fig. 29)

Merus - The middle segment of a pereiopod, the fourth counted from either end (see pereiopod) (Figs 7,12).

Mouth parts - A general term for the appendages of somites 4 to 9 ($=$ cephalon somites 4 to 6 and thoracic somites 1 to 3) (Fig. 2). They are the, often small, appendages preceding the often large first pereiopods, and are placed around and behind the mouth opening on the ventral side of the body (Fig. 11). They include in backward sequence: the mandible, maxillula, maxilla and the first, second and third maxillipeds. They all play a role in the dissection and ingestion of food.
Ophthalmic somite - The first somite (= first cephalon somite) (Fig. 2). It camied the eyes.

Oral field - The usually sunken, median area on the a nterior part of the ventral surface of the cephalothorax, conta ining the mouth parts (=oral parts) (Fig. 11).

Orbit - The cavity in which the eyes are implanted. In many species, the orbit is only defined by the postorbital margin, which forms part of the anterior margin of the carapace; in those cases, the orbit is open a nteriorly (Fig. 5). In some Scyllaridae the anterior margin of the carapace practically surrounds the eye and the orbit is then closed or almost closed (Fig. 6).

Palm - The part of the chela, or pincer, that bears the fingers. It is part of the propodus, the rest of the propodus forms the fixed finger (Fig. 7).

Peduncle, see antenna, a ntennula, pleopod and'uropod.
Pereiopod, a lso written pereopod or peraeopod - The thoracic appendages behind the mouth parts, i.e. the a ppendages of somites 10 to 14 (= thorac ic somites 4 to 8) (Figs 2,12). The pereiopods consist of seven segments, these are, from proximal to distal: coxa, basis, ischium, merus, carpus, propodus, and dactylus (Fig. 12). The pereiopodscan be divided into chelipeds (those that camy a chela, Figs 2,7) and walking legs (those that do not, Figs 2,10).

Fig. 12 Schematic illustration of a thoracopod
Phyllosoma or phyllosome - The pelagic larva of Palinuroidea, in which both the cephalothorax and the abdomen appear as glassy transparent, nearly circ ular, very thin and flat discs (Fig. 13). These larvae are so different from the adults that they originally were described undera separate genus without any connection with the Palinuroidea.

Fig. 13 Phyllosoma lanva (Panulirus gracilis) (from J ohnson, 1971)

Pleopod - Appendage of any of the first 5 abdominal somites, usually formed by ah unsegmented peduncle which camies two branches usually formed of a single flat, leaf-like and oval segment (Figs 2,3,15). The outer of these branches is the exopod, the innerthe endopod. The pleopodr may be reduced or entirely absent from some somites, the endopod may have an appendix. In some species, the pleopods of the first or first two abdominal somites may be transformed into rigid copulatory stylets (Fig. 8), which play a role during copulation. In femalesthe pleopodsmay be largerand wider than in males, especially when the females camy eggs. The eggs are fastened to the pleopods and are camied as a conspic uous mass under the abdomen, the mass being protected on the outer side by the pleopods.

Pleurobranch, see branchium.
Pleuron (pl. pleura)- The lateral part of the chitinous ring that surrounds each somite, the dorsal part being the tergite, the ventral the stemite (Figs 3,15). The pleura of the abdominal somites aie often well developed and show aslateral plates that are directed downward and protect the pleopods; together with the stemites they may form a gutter-like cavity on the lower surface of the abdomen, which holds the pleopodsand the eggs. The pleura may be eitherlarge, rounded or triangular, or small and short. Their sculpturation, shape and spination are important taxonomic characters.

Podobranch, see branchium.
Postcenvical groove - A roughly transverse groove on the carapace in Scyllaridae, some distance behind and roughly parallel to the cervical groove (Fig. 6).

Postcenvical incision - An incision on the lateral margin of the carapace in Scyllaridae, behind the cervical incision and usually slightly closer to it than to the posteriorend of the carapace (Fig. 6). The cervical and postcervical incisions may divide the lateral margin into 3 parts.

Postcervical spine -A spine on the dorsal surface of the carapace, placed immediately behind the cervical groove (Figs 5,6).

Postcenvical teeth or tubercles - In Puerulus, the median row of teeth or tubercles on the carapace between the cervical and intestinal grooves (Fig. 14).

Fig. 14 Cephalothorax of Puerulus (dorsal view, pereiopods omitted)

Posterolateral teeth - In Scyllaridae, the teeth of the lateral margin of the carapace placed behind the postcervical incision (Fig. 6).

Postorbital margin - Part of the anterior carapace margin which defines the orbit (Fig. 5).

Postorbital spine - A spine on the carapace placed at some distance behind the orbital margin (Fig. 5).

Postrostral carina - A median ridge on the dorsal part of the carapace, which extends from the base of the rostrum backward, often to the posterior margin of the carapace (Figs 5,6).

Postrostral spines - Spines in the dorsomedian part of the carapace placed immediately behind the base of the rostrum, either in the median line or submedially (Figs $5,14)$.

Post-supraorbital spine - A spine placed at a short distance behind the supraorbital spine on the carapace (Fig. 5).

Pregastric tooth - In Scyllaridae, a tooth in the median line of the anterior part of the carapace (before the cervic al groove). It is placed before the gastric tooth and behind the rostral tooth (Fig. 6).

Propodus - The one but last segment of a pereiopod (q.v.), situated between the dactylus and the capus (Figs $7,10,12,16$). In a chela the propodus forms the palm and the fixed finger.

Proximal - Closer to the body (orcentre of the body). The proximal part of an appendage is its base, i.e. the part closest to the body. The terms proximal and distal can be used regardless of the position in which the appendage is directed, while tems like ventral, dorsal, anteriorand posterior in such a movable organ may be confusing.

Puerulus stage - The first postla rval stage of Palinurid lobsters. So named before the postlarval development of the Palinuridae was known; these animals were incorectly considered to belong to the genus Puerulus.

Rostral tooth, see rostrum.
Rostrum - A prolongation of the median part of the anterior carapace margin, which projects forward between and often beyond the eyes (Figs $5,6,9,11$). The rostrum can be of various shapes; in lobsters it is usually dorsoventrally depressed and often bearsteeth. In many species the rostrum is absent or reduced to a single spine orangle (e.g., in Palinuroidea); in most Nephropoidea it is well developed. In Scyllaridae it is hardly notic eable, but forthe presence of a tooth (rostral tooth) or tubercle (Fig. 6).

Scaphocerite - A scale-like appendage of the antennal peduncle, which is inserted on the outerpart of the distal margin of the second peduncular segment (Figs 9,11). The scaphocente is generally considered to be the exopodite of the antenna. It usually is small and may be a med with teeth. In some species it lacks altogether.

Sculpturation-The presence of grooves, ridges, spines, teeth, tuberclesorgranules on the exposed parts of the body.

Segment - A single part of an artic ulated unit. In the present catalogue, the term "segment" is only used for the segments of the appendages, the body segments are always indicated as "somites" (q.v.). A pereiopod (q.v.) has seven segments.

Somite or body segment -Any of the 20 segments into which the body is divided (Fig. 2). Each somite is surrounded by a chitinouscover, the dorsal part of which is temed tergite (q.v.), the ventral part stemite (q.v.) and the lateral parts, pleura (singular. pleuron, q.v.) (Figs 3,15).

Fig. 15 Schematic cross-section through an abdominal somite

Spermatophore - A viscous mass, containing the spematozoa embedded in a secretion from the spem duct,' which during copulation is deposited by the male on the thoracic stemum of the female in some lobsters. In the Palinuroidea the spematophores may be visible as black, tar-like or transparent gelatinous deposits covering the posterior part of the female stemum.

Stalk, or peduncle (q-v.), see eye.
Stemite - The ventral part of the chitinous ring that surounds each somite (the other parts are the dorsal tergite and the two lateral pleura) (Figs 8,15). Together, the various stemites form the stemum, e.g., the thorac ic stemum is the sum of the thoracic stemites.

Stemum, see stemite.
Stridulating organ - An organ formed by two parts of the body that produce a sound rubbing against each other (Fig. 4). In some Palinurid genera, the lateral margins of the antennular plate are ridge-like and thickened; a projection of the antennal peduncle rubs over this ridge when the antenna is moved in a special way,thereby producing a rasping sound, which evidently is a means of communication.

Stylet, copulatory, see copulatory stylet.
Subchela - An incomplete chela, in which the dactylus does not oppose a fixed finger, but, when the chela is closed, strikes against a broadened part of the propodus (Fig. 16).

Fig. 16 Subchela (Justitia)

Subdorsal carina - A ridge at either side of the middorsal line of the carapace, placed close to it and running parallel with it (Fig. 5). The subdorsal carinae are always paired.

Submarginal posterior groove of the carapace - An often deep groove parallel to the posteriormargin of the carapace and separated from it by the marginal posterior ridge (Figs 5, 14).

Supraorbital spine - A spine on the carapace placed obliquely above and somewhat behind the orbit (Fig. 5).

Swimmeret, see pleopod.
Tail, see abdomen.
Tail fan-A fan-like organ at the end of the abdomen, consisting of the telson, flanked on either side by the uropods (Figs 3,17).

Fig. 17 Schematic illustration of tail fan
Telson - A median appendage at the end of the sixth abdominal somite, usually longer, at least not much shorter than the somite itself, and sometimes considered to be the seventh abdominal somite. The telson has no a ppendages (Figs 2,3,17).

Tergite - The dorsal part of the chitinous ring that surrounds each somite (the other parts are the ventral stemite and the two lateral pleura) (Fig. 15). Together the various tergites form the tergum, e.g., the abdominal tergum is the sum of the six abdominal tergites.

Tergum, see tergite.
Thoracic somite, see thorax.
Thoracopod - Any of the 8 appendages of the thorax. The thoracopods consist of 3 pairs of maxillipeds (appendages of thoracic somites 1 to 3) and 5 pairs of pereiopods(appendages of thoracic somites 4 to 8) (Figs $2,12)$.

Thorax - The middle of the three main parts of the body (cephalon, thorax, a nd abdomen). It isformed by the 7th to 14th somites (= thorac ic somites 1 to 8) and bears the thoracopods (q.v.) (Fig. 2). The somites of the thoraxare fused with those of the cephalon and so form the cephalothorax (q.v.). Dorsally and laterally, the lines between the thoracic somites are not noticeable; ventrally, however, they may show astransverse grooves on the stemum.

Uropod - One of the pair of pleopods of the sixth abdominal somite (Fig. 2). In contrast to the pleopodsof the preceding somites, the uropods are stiff and heavily chitinized; they are well developed and form, together with the telson, the tail fan. They consist of an unsegmented peduncle, which bearsat its distal end the usually blade-shaped exo- and endopods, these can be folded against each other and sometimes under the telson (hence the name tail fan) (Figs 3,17).

Walking leg - A pereiopod that does not camy a chela. In the Nephropidae, the first three pereiopods are chelipeds, the last two are walking legs (Figs 2,10). The main function of the walking legs is locomotion, while that of the chelipeds is feeding.

2. SYSIEMATIC CATALOGUE OF SPECIES

SUBO RDER MACRURA REPTANTIA Bouvier, 1917

Macrura Reptantia Bouvier, 1917, Résultats Campagnes scientifiques Prince Albert I Monaco, 50:7,8,9.
The suborder Macrura Reptantia consists of three infraorders: Astacidea (marine lobsters and freshwater craysfishes), Pa linuridea (spiny lobsters a nd slipper lobsters) and Tha la ssinidea (mud lobsters). The infraorderAsta cidea conta ins three superfamilies of which only one (the Nephropoidea) is considered here. The rema ining two superfamilies (Asta coidea a nd Parastacoidea) conta in the freshwatercrayfishes. The superfa mily Nephropoidea (40 species) consists, almost entirely of commercial or potentially commercial species, and their few non-commercial representatives are dealt with here also, so as to give a complete picture of this group.

The infra orderPa linuridea, also conta ins three superfa milies(Eryonoidea, Glypheoidea a nd Palinuroidea) all of which are marine. The Eryonoidea are deepwater species of insignificant commercial interest and are only treated superfic ially in this catalogue. The Glypheoidea, an a lmost exc lusively fossil group, conta ins a single recent species, which is treated here. All species of the superfamily Palinuroidea (total about 120 species) are included in the catalogue. Members of the genus Scyllarus(over 40 species) are listed but only 7 spec ies are treated in detail because they are the only ones known to be of (potential) interest to fisheries.

The third infraorder, the Thala ssinidea, conta ins a single superfa mily, the Thalassinoidea which conta ins a round 100 species. Only a few representatives of this superfamily are known to be used asfood and bait and hence only these few species are treated in detail in this catalogue.

Key to the three Infraorders and their Superfamilies

1a. First three pairs of pereiopodr with true chelae, the first pair the largest and most robust
2a. Fourth pereiopod, and usually also the fifth, without true chelae.C arapace cylindrical, not flattened (Fig.18) \qquad Infra order Astacidea, Superfa mily Nephropoidea

2b. All pereiopods, or at least the first four, with true chelae. Carapace flattened (Fig. 19). Deep-sea specie \qquad Infra order Palinuridea, Superfa mily Eyonoidea, Fa mily Polychelidae
1b. Third pereiopod never with a true chela, in most groupschelae also absent from first and second pereiopods
3a. Antennal flagellum reduced to a single broad and flat segment, similar to the other antennal segments (Fig. 20) \qquad Infra o rder Palinuridea, Superfa mily Palinuroidea, Fa mily Scyilaridae
3b. Antennal flagellum long, multi-artic ulate, flexible, whip-like, or more rigid

4a. Epistome long, about $1 / 3$ of carapace length. Eyes on a median elevation of the cephalon (Fig. 21) Infra order Palinuridea Superfamily Glypheoidea Fa mily Glypheidae

4b. Epistome short, far shorter than $1 / 3$ of the carapace. Eyes not placed on an elevation of the cephalon

5a. Carapace with numerous strong and less strong spines and two frontal homs over the eyes. Rostrum absent or reduced to a single spine. Legs 2 to 4 (usually also 1) without chelae or subchelae (Fig. 22) . . Infra o rder Palinuridea Superfa mily Palinuroidea Fa mily Palinuridae

5b. Carapace with at most a few spines; no frontal homs. Rostrum present, even though sometimes small. Legs 1 and 2 simple, chelate, or subchelate

6a. First pereiopods simple, rostrum flat, broad and triangular orbroadly oval (Fig. 23)......... Infra order Palinuridea Superfa mily Palinuroidea Fa mily Synaxidae

6b. First pereiopod chelate or subchelate. Rostrum of diverse shapes (Fig. 24) . . Infra order Thalassinidea
simple dactylus

Fig. 23

Infra order Palinuridea Superfa mily Glypheoidea Fa mily Glypheidae

Fig. 21

Fig. 22

chela
Infra order Thalassinidea
Fig. 24

2.1 INFRAORDER ASTAC IDEA La treille, 1802

Astacini Latreille, 1802, Histoire naturelle générale et partic ulière des Crustaces et de Insectes, 3:32.
This group includes the true lobsters and crayfishes. The Astacidea can be easily distinguished from the other lobsters by the presence of chelae (pincers) on the first three pairs of legs, and by the fact that the first pair is by far the largest and most robust. The last two pairs of legsend in a simple dactylus, except in Thaumastocheles, where the 5th leg may bear a minute pincer.

The infra order consists of three superfamilies, two of these, the Astac oidea Latreille, 1802 (crayfishes of the northem Hemisphere) and the Parastacoidea (crayfishes of the southem Hemisphere), include only freshwater species and are not further considered here. The third superfamily, Nephropoidea, comprises the true lobsters, treated below.

SUPERFAMILY NEPHROPOIDEA Da na, 1852

Nephropinae Dana, 1852, ProceedingsAcademy natural Sciences Philadelphia, 6: 15.
The Nephropoidea or true lobsters include two families, Thaumastochelidae and Nephropidae. The Nephropidae are commercially very important, while the Thaumastochelidae include only three species, none of which is of economic interest; they are only listed here for completeness' sake.

Key to the Families and Subfamilies of Nephropoidea

1a. Eyes entirely absent, or strongly reduced, without pigment. Telson unarmed. Chelipeds very unequal, the larger with fingers more than four times as long as the palm; cutting edges of the fingers of the larger cheliped with many slender spines. Fifth pereiopod (at least in the female) with a chela. Abdominal pleura short, quadrangular, lateral margin broad, truncate, not ending in a point. Scaphocerite with several very large teeth on the inner margin (Fig. 25) Thaumastochelidae

Thaumastochelidae
Fig. 25

1b Eyes well develope dor reduced, always presentas movable appendages. Telson with lateral and/or postlateral spines. Chelipeds equal or unequal, but fingers always considerably less than twice as long as palm; teeth on the cutting edge placed in the same plane. Fifth pereiopod without a true chela. Abdominal pleura large, triangular or ovate, usually ending in a point. Scaphocerite, if present, with the inner margin evenly curved, unarmed (Fig. 26) \qquad Nephropidae

2a. Rostrum laterally compressed for the larger part of its length, with dorsal and ventral, but no lateral teeth. Carapace with branchiostegal spine. Body entirely covered by numerous closely placed and sharply pointed spinules. Lateral margin of the telson with 6 to 12 spines (Fig. 27) .. Neophoberinae

2b. Rostrum dorsoventrally depressed with lateral (and sometimes ventral), but without dorsal teeth; sometimes without any teeth. Carapace without a branchiostegal spine. Body never uniformly covered with spinules, although granules may be present all over, or spinules may be placed on the carapace. The lateral margin of the telson with at most three lateral spines, which if present, are usually small and irregular

Nephropidae
Fig. 26

Neophoberinae
Fig. 27

3a Scaphocente absent. Carapace without postorbital spine (Fig. 28). Abdominal sternites unamed in both sexes. No podobranch on second maxilliped Thymopinae

3b Scaphocente present. Carapace with a distinct postorbital spine (Fig. 29). Stemites of second to fifth abdominal somites in the male with a sharp median spine each. Podobranch usually present on the second maxilliped \qquad Nephropinae

Thymopinae
Fig. 28

carapace (lateral view)

Fig. 29

2.1.1

FAMILY THAUMASTOC HEUDAE Bate, 1888
THAU

Thaumastochelidae Bate, 1888, Report Vovage Challenger, Zool., 24:7,11,46.
The family is easily recognized by the peculiarshape of the large cheliped with its swollen palm and the very elongate fingers (at least four times as long as the palm) that ha ve very slender, altemating, large and small teeth.

Two genera with a total of three species known so far.

Key to Genera:

1a. Eyes totally absent, eventual remnants immovably fused to the ophthalmic somite (Fig. 30a). Second and third maxillipeds with well developed exopods. Distal part of uropodal. exopod behind the diaeresis wide and short (Fig. 30b) \qquad Tha umastoc heles

1b. Eyes present, slender and slightly movable, without pigment (Fig. 31a). Exopods of second and third maxillipeds reduced to short scale-like rudiments. Distal part of uropodal exopod, behind diaeresis a na rrow rounded lobe (Fig. 31b) \qquad Thaumastoc helopsis

a. anterior part of carapace (dorsal view)

a. anterior part of carapace (dorsal view)

b. uropod

Thaumastocheles Fig. 30

Thaumastochelopsis
Fig. 31

Tha umastoc heles Wood-Ma so n, 1874
THAU Thau

Thaumastocheles Wood-(Mason, 1874, ProceedingsAsiatic Society Bengal, 1874: 181. Gender masculine. Name placed on the Offic ial List of Generic Names in Zoology in Opinion 519 (published in 1958).

Type Species: by monotypy: Astacus zaleuc us Thomson, 1873.

Key to Species:

1a. Teeth on fingers of large cheliped placed in a single row and oriented in the same plane as the fingers themselves (Fig. 32a). Indo-West Pacific \qquad T. japonic us
(Fig. 33).
1b. The teeth on fingers of large cheliped not in the same plane as the fingers themselves, pointing altematingly obliquely inward and outward; the bases of the teeth are placed in a single line, but the teeth themselves form two diverging rows (Fig. 32b). Westem Atlantic . . T. zaleucus

Dia gram (not drawn to scale) showing a rrangement of teeth on finger of large cheliped (after Calman. 1913)

Thaumastoc heles japonic us Calman, 1913, Annals
Magazine Natural History. (7)12:230.
FAO Names: En - Pacific pincer lobster.
Type : Type loc ality: "Off Yenoshima, Odawara Bay [=off Enoshima nearOdawara, Sagami Bay], Japan, 200 fms [$=366 \mathrm{~m}$]" Type specimen in Zoological Museum of University of St. Andrews, Scotland, UK.

Geographical Distribution : East coast of J apan between Sagami and Tosa Bays. A single pincer collected nearNew Caledonia (22002'S 165057'E; 800 m deep) may belong to the present species (Monod, 1973: 126, figs 37-39) (fig. 34).

Fig. 34

(after Doflein, 1906)
Fig. 33

Habitat and Biology : The spec ies is known from depths between 366 and 700 m (the New Caledonian specimen from 800 m).

Size : Total length 9 to 17.5 cm , carapace length between 4 and 6 cm .
Interest to Fisheries : None so far. The species is rarely caught, and usually as single specimens. Also the great depths at which it occurs makes it less interesting for commercial exploitation.

Literature : Ba ba et al., 1986: 152, 153, 281, fig. 104.

Astacus zaleuc us Thomson, 1873, Nature, London 8:246, 247, fig. 1. Specific name placed on Official List of Specific Names in Zoology in Opinion 519 (published in 1958).

FAO Names: En Atlantic pincer lobster.
Type : Type locality:"Challenger" Station 23, off Sombrero Island, West Indies, $18{ }^{\circ} 24^{\prime} \mathrm{N} 63028^{\prime} \mathrm{W}, 450 \mathrm{fms}$ [$=823 \mathrm{~m}$], bottom pteropod ooze. Female holotype in BM, No. 88.22 (in alcohol, condition fair); paratype in BM (only fragments).

Geographical Distribution : West Indian region (Straits of Florida, off Yucatan, east of Nic aragua, off Sombrero Island. and off Grenada) (Fig. 36).

Fig. 36
Habitat and Biology : Deep-sea species from 640 to 1054 m depth. Bottom very flat, of soft mud (ooze). Possibly a burrowing species.

Size : Total length 10 to 16 cm .
Interest to Fisheries: So far none. Only 7 specimens have so far been taken, there are no indic ations that they ever could be caught in commercially interesting quantities.

Literature : Bate, 1888:47, text fig. 40, pl. 6, pl. 7 fig 1; Holthuis, 1974:1729, fig. 1.

Tha umastoc helopsis Bruce, 198
THAU Thaup
Thaumastochelopsis Bruce, 1988, Invertebrate Taxonomy, 2:903.
Type Specie : by original designation and monotypy: Thaumastochelopsis wardi Bruce, 1988. Gender feminine.
Genus with a single known species.

Tha uma stoc helopsis wardi Bruce, 1988, Invertebrate Taxonomy, 2:909, figs 1-7.
FAO Names : En - Austra lian pincer lobster.
Type : Type locality:"Marian Plateau, off Townsville," Queensland, Australia,"590.05.00’S [error for 19005.00’S], $149{ }^{\circ} 26.75^{\prime} \mathrm{E}, 425 \mathrm{~m}$ ". Holotype female, and allotype male, Northem Teritory Museum, Darwin, Australia, no. Cr.
004231.

(after Bruce, 1988)

Fig. 37
Geographical Distribution : NE Australia (Fig. 38). Only known from the type locality.

Habitat and Biology : Taken at a depth of 425 m .
Size : Total length approximately 7.7 cm (female), 5.7 cm (male); carapace legnth 2.5 cm (female), 1.9 cm (male).

Interest to Fisheries: Ina smuch as only two specimens are known of this species nothing can be stated on this aspect, but it is not likely that the species ever will become of commercial interest.

Literature: Original description.

Fig. 38

Nephropinae Dana, 1852, ProceedingsAcademy Natural Sciences, Philadelphia,6: 15.
Synonyms: Homa ridae Huxley, 1879. The grammatic ally incorrect spelling Nephropsidae hasfrequently been used for the present family name.

The family Nephropidae is divided into three subfamilies: Neophoberinae, Nephropinae and Thymopinae. A key to these subfa milies is provided on pages 20 and 21.

SUBFAMILY NEOPHOBERINAE G la essner, 1969

Neophoberinae Glaessner, 1969, in R.C. Moore, Ireatise of Invertebrate Paleontoloay, R(2):459.
Synonyms: Phoberinae Mertin, 1941.
The subfa mily contains only a single genus.

Acanthac aris Bate, 1888

NEPH Ac ant

Ac antha c a ris Bate,1888, Report Voya aeChallenger,Zool. 24:171,929,pl.21.Genderfeminine.
Type Species: by monotypy: Ac anthac aris tenuimana Bate, 1888.
Synonyms : Phoberus A. Milne Edwards, 1881, Annales Sciences Naturelles, Paris, (Zool.), (6)1 I(4): 1 (not Phoberus MacLeay, 1818); type species, by monotypy: Phoberus caecus A. Milne Edwards, 1881; gender masculine.

Neophoberus Glaessner, 1969, in R.C. Moore, Treatise of Invertebrate Paleontoloav, R(2):460, replacement name for Phoberus A. Milne Edwards, 1881; gender masculine.

Key to Species:

1a. Fingers of first cheliped about as long as palm (Fig.

39a).Atla ntic
A. caeca
(Fig. 40)
1b. Fingers of first cheliped distinctly longer than palm (Fig. 39b). Indo-West Pacific \qquad A. tenuimana (Fig. 42)

b. A. tenuimana

Fig. 39

NEPH Ac ant 1

Phoberus caec us A. Milne Edwards, 1881, Annales Sciences Naturelles , Pa ris,(Zool.), (6)1 1(4):1.
Synonyms: Neophoberus caecus-G la essner, 1969.
FAO Names : En - Atlantic deep-sea lobster; Fr-Langoustine arganelle; Sp-Cigala de fondo.

Type : Type locality: "Blake" Station 264, off Grenada, West Indies, 12ㅇ03'15"N 61048'30"W, 761 m deep, bottom grey ooze. Holotype in MCZ

Geographical Distribution : Gulf of Mexic o, Caribbean Sea, Straits of Florida (Fig. 41).

Habitat and Biology : A deepsea species from 293 to 878 m depth (mostly between 550 and 825 m). Lives on soft mud bottoms in burrows.

Size: Maximum total length 40 cm ; carapace length 2 to 17 cm .

Interest to Fisheries : Not actually fished for at present, Exploratory deep-sea trawling showed the species to be present in quantities that might be of commercial interest; also interesting because of its relatively large size.

Local Names: USA: Blind deep sea lobster (Florida).
literature : Holthuis, 1974:741, fig. 4-8; Fischer (ed.), 1978:vol. 6.

Fig. 41

Acanthacaris tenuimana Bate, 1888
Acanthacaris tenuimana, Bate, 1888, Report Voyage Challenger , Zool.,24:171,929,pl. 21.

Synonyms : Phoberus tenuimanus Bate, 1888; Phoberus caec us sublevis Wood-Mason \& Alcock, 1891; Acanthacaris opipara Burukovsky \& Musy, 1976; Phoberus brevirostris Thung \&Wang, 1985.

FAO Names : En - Prickly deep-sea lobster, Fr Langoustine spinuleuse; Sp-Cigala raspa.

Type : Type locality of Acanthacaris tenuimana: "Challenger" Station 191, "lat. 5041'S., long. 134ㅇ́'30" E., south of New Guinea; depth, 800 fathoms [= 1463 m]; bottom, green mud". Holotype in BM, no. 88.22 (in alcohol, condition fair).

Type locality of Phoberus caecus sublevis: "Investigator""Station 105, 740 fathoms" (= "Laccadive Sea, off Goa coast, lat. 15002 ' N, long. 72 ㅇ34' E., 740 fms [= 1353 m]. Grey ooze, coral mud, and 12.5 per cent Foraminifera"). Holotype in ZS, preserved in alcohol, condition poor.

Type locality of Acanthacaris opipara: "South-west part of the Indian Ocean" near "Durban; 29057'6"2952'5"S., 31으'2"-31052'5"E, depth 830-850 m". Depository of holotype unknown.

Type locality of Phoberus brevirostris: " 2900' 30^{\prime} N, 127000'-30'E, 300-900 m deep, East China Sea". Holotype male (no. 81015) and 2 paratype males (nos. 81016 and 81006) in Donghai Fisheries Research Institute, Shanghai, and Biological Department of Hangzhou University, Hangzhou, China.

Geographical Distribution : Indo-West Pacific area (Natal, Mozambique, Madagascar, Laccadive Islands, Japan, Philippines, South China Sea, Indonesia, New Caledonia) (Fig 43)

Habitat and Biology : Deep sea, from 600 to 1670 m. Muddy bottom.

Size : Maximum known total length 40 cm , carapace length 2-21 cm; ovigerousfemales, cl. 1 119cm.

Interest to Fisheries: So far none. The species is taken incidentally in trawls, but so far too rarely and in too small quantities to be of commercial interest. The large size of the specimens might make fishing economically attractive, once the appropriate gear and proper localities where suffic ient qua ntities occur have been found.

Local Names: MOZAMBIQUE: Lagosti m espinhoso.

Literature : Fischer \& Bianchi (eds), 1984:vol: 5; Macpherson, 1990:293.

Fig. 42

NEPH Ac ant 1

Fig. 42

Fig. 43

Remarks: The taxonomy of the species is not clear. It is possible that 2 forms may have to be distinguished: A. sublevis Wood-Mason, 1891 (with a synonym A. opipara Burukovsky \& Musy, 1976) from the Indian Ocean, and A. tenuimana s.s from the eastem part of the present range. More material will have to decide this question.

SUBFAMILY THYMOPINAE Holthuis, 1974
Thymopinae Holthuis, 1974, Bulletin Marine Science, University Mia mi, 24(4):753.

This subfa mily consists of four genera, viz., Nephropides,
Nephropsis, Thymops a nd Thymopsis. Three of these genera include a single species, namely all, except Nephropsis. None of them has any commercial value at present, but some may be of potential interest to fisheries.

Key to Genera

1a. Second and third maxillipeds without exopods (Fig. 44a). Pleura of second abdominal somite wide and overlapping both the pleura of the first and third somites (Fig. 44b). Lower margin of rostrum with teeth

Thymopsis
1b. Second and third maxillipeds with exopods (Fig. 45a). Lower margin of rostrum without teeth

2a. Pleura of abdominal somites broadly overlapping (Fig. 45b). Exopod of second maxilliped without flagellum \qquad Thymops

2b. Pleura of abdominal somites na row, hardly if at all overlapping. Lateral margin of telson unarmed, but for the posterolateral spine. Exopod of second maxilliped with a distinct flagellum

a. second and third maxilliped
(from Holthuis, 1974)

a. second and third maxilliped
(from Holthuis. 1974)
abdominal somites

b. abdomen (lateral view)

Thymopsis
Fig. 44

b. abdomen (lateral view)
(after Zarenkov \& Semenov, 1972)

3a Eye not pigmented. Body granular and hairy, but not covered with evenly placed large pearly tubercles (Fig. 46a). Pleura of second abdominal somite ending in a long sharp point (Fig. 46b) Nephropsis

3b. Eye with pigmented, although small, comea. Body entirely covered by conspicuousrounded pearly tubercles (Fig. 47a). Pleura of second abdominal somite broadly trapezoid, distal margin obliquely truncate, ending in a blunt posterior tooth (Fig. 47b) \qquad Nephropides

Nephropsis
Fig. 46

a. carapace (dorsal view)
(from Mannmg, 1969)

Nephropides Manning, 1969, Crustaceana, 17:303. Gender masc uline.
Type Species: by original designation and monotypy: Nephropides caribaeus Manning, 1969.
A single species known so far.

Fig. 48

Nephropides caribaeus Manning, 1969, Crustaceana, 17:304, text-fig. 1 pt. 1
FAO Names: En - Mitten lobsterette.
Type : Type locality: Off Caribbean coast of "Nic aragua, $122^{2} 25^{\prime} \mathrm{N}$ 82 ${ }^{\circ} 15^{\prime} \mathrm{W}$; depth $546-582 \mathrm{~m}$ ". Holo-type in USNM, no. 113741; paratypes in USNM, RMNH.

Geographical Distribution : Extreme westem Caribbean Sea off the coasts of Central Americ a a nd northem South America, from Belize to Colombia, 16058^{\prime} to $9024^{\prime} \mathrm{N}, 76031.5^{\prime}$ to $87{ }^{\prime} 53^{\prime} \mathrm{W}$ (Fig. 49).

Fig. 49
Habitat and Biology : Deep sea, 511 to 728 m ; .on mud bottom.

Size : Total length 15.6 to 17 cm , carapace length 5 to 6 cm .

Interest to Fisheries: So far none, but the size of the specimens might make the exploitation profitable if good fishing grounds are found.

Fig. 48

Literature : Manning,. 1969:304, text-fig. 1 pl. 1;
Holthuis, 1974:806-I 0, figs 22,23.

Nephropsis Wood-Ma son, 1873

NEPH Nephps

Nephropsis Wood-Ma son, 1873, AnnalsMaaazine naturalHistorv, (4)12:60. Gender feminine. Name placed on the Offic ial List of Generic Namesin Zoology in Opinion 559 (published in 1959).

Type Species : by monotypy : Nephropsis steward Wood-Ma son, 1873.
At present, 13 species of the genus Nephropsis are known, 5 from the Atlantic, 7 from the Indo-West Pacific, and one from the eastem Pacific region. None of these species are curently being fished on a commercial scale, but some are of potential interest.

The taxonomic status of several species is not clear, a nd therefore the following key to spec ies must be considered as provisional; several new species can be expected.

Key to Species:

1a Rostrum without lateral teeth. A strong post-supraorbital spine present behind the supraorbital spine (Fig. 50a). Abdominal somites 3 to 6 with a median dorsal carina (Fig. 50b). Anterior margin of pleura of second abdominal somite without spines (Fig. 51a). Telson without media-dorsal spine (Fig. 52a). Indo-West Pa cific \qquad N. ensirostris
(Fig. 71)
1b. Rostrum with lateral teeth: Other characters mentioned under la present or absent

2a Rostrum with one pair of lateral teeth (one tooth on either margin) (Fig. 53). Anterior margin of pleuron of second abdominal somite without a spine, although the pleuron itself may end in a sha p , sp ine-like tip (Fig. 51a)

3a. An erect dorsal spine placed in the middle of the basal part of the telson (Fig. 52b). Post-supraorbital spine absent or replaced by one or more spinules. Abdominal somites 2 to 6 with a median dorsal carina. Exopod of uropod with a diaeresis (Fig. 60a)

4a Carapace smooth. Rostrum less than half as long as the rest of the carapace. Anterior margin of pleuron of second abdominal somite strongly convex. Eastem Pacific \qquad N. occidentalis
(Fig. 76)
4b Carapace with numerous small granules. Rostrum more than half as long as the rest of the carapace. Anterior margin of pleuron of second abdominal somite only slightly convex. IndoWest Pacific \qquad N. acanthura
(Fig. 61)
3b. Telson without an erect dorsal spine on its ba sal part (Fig. 52a)

a. carapace (dorsal view) b. abdomen (lateral view)
N. ensirostris

Fig. 50

no spine
a. N. ensirostris

b N. agassizii
abdomen (lateral view)
Fig. 51

a. Nephropsis sp.

b. \mathbf{N}. occidentalis

5a. Abdominal somites without any trace of a mid-dorsal carina. No post supraorbital spine on carapace. The distance between the supraorbital spines and the gastric tubercle is lessthan half the distance between the gastric tubercle and the cervical groove (Fig. 53). Exopod of uropod with a diaeresis (Fig. 60a). IndoWest Pacific \qquad N. stewarti
(Fig. 80)
5b. Abdominal somites 2 (or 3) to 6 with a median longitudinal carina

6a. A post supraorbital spinule is present. The distance between the supraorbital spines and the gastric tubercle is about $2 / 3$ of the distance between the gastric tubercle and the cervical groove (Fig. 54). Exopod of uropod with a diaeresis (Fig. 60a). Westem Atlantic . . N. rosea
(Fig. 78)
6b. No post supraorbital spinule behind the supraorbital spine. The distance between the supraorbital spines and the gastric tubercle is about half or less than half the distance between the gastric tubercle and the cervic al groove (Fig. 55)

7a. Median dorsal carinae on third to sixth abdominal somites, but not on second (Fig. 56a).Indo-West Pacific N. ca penteri
(Fig. 69)
7b. Median dorsal carinae on second to sixth abdominal somites (Fig. 56b). Westem Atla ntic
N. aculeata
(Fig. 63)

abdomen (dorsal view)
Fig. 56

N. stewarti carapace (dorsal view)

Fig. 53

N. rosea
carapace (dorsal view)
Fig. 54

N. ac uleata

Fig. 55

2b. Rostrum with two pairs of lateral teeth (Fig. 57a). Anterior margin of second abdominal somite with or without spines

8a. Pleura of second abdominal somite without any spine on the anterior margin (Fig. 57b). A strong post supraorbital spine present on carapace. Gastric tubercle situated slightly behind the post-supraorbital spines (Fig. 57a). A median carina on the second to sixth abdominal somites. Exopod or uropod with a diaeresis (Fig. 60a). Telson without dorsal erect spine in the basal part. Westem Atlantic \qquad . N. neglecta
(Fig. 74)
8b. Pleura of second abdominal somite with one or more spines on the anterior margin (Fig. 51b,

9a. Abdomen with a dorsomedian canina on the second to sixth somites. Exopod of uropod with a diaeresis (Fig. 60a). Rostrum with two pairs of lateral teeth in the basal part. The supraorbital spine is followed by a post supra orbital spine. Anterior margin of pleura of second abdominal somite with one or two spines in the basal half. Telson without mediodorsal spine in the basal part

10a. Median groove of rostrum reaching distinctly beyond anterior pair of lateral rostral teeth. Distance between supraorbital spine and gastric tubercle is half the distance between gastric tubercle and postcenvical groove (Fig. 58). IndoWest Pacific N. sulcata
(Fig. 84)
10b. Median groove of rostrum failing to reach the anterior pair of lateral rostral teeth. Distance between supraorbital spine and gastric tubercle about two thirds the distance between gastric tubercle and postcervic al groove (Fig. 59) Eastem Atlantic N. Atlantica
(Fig. 67)

N. neglecta

Fig. 57

9b. Abdomen without mediodorsal carina
11a. Exopod of uropod with a diaeresis (Fig.60a). IndoWest Pacific \qquad N. malhaensis

11b Exopod of uropod without diaeresis (Fig. 60b)
12a. Atlantic species \qquad N. agassizii (Fig. 65)

a. Nephropsis sp.

b. N. suhmi
tail fan
Fig. 60

Nephropsis acanthura Macpherson, 1990, Mémoires Muséum National d'Histoire naturelle. Paris, (A) 145:311, figs. 5d, 9d-f, 11 a ,b, 16d

FAO Names: En - Spineta il lobsterette.
Type : Type locality: Philippines, $13053.7^{\prime} \mathrm{N}$ 119056.3'E, 970 m. Holotype male, MP no AS 546.

anterior part of carapace (dorsal view)

Geographical Distribution : Indo-West Pacific region: Madagascar, Philippines, Australia (E. of Queensland), Chesterfield Islands, New Caledonia (Fig. 62).

Habitat and Biology : Deep sea between 850 and 1250 m.

Size : Carapace length, including rostrum: 1.6 to 3 cm (male), 1.5 to 3 cm (female).

Interest to Fisheries: None so far.

Literature: Mac pherson, 1990:311-312.

Fig. 62

Fig. 63
NEPH Nephps 1

Nephropsis aculeata S.I. Smith, 1881

Nephropsis aculeatus S.I. Smith, 1881, Proceedings United States National Museum, 3:431.

FAO Names : En - Florida lobsterette; Fr Langoustine de Floride; Sp-Cigala de Florida.

Type : Type locality:"Fish Hawk" Station 873, off Martha's Vineyard, Massachusetts, USA, 400ㅇ́n 70057 'W, depth 182 m , bottom soft stic ky mud. Lectotype (no. 20923) and 3 paralectotypes in USNM.

abdomen (lateral view)
(after Holthuis, 1974)

dorsal view
Fig. 63

Geographical Distribution: Westem Atlantic from off Massachusetts and Bermuda to French Guiana and Suriname, including the entire Gulf of Mexico and Caribbean Sea (Fig. 64).

Habitatand Biology : Deep sea between 137 and 824 m, mostly between 200 a nd 600 m. Bottom: mud orfine sand.

Size : Maximum total length about 145 cm Carapace length 1.5 to 7 cm .

Interest to Fisheries: Potential. Exploratory fishing in the Gulf of Mexico (off the mouth of the Mississippi, and off East Florida) showed the presence of considerable quantities of the species; with a 65 foot trawl, catches of up to $40 \mathrm{~kg} / \mathrm{h}$ were obtained.

Literature : Holthuis, 19741776, figs 15, 16A,B; Fisc her (ed.), 1978:vol. 6.

Nephropsis agassizii A. Milne Edwards, 1880

Fig. 64

NEPH Nephps 2

Nephropsis agassizii A. Milne Edwa rds, 1880, Annales Sciences naturelles, Paris, (Zool.), (6) 9 (2): 1

FAO Names : En- Prickly lobsterette; Fr Langoustine epineuse; Sp-Cigala de grano.

Type : Type locality: "détroit de Floride, a 1500 metres de profondeur" cited by A. Milne Edwards (1880) probably is erroneous and should be "Blake" Station 33, north of Yucatan Bank, 24001’N 88058'W, 2560-2870 m (see Holthuis, 1974:799-800). Whereabouts of type specimen unknown.

Geographical Distribution : Westem Atlantic: Ba hama Islands, Gulf of Mexico, Caribbean Sea, Tobago and off São Paulo, Brazil (Fig. 66).

Habitatand Biology : Deep sea between 878 and 2560 m , most common between 1100 and 1900 m .

Size : Maximum total length about 12 cm (carapace length 5.6 cm); adults with carapace length usually between 4 and 5 cm .

Interest to Fisheries: Hardly potential. The species is taken occasionally during exploratory tra wling, but never in great quantities. This, plus the fact that the spec ies is relatively small and lives at very great depths make it unlikely that it ever will form the subject of a fishery.

Local Names: USA: Agassiz's lobsterette.
Literature : Holthuis, 1974:796, figs 19,20; Fischer, (ed.),

Fig. 66

Nephropsis attantica Norman, 1882
Fig. 67

NEPH Nephps 4

Nephropsis atlantica Noman, 1882, Proceedings Royal Soc iety Edinburah, 11:684.
FAO Names: En - Sc a rlet lobsterette.

Type : Type locality: ""Knight Errant" August 10, 1880. Station 4; in 555 fathoms (Noman, 1882). Norman evidently made an error in the station number, as the date and depth given by him are those of Station 30 and not Station 4. The position of Station 30 in the Fa eroe Cha nnel is 59033' N 7014 ' W , $555 \mathrm{fms}=1015 \mathrm{~m}$, bottom mud. Whereabouts of type unknown, not in BM.

Geographical Distribution : Eastem Atlantic between 610N and 24오 (Faeroe Islands to Namibia) (Fig. 68). Rec ords of the species from the Indo-West Pacific region refer most probably to N. sulcata.

Habitat and Biology : Deep sea from 470 to 1804 m, mostly between 900 and 1400 m ; bottom mud.

Size : Maximum total length 10.3 cm ; ovigerous females are 8 to 10 cm long.
Interest to Fisheries: Only potential. The fact that the species is rather small and inhabits great depths makes its suita bility for a fishery unlikely, although sometimes it is taken in numbers (RV J. E. PIШSBURY took respectively 16 and 31 specimens at a single station off respectively the Ivory Coast and Liberia).

anterior part of Fig. 67b carapace (dorsal view) (from Macpherson, 1990)

Literature : Selbie, 1914:48, pl. 7 figs 1-13; Holthuis, 1974:801, fig. 21.

Fig. 68

Nephropsis capenteri Wood-Mason, 1885
Fig. 69
NEPH Nephps 5
Nephropsis capenteri Wood-Ma son, 1885, ProceedinqsAsiatic Society Bengal, 1885:71.
FAO Names: En - Ridge-back lobsterette.
Type : Type loc ality:"Investigator" Station 162. Bay of Bengal, 1351' $12^{\prime \prime} \mathrm{N} .80{ }^{\circ} 28^{\prime} 12{ }^{\prime \prime} \mathrm{E}, 145-250 \mathrm{fms}$ [$=265-457 \mathrm{~m}$], brown mud. Holotype in ZSI, no. 4251/7, in alcohol, condition poor.

Geographical Distribution : Indo-West Pacific region Arabian Sea, Bay of Bengal, Japan (Fig. 70)

Fig. 70

Habitat and Biology : Depth range between 200 and 500 m .
Size : Total length 9 to 12 cm .
Interest to Fisheries: So far none. There are as yet no indications of fishing grounds with a sizea ble population Of this species.

Literature : Alcock \&Anderson, 1896, pl. 27, fig. 2; Alcock, 1901:160; Ma cpherson, 1990:316, figs 5f, 1 1e,f,12, 16 f.

Fig. 71
NEPH Nephps 6
Nephropsis ensirostris Alc ock, 1901, Descriptive catalogue of Indian deep-sea Crustacea Macrura and Anomala: 162, pl. 1 fig. 2.

FAO Names: En - Gladiator lobsterette.

Type : Type locality:I Investigator" Station 177, "Arabian Sea, north of the Laccadives 636 fathoms" [=13047' 49 " N 73 ㅇㄱ'E, 1163 m, green mud]. Type material, ZSI, no. 3892/10; 2 specimens preserved in alcohol, condition poor, probably are types.

Geographical Distribution : Indo-West Pacific region: Gulf of Aden, Arabian Sea, Bay of Bengal, Andaman Sea, Philippines and Indonesia (Fig. 72).

Fig. 72
Habitat and Biology : Deep sea from 580 to 1160 m, bottom mud or sandy mud.

Size : Total length about 6 cm .

(after Alcock, 1901)
Fig. 71

Interest to Fisheries: So farnone. The species has been rarely caught, while also the fact that it is rather small and lives in the deep sea makes its commercial value less likely.

Literature : Alcock, 1901:162, pt. 1 fig. 2; Alcock \& McArdle, 1902:pl. 58 fig 1; Macpherson, 1990:303, figs 5a,6,8a,b, 16a.

Nephropsis malhaensis Borrada ile, 19 10, Iransactions Linnean Society, London, Zoology, 13(2):262.
FAO Names: En - Saya de Malha lobsterette.
Type : Type locality:"dredged in 300 fms off Saya de Malha", Westem Indian Ocean. Holotype in ZMC in alcohol, condition good.

Geographical Distribution : Only known from the type locality (Fig. 65).

Habitat and Biology : Deep sea, in 550 m .
Size : Total length of holotype, only specimen known, 7.75 cm .
Interest to Fisheries: None. The species, being only known from the holotype, is mentioned here solely for completeness' sake. There are no indications that it ever will have commercial possibilities.

Literature : Borradaile, 1910:262; Macpherson, 1990:317, figs $13 a, b, 14 c, d$.

Remarks: The original description is short and not accompanied by a figure. Macpherson (1990) gave an additional illustrated description of the holotype.

Fig. 73

Nephropsis neglecta Holthuis, 1974
Fig. 74

NEPH Nephps 8

Nephropsis neglecta Holthuis, 1974, Bulletin Marine Science, University Miami, 24:792, fig. 18.
FAO Names: En - Ruby lobsterette.

a. carapace (dorsal view)

b. cheliped

c. abdomen (lateral view)

Type : Type locality: "16-20 miles s. of Dry Tortuqas, Florida [USA], 1065 m". Holotype in USNM, no. 136690 paratypes in USNM; UMML, RMNH, MCZ

Geographical Distribution : Westem Atlantic from Florida (USA) to the Guianas, including the Caribbean Sea and the LesserAnlilles (Fig. 75).

Habitatand Biology : Deep sea between 655 and 1234 m, most catches between 800 and 1300 m ; substrate sand or mud, sometimes with rubble.

Size : Carapace length between 1.5 and 3.5 cm , corresponding with a total length of about 3 to 7.5 cm .

Interest to Fisheries : So far none. The fact that the species is relatively small, usually taken singly or in pairs, and inhabits the deep sea, makes it not likely that it ever will be exploited commercially.

Literature: Original desc ription

Fig. 75

Nephropsis occidentalis Faxon, 1893

Fig. 76
NEPH Nephps 9
Nephropsis occidentalis Faxon, 1893, Bulletin Museum comparative Zoology. Harvard Colleae, 24: 195.
FAO Names: En - Pacific lobsterette; $\mathbf{F r}$ - Langoustine du Pacifique; Sp-Cigala del Pacifico.

(after Faxon, 1895)
Fig. 76

[^2]Geographical Distribution : Eastem Pacific from Baja Califomia, Mexico (279N) to Valparaiso, Chile (ca. 320S) (Fig. 77). As Manning (1970:868) pointed out, the records from the Galapagos and Marion Islands are erroneous.

Habitat and Biology : Deep sea between 300 and 1200 m; muddy or sandy bottom.

Size : Total length 5 to 13 cm ; carapace length 3,8-5. 1. A published record giving the maximum length as 25 cm is clearly erroneous.

Interest to Fisheries : Retamal (1977: 17) remarked that the species is commonly found in commercial catches of the shrimp Heterocarpus reedi Bahamonde in Chilean waters, and that with the right gearand a betterknowledge of the habitat and habits of the species a commercial fishery might be feasible off Chile.

Local Names: CHILE: Camarón gigante, Camarón gigante de profundidad,

Fig. 77

Literature : Faxon, 1895:127, pl. 0 fig. 1-16; Manning, 1970:865-70, fig. l-3; Macpherson, 1990:308, figs 5c, 8e,f, $9 \mathrm{a}-\mathrm{c}, 16 \mathrm{c}$.

Nephrupsis rosea Bate, 1888
Fig. 78
NEPH Nephps 10
Nephropsis rosea Bate, 1888, Report Voyage Challenger, Zool., 24: 178, text-fig. 39, pl. 23 figs 1,2, pl. 24 fig. 1
FAO Names: En - Two-toned lobsterette; Fr-Langoustine bicolore.

Fig. 78

Type : Type loc ality: "Challenger" Station 57, off Bermuda, 32으1'7"N 6503'20"W; 1262 m. Holotype in BM, now completely disintegrated.

Geographical Distribution : Westem Atlantic from Bermuda ($32^{-} \mathrm{N}$) to northem South America (Guiana, 7ㅇN), including the Bahama Islands, the Gulf of Mexico and the Caribbean Sea (Fig. 79).

Habitat and Biology : Deep sea between 420 and 1260 m, mostly between 500 and 800 m . On muddy or sandy bottoms.

Sze : Carapace length between 1 and 6 cm , coresponding to a total length of about 2 to 13 cm .

Interest to Fisheries: Potential. The species is not rare and some of the hauls reported conta in several specimens. With proper gear and a better knowledge of its habits and habitat, it may perhaps be possible to fish it commercially.

Literature: Holthuis, 1974:787, figs 16C,D, 17.

Fig. 79

Fig. 80
NEPH Nephps 3
Nephropsis stewarti Wood-M a son, 1872
Nephropsis stewarti Wood-Mason, 1872, Proceedings Asiatic Society Benqal, 1872: 151. Specific name placed on the Official List of Specific names in Zoology in Opinion 559 (published in 1959).

FAO Names : En - Indian Ocean lobsterette; Fr Langoustine indienne; Sp-Cigala del Oceano Indico.

Type : Type locality: "dredged in from 260 to 300 fathoms [$=476550 \mathrm{~m}$] about 25 miles off Ross Island on the eastem coast of the Andamans", Andaman Sea, India. Holotype in ZSI, no. 1404, in alcohol, condition poor.

Fig. 80

Geographical Distribution : Indo-West Pacific region from the Gulf of Aden and East Africa to Japan (Sagami Bay to Tosa Bay), Taiwan, the Philippines, Indonesia and Westem Australia (Fig. 81).

Habitat and Biology : Deep sea between 170 and over 1060 m, usually between 500 and 750 m . On soft muddy substrates.

Size : Maximum body length 15 cm , common around 10 cm . Carapace length: male $2.2-7.1 \mathrm{~cm}$; female $1.4-7 \mathrm{~cm}$; ovigerous females $4.2-7 \mathrm{~cm}$.

Interest to Fisheries: So far none, but perhaps of potential interest. Crosnier \& J oua nnic (1973: 13) reported small catches in exploratory trawling off Madagascar($1 / 2 \mathrm{~kg}$ perhour orless), but consider that the species "parait presenter peu d'intérêt" for commercial fishery.

Fig. 81

Local Names: AUSTRALA: Stewart'sscampi; J APAN: Okina-ebi (=old gentleman); MOZAMBIQ UE: Lagostim indiano.
Literature : Fischer \& Bia nchi (eds), 1984:vol.5; Mac pherson, 1990:312, figs 5e, 10, 1 lc , d, 16e.

Nephropsis suhmi Bate, 1888
Fig. 82
NEPH Nephps 11
Nephropsis suhmi Bate, 1888, Report Voya ae Challenger, Zoology, 24: 181, pl. 23 fig. 3, pl. 24 fig. 2.
Synonyms: Nephropsis orientalis Bate, 1888: 171, 175 (a na me that Bate evidently origina lly intended forthe species, and which on p. 171 and 175 he forgot to change to $\mathbf{N} . \operatorname{suhmi}$, of which it is to be considered an objective synonym).

FAO Names: En-Red and white lobsterette.

anterior part of carapace (dorsal view)
(from Macpherson, 1990)

tail fan

Fig. 82
 Islands, Indonesia]; depth 800 fathoms [= 1463 m]; bottom green mud". Holotype in BM, no. 88.22 (in alcohol, condition fair).

Geographical Distribution : Indo-West Pacific region: westem Indian Ocean (Gulf of Aden, Arabian Sea), Madagascar, Indonesia (Makassar Strait, Aru Islands), Australia (E. of Queensland), New Caledonia (Fig. 83).

Habitatand Biology : Deep sea between 786 and 2029 m, most catches between 1600 and 1900 m . Substrate: mud.

Size : Total length between 2 and 11 cm , carapace length between 0.8 and 5.9 cm .

Interest to Fisheries: So farnone. A better knowledge of its biology and occurrence may show the speciesto be of potential interest. The soft substrate on which it lives indicates that it could best be obtained by trawling, but the efficiency of this and other gear should be tested experimentally.

Fig. 83

Literature: Orig inal description; Alcock, 1901: 163; Macpherson, 1990:306, figs 5b, 7d-f, 8c ,d.

Nephropsis sulcata Ma cpherson, 1990
Fig. 84

NEPH Nephps 13

Nphropsis sulcata Macpherson, 1990, Mémoires Museum National Histoire naturelle, Paris, (A) 145:319, figs.13e-g, 14a,b, 15a, b, 16g .

FAO Names: En - Grooved lobsterette.
Type : Type loc a lity: Philippines, 13053.7'N 119056.3'E, 865 m. Holotype male, MP no. AS 523.

Geographical Distribution : Indo-West Pacific: South Africa (Natal), Madagascar, Laccadive Sea, South China Sea, Philippines, Australia (E. of Queensland), Chesterfield Islands, New Caledonia (Fig. 85)

Fig. 85

(from Macpherson, 1990) Fig. 84

Habitat and Biology : Deep sea between 750 and 1115 m . Muddy bottom.
Size : Carapace length, including rostrum: male 1.5 to 3 cm ; female 1.8 to 3.4 cm , sma lest ovigerous female 2.6 cm .
Interest to Fisheries: So far none.
Literature: Original description.
Remarks: The species has often been confused with \mathbf{N}. atlantica and most, if not all, records of \mathbf{N}. atlantic a from the Indo-West Pacific region pertain to the present species.

Thymops Holthuis, 1974
NEPH Thym
Thymops Holthuis, 1974, Bulletin Marine Science, Universitv Miami, 24(4):763. Gender masculine.
Type Species : by original designation and monotypy: Nephropides birsteini Zarenkov \& Semenov, 1972.
The genus so far is known to have a single species.

Thymops birsteini (Zarenkov \& Semenov, 1972)

Fig. 86
NEPH Thym 1

Nephropides birsteini Zarenkov \& Semenov, 1972, Zoolooicheski Joumal Moscow, 51:599, figs 1-6

FAO Names: En-Patagonian lobsterette.
Type : Type locality: "Akademik Knipovich" Station 1021, $49000.8^{\prime} \mathrm{S} 57007.6^{\prime} \mathrm{W}, 515-525 \mathrm{~m}$. Holotype male in Zoological Museum, University of Moscow.

Geographical Distribution : Continental shelf of southem tip of South America, on the Atlantic side (Argentina) south of $37{ }^{\circ} \mathrm{S}$;on the Pacific side (C hile) south of $51-5$; including the area north, east and southeast of the Falkland/Malvinas Islands, and east of South Georgia. The entire area lies between $37^{\prime \prime}$ and $57{ }^{\circ}$ S and $35^{\prime \prime}$ and 76으 (Fig. 87).

Fig. 87

(from Holthuis 1974)

Habitat and Biology : Deep sea between 122 and 1400 m , mostly between 122 and 900 m .
Size : ‘Total lengthreported from8to 25 cm ;carapacelengthfrom2to 10 cm (mostlybetween3and 6 cm).Ovigerous females with cl 3 4to 7.4 cm .

Interest to Fisheries: According to Boschi, Ino \& Fischbach (1982:233) the species would be of potential interest off the Argentine coast if large concentrations could be detected.

Local Names: ARGENTINA: Langosta de aguas profundas.
Literature : Holthuis, 1974:764, figs 13, 14.

Thymopsis Holthuis, 1974
Thymopsis Holthuis, 1974, Bulletin Marine Science, University Mia mi, 24(4):754. Gender feminine.
Type Species : by original designation and monotypy: Thymopsis nilenta Holthuis, 1974.
A single species is known in this genus.

Thymopsis nilenta Holthuis, 1974
Fig. 88

NEPH Thymop 1

Thymopsis nilenta Holthuis, 1974, Bulletin Marine Science, University Miami, 24(4):756, fig. 10-12.
FAO Names: En - Nilenta lobsterette.

Type : Type locality: "Eltanin" 22 Station 1555, * S of South Georgia, 6004'S-60008'S, 35059'W-36004' W, 1976-2068 m". Holotype female in USNM, no. 141257; paratypes in USNM, RMNH.

(from Holthuis 1974)
Fig. 88

Geographical Distribution : So uthem Atla ntic. ,So far only known from two localities: southeast of the Falkland/ Malvinas Islands (55001'-5510'S 39055' - 3946'W) and south of South Georgia (6004' - 600.0'S 3559' 3604'W) (Fig. 89).

Habitat and Biology : Deep sea between (1976-J 2068 and 2886 (-3040) m.

Size : Total body length about 15 cm , carapace length (without rostrum) 5 to 6 cm .

Interest to Fisheries: None so far. Until now only 4 specimens have been collected of this species. Its sc a rcity and the very great depths at which it is found, make it an unlikely candidate for a fishery, notwithstanding its relatively good size.

Literature: Original description.

Fig. 89

SUBFAMILY NEPHROPINAE Da na, 1852

Nephropinae Dana, 1852, ProceedingsAcademy Natural Sciences, Philadelphia, 6: 15.
This, the typical subfamily of Nephropid lobsters, contains the following 5 genera. Eunephrops, Homarus, Metanephrops, Nephrops and Thymopides.

All spec ies of Nephropinae are of present or potential commercial interest, and all are listed here.

Key to Genera:

1a. Left and right first chelipeds unequal, one a crushing claw, the other a cutting claw. Antennal spines without a strong posterior carina (Figs 90,91) First abdominal stemite of the male without a median spine

2a. Palm of first chelipeds smooth, without ridges. Subdorsal carinae without spinules. Abdominal somites smooth, without grooves;no carinae separating the tergites from the pleura (Fig. 90) \qquad Homarus

2b. Palm of first chelipeds with distinct longitudinal grooves, ridges a nd rows of spines. Subd orsal carinae spinulate. Abdominal somites dorsally with distinct transverse grooves, a blunt carina separatesthe tergites from the pleura (Fig. 91).

Nephrops

Fig. 91

1b. Left and right chelipeds of the first pair similar in site and shape. Antennal spine in most species followed by a strong carina. A distinct carina separates the abdominal tergites.from the pleura. First abdominal stemite of the male with a median spine (this character not known from Thymopides)

3a. Antennal spine not followed by a strong carina. Palm of'first chela as wide aslong. Abdomen with a blunt median carina (Fig. 92).

3b. Antennal spine followed by a strong carina. Palm of first chela distinc tly longer tha n wide

Fig. 92

4a. Supraorbital spine followed by a strong toothed ridge which extends almost to the postcervical groove. Posterior part of carapace with several longitudinal carinae (Fig. 93)

Fig. 93

4b. Supraorbital spine followed by a single post-supraorbital spine, no supraorbital carina is present. The posterior part of the carapace is evenly granulate, without longitudinal caninae (Fig. 94)

Eunephrops S.I. Smith, 1885
NEPH Euneph
Eunephrops S.I. Smith, 1885, Proceedings United States National Museum, 8: 167. Gender ma sc uline.
Type Species : by monotypy: Eunephrops bairdii S.I. Smith, 1885.
The genus is restricted to the Westem Atlantic and hasthree known species, all of which inhabit the deep sea. They are of potential interest for fishery.

Key to Species:

1a. Carapace with submedian postcervical spines. No spine at the base of the scaphocente (Fig. 95). Second pereiopod with the fingers slightly less than half as long as the palm (Fig 96a)
E. bairdii
(Fig. 98)
1b. Carapace without postcervical spines. A spine on the antennal peduncle near the base of 'the scaphocente. Second pereiopod with the fingers less than $1 / 3$ as long as the palm (Pig. 96 b, c)

2a. Abdominal somites with distinct longitudinal median carina(Fig. 97a). Scaphocerite reaching to the base of the ultimate segment of the antennal peduncle. Third pereiopod with the fingersabout $1 / 3$ of the length of the palm \qquad E. cadenasi
(Fig. 100)
2b. Abdominal somites with a single transverse groove, which is intemupted in the middle; no median carina is present (Fig. 97b). Scaphocerite small, failing to reach the middle of the penultimate segment of the antennal peduncle. Third pereiopod with the fingers about $1 / 5$ of the length of the palm \qquad . E. manningi
(Fig. 102)

E. bairdii

(after Holthuis, 1974)

b. E. cadenasi

chelae of second pereiopod
(from Holthuis, 1974)

a. E. cadenasi

b. E. manningi

Eunephrops bairdii S.I. Smith, 1885
Fig. 98
NEPH Euneph 1

Eunephrops bairdii S.I. Smith, 1885, Proceedings United States National Museum, 8: 167.

FAO Names : En- Red lobster, Fr - Langoustine rouge; $\mathbf{S p}$ - Cigala colorada.

Type : Type locality: "Albatross" "Station 2143, March 23, 1884; Gulf of Darien; north latitude 9030'45", west longitude 76025'30"; 155 fathoms [=284 ml; green mud". Female holotype in USNM, No. 6937.

Geographical Distribution : Westem Atlantic: southwest Caribbean Sea off Colombia and Panama (Fig. 99).

Fig. 99

Fig. 98

Habitat and Biology : Depth range between 230 and $360(-400) \mathrm{m}$. Soft substrate (mud or coralfine rubble).
Size : Carapace length between 4 and 9 cm . Maximum total length about 20 cm .
Interest to Fisheries: The species has been ta ken occa sionally during explora tory commercial fishing. Its la rge size makes it an attractive fishery subject, but the fact that it seems to be scarce a nd lives in great depths detracts from its possible commercial value.

Literature: Holthuis, 1974:842, figs 27-29; Fischer (ed.), 1978: vol. 6.

Eunephrops cadenasi Chace, 1939, Memorias Sociedad Cubana Historia natural, 13:40.

FAO Names: En - Sculptured lobster.
Type : Type locality: "Nicholas Channel south of Cay Sal Bank, Lat. 23021 ‘N, Long. 79058’ W, 300-315 fathoms [= 550576 m]". Holotype female in MCZ

Geographical Distribution : Westem Atla ntic: off Bahama Islands and Dominica; Caribbean Sea nearJ amaica and Colombia (Fig. 101).

Fig. 101

Habitat and Biology : Depth range between 434 and 591 m.
Size : Maximum total body length (males) about 30 cm . Carapace length $5-14 \mathrm{~cm}$ (males), $4-5 \mathrm{~cm}$ (females).

Interest to Fisheries: The large size, that the species may atta in, makes it of potential interest to fisheries. Its a pparent sc arcity and the fact that it inhabits great depths, however, are important obstacles.

Fig. 100

Literature : Holthuis, 1974:849, figs 30-32.

Eunephrops manningi Holthuis, 1974, Bulletin Marine Science, Universitv of Miami, 24(4):854, figs 33-35.
FAO Names: En - Banded lobster.

Type : Type locality: "Florida Straits, 550 m, Silver Bay stat. 2483" [= 26025.5'N 79ㅇ́'W]. Male holotype in USNM no. 139626; paratypes in USNM, RMNH.

Geographical Distribution : Westem Atlantic: Florida Straits and northwest of Anguilla (Fig. 103).

Fig. 103

Habitat and Biology : Depth range between (393-) 451 and 550 m Substrate: mud.

Size : Maximum total body length about 15 cm , carapace length 4 to 7 cm .

Interest to Fisheries: Since so far only three specimens of this species are known, nothing concrete can be said about its fisheries potential. Its size is attractive, but the depth range and low abundance are negative factors.

(after Holthuis, 1974)

Fig. 102

Literature: Original description.

Homarus Weber, 1795, Nomenclator entomologic us: 94. Gender masculine. Name placed on the Offic ial List of generic Names in Zoology, in Opinion 104 (published in 1928).

Type Species: selected by Fowler, 1912, Annual Report New Jersev State Museum, 1911:333: Astac us marinus Fabric ius, 1775 (= Cancer gammarus Linnaeus, 1758).

Synonyms: Homarus Guérin Méneville, 1825, Encyclopédie méthodique, Histoire naturelle, Insectes, 10:768. Type species by original designation and monotypy: Cancergammarus Linnaeus, 1758. Gender masculine.

Homarus H. Milne Edwards, 1837, Histoire naturelle des Crustacés, 2:333. Type spec ies, selected by E. Desmarest, 1858, in Chenu, Encyclopédie Histoire naturelle (Crustaces. Mollusges. Zoophytes): 38 : Homarus vulgaris H. Milne Edwards, 1837. Gender masculine.

The name Homarus has been independently chosen forthis genus by three different authors.Notwithstanding the fact that these three homonyms all have different nominal species as their types, they still are objectively synonymous, as these three different nominal species are objectively synonymous themselves.

The genus Homarus has three species, two of which belong to the economic ally most important lobsters in the world. The importance of the genus is well expressed by Herrick (1895:6), who in his monograph "The Americ an Lobster" stated that the lobster "may be nightfully called the King of the Crustacea".

Key to Species :

1a. Palm of first chelipedscovered with hairs, especially near the lower margin (Fig. 104a). Small species, attaining a total body length of 10 cm . Found only off South Africa south of 30 S \qquad H.capensis
(Fig. 108)
1b. Palm of first chelipeds naked, without hair cover (Fig. 104b). Large species, attaining lengths of 40 to 65 cm . Found in the northem Atlantic, north of $30 \div \mathrm{N}$

2a Rostrum without ventral teeth (Fig. 105a). Found in the eastem Atlantic (Norway to Morocco)
H. gammarus
(Fig. 110)
2b. Rostrum as a rule with one or more ventral teeth (Fig. 105b). Found in the westem Atlantic (Newfoundland, Canada to North Carolina, USA)
H. americanus
(Fig. 106)

a. H. gammarus
b. \boldsymbol{H}. americanus

Homarus americ anus H. Milne Edwards, 1837
Homarus americanus H. Milne Edwards, 1837, Histoire naturelle des Crustacés, 2:334.

Synonyms : Astacus marinus Say, 1817 (non Fabric ius, 1775); Astacos americ anus - Stebbing, 1893; Homarus mainensis Berill, 1956.

FAO Names: En - Americ an lobster, Fr-Homard améric ain; Sp - Bogavante americano.

Type : Type loc a lity of \mathbf{A}. marinus Say and \mathbf{H}. americanus H . Milne Edwards: "Long-branch, part of the coast of New Jersey" (Say, 1817: 166), USA. Lec totype, if extant, in ANSP (not located in 1989); paratype(s) in MP.

Type locality of H. mainensis: "Maine waters". No types indicated.

Geographical Distribution : Westem Atlantic: Atlantic coast of North America between Newfoundland (Canada) and North Carolina (USA) (Fig. 107).

Habitat and Biology : Sublittoral to 480 m depth, most common between 4 and 50 m . Hard bottom (hard mud, rocks). As the females camy their eggs for 10 to 11 months, ovigerous females are found throughout the year. Migration does not occur, or only on a limited scale.

Size : Maximum total body length 64 cm , usually a round 25 cm or less. This probably is, with Jasus vemeauxi, the largest known Decapod species as far asbody length is concemed.

Interest to Fisheries: The species is the subject of one of the most important Crustacea fisheries in the northwest Atlantic. According to FAO statistics, the catches in 1987 and 1988 amounted to 60096 and 62457 tons, respectively. The animals are mostly caught with traps, but in recent years trawling proved to be commercially feasible, especially in the southem part of the range of the species. These lobsters are sold fresh or frozen. The meat is also canned.

Local Names: CANADA: Lobster (English), Homard (French); USA : American lobster, Maine lobster, Northem lobster

Literature : Herrick, 1895; Hemick, 191 1; Fischer (ed.), 1978:vol. 6; Williams, 1984: 168, fig.119; Squires, 1990:326, figs 172-174.

Fig. 106
NEPH Hom 2

Fig. 106

Fig. 107

Homarus capensis (Herbst, 1792)
Fig. 108
Cancer (Astacus) capensis Herbst, 1792, Versuch einer Naturgeschichte der Krabben und Krebse, 2:49, pl. 26 fig. 1.

Synonyms : Astacus fulvus Fabricius, 1793; Homarus fulvus - Weber, 1795; Astacus capensis - Latreille, 1802; Cancer (Astacus) fulvus - Turton, 1806.

FAO Names: En - Cape lobster, Fr- Homard du Cap; Sp - Bogavante del Cabo.

Type : Type loc ality of Cancer capesis: "aus dem Kap." (= Cape of Good Hope, South Africa). Holotype in collection L. Spengler, Copenhagen; present whereabouts unknown, but the possibility exists that the specimen is identic al with the holotype of Astacus fulvus Fabr. (see next paragraph).

Type locality of. Astacus fulvus: "in Oceano". Holotype (possibly also holotype of Cancercapensis Herbst) in UZM.

Geographical Distribution : South Afric a, from Table Bay

Habitat and Biology : Shallow coastal waters, rock pools, etc. The extreme rarity of the species is the cause that very little is known about its habitat and biology. Old records, reporting that it is found in fresh water, are definitely incorrect.

Size : Total body length 8 to 10 cm ; carapace length 4 to 5 cm.

Interest to Fisheries: None. The species is extremely rare. Although It lives in shallow water and in a well explored region of the globe (the marine fauna of South Africa is better known than that of any other Afric an country), and although it is almost 200 years since it was first described, so far only 14 spec imens (13 males and 1 female) are known to exist in collections. Gilchrist (1918:46) remarked that the species "is not even known to Cape fishermen".

Literature : Holthuis, 1986:243, fig. 1

NEPH Hom 3

(after H Milne Edwards, 1851)

fig. 109

Homarus gammarus (Linna eus, 1758)
Cancer gammarus Linnaeus, 1758, Systema Naturae, (ed.10) 1:631. Name placed on Official List of Specific Names in Zoology in Direction 51 (published in 1956).

Synonyms: Astacus marinus Fabricius, 1775; Astacus gammarus - Pennant, 1777; Homarus marinus - Weber, 1795; Astac us europaeus Couch, 1837; Homarus vulgaris H. Milne Edwards, 1837.

FAO Names : En - European lobster; Fr - Homard européen; Sp - Bogavante.

Type : Type locality of Cancer gammarus, Astacus marinus, Astacus europaeus and Homarus vulgaris: Marstrand, west coast of Sweden, about 57053' 11 을' E . Lectotype selected by Holthuis (1974:820); lectotype and paralectotypes now lost.

Geographical Distribution : Eastem Atlantic from northwestem Norway (Lofoten Islands) south to the Azores and the Atlantic coast of Morocco. Also along the northwest coast of the Black Sea. and in the Mediterranean (but lacking in the extreme eastem part, east of Crete). Not present in the Baltic Sea (Fig. 111).

Habitat and Biology : Continental shelf between 0 and 150 m depth; usually not deeperthan 50 m . Found on hard substrates: rock or hard mud. The animals are noctumal and teritorial, living in holes or crevices. Females with eggs are found almost throughout the year. The eggs are laid around July and carried for 10 or 11 months.

Size : Maximum total body length about 60 cm (weight 5 or 6 kg), la rge size spec imens usually 23 to 50 cm .

Interest to Fisheries : The European lobster is a highly esteemed food source and isfished throughout its range, fetching very high prices. It is mostly taken with lobster pots, although it occasionally tums up in trammel nets and dredges. Bait (usually pieces of octopus or cuttle fish) tied to lines can tempt them out of their burrows, after which they are caught by hand or with nets. In some areas captured specimens are kept alive in enclosures. The species is sold fresh, frozen or either canned or in powdered form. According to FAO statistics the annual catch of the species was 2124 tons in 1987 and 2052 tons in 1988 from the northeastem Atlantic (Fishing Area 27). Experiments in aqua culture of the species are underway in France and Spain.

Local Names : DENMARK: Hummer: FRANCE: Homard; GERMANY: Europä isc her Hummer, GREECE: Astakós; ITALY:Astice (official name), Elefante di mare, Lupicante, Lupo di mare; MALTA: Liunfant; MONACO; Leguban; MOROCCO: Taroucht (Chleuh language); NETHERLANDS: Zeekreef-t; NORWAY: Hummer; PORTUGAL: Lavagante, Labugante, Navegante; SPAIN: Bogavante (official name), Abric anto, Homar, Llangant, Lubricante; SWEDEN: Hummer, TUNISIA: Saratan il bahr; TURKEY: Istakoz, Stacoz; U.K.: Common lobster, Lobster, USSR: Omar, YUGOSLAVIA: Hlap.

Literature : Rolland, 1881:234 (loc al French names); Palombi \& Santa relli, 1961:366,367 (local Italian names); Fischer, Bianchi \& Sc ott (eds), 1981 :vol. 5; Fisc her, Ba uc hot \&Sc hneider (eds), 1987:301.

Metanephrops J enkins, 1972

NEPH Metan

MetanephropsJ enkins, 1972, Crustaceana, 22(2): 161. G end er ma sc uline.
Type Species: by original designation: Nephrops japonicus Tapparone-C anefri, 1873.
All of the tropical westem Atlantic and Indo-West Pacific lobsters fomerly assigned to the genus Nephrops, a re now placed in Metanephrops. The known species of that genus now number 17, not including the fossil species.

Most of the known species are of good size and all are considered either of present or potential commercial importance and therefore, all are enumerated here

Key to Species (after Chan \& Yu, 1987, and Chan\& Yu, 1991) :

1a. Carapace smooth, between the ridges and large spines (Fig. 112)

2a. Chelae of first pereiopods hea vily ridged and spinulose (Fig. 113a)

a. M. binghami
b. M. boschmai first pereiopod

Fig. 113

3a. Surface of abdominal tergites smooth (Fig. 114). Westem Atla ntic \qquad ("binghami" group)

4a. Spinules present behind postrostral carinae. Intermediate carina smooth (Fig. 112a). SW. Atlantic \qquad M. rubellus
(Fig. 150)
4b. Spinules absent behind postrostral carinae. Intermediate carina spinulose (Fig. 112b). West Indian region \qquad M. binghami
(Fig. 136)
3b. Surface of abdominal tergites conspic uously sculptured (Fig. 115). Indo-West Pacific \qquad ("japonicus" group)

5a. Fifth abdominal somite with a distinct spine on the carina that separates the tergite from the pleuron. Dorsomedian carina of sixth abdominal somite with one ortwo pairs of submedian spines (Figs 116, 117). A prominent basal spine on outer edge of movable finger of large chela (Fig. 120a).

6a. Raised portions of dorsal surface of abdomen subdivided. First abdominal somite with a dorsomedian canina (Fig. 116) (J apan) . M. japonicus
(Fig. 144)
6b. Raised parts of dorsal surface of abdomen smooth, not subdivided. No raised dorsomedian carina on first abdominal somite (Fig. 117) (Taiwan) \qquad M. armatus
(Fig. 132)
5b. Fifth abdominal somite without distinct spines on carina separating tergite from pleuron. Dorsomedian canina of sixth abdominal somite without submedian spines.

Fig. 116

M. binghami
abdomen (dorsal view) Fig. 114

M. andamanicus abdomen (dorsal view)

Fig. 115

M. armatus abdomen (dorsal view)

Fig. 117

7a. Chela of first pereiopod with large spines. A prominent basal spine on outer edge of movable finger of large chela (Fig. 120a). Abdomen without dorsomedian carina (Fig. 118) (Taiwan) \qquad M formosanus
(Fig. 142)
7b. Chela of first pereiopod without large spines. No prominent basal spine on outer edge of movable finger of large chela (Fig. 120b, c) Abdomen with dorsomedian carina

8a. Postrostral carinae with 3 to 5 (rarely 3) teeth (119a). Spine in the middle of the lateral margin of sixth abdominal somite long, reaching to posterolateral groove of the somite (119b). Inner margin of merus of first pereiopod heavily spinulose (Fig. 120b) (J apan, Taiwan) M. sagamiensis
(Fig. 152)
8b. Postrostral carinae with never more than 3 teeth. Spine in the middle of the lateral margin of sixth abdominal somite short, tip far from the posterolateral marg in of the somite (Fig. 121). Inner margin of merus of first pereiopod weakly spinulose (Fig: 120c).

a. anterior part of carapace (dorsal view)

b. last two abdominal somites (dorsal view)
M. sagamiensis

Fig. 119

a. M. formosanus

b. M. sagamiensis

c. M. andamanicus

9a. Raised parts of the abdominal somitescoarse and pubescent (Fig. 121) (Philippines, W. Australia) \qquad M. velutinus
(Fig. 160)
9b Raised parts of dorsal surface of abdominal so mites smooth and naked (Fig. 122)

10a. Second to fifth abdominal somites with marked dorsomedian canina, flanked by a pair of conspicuous longitudinal grooves (Fig. 115). Indian Ocean, South China Sea \qquad M. andamanic us
(Fig. 128)
10b. Dorsomedian carina of abdomen almost level with the dorsal surface of the somite, without grooves at either side (Fig. 122). S.E. Africa, Madagasc ar .. M. mozambic us
(Fig. 146)
2b. Chelae of first pereiopods weakly ridged and finely granular (Fig. 113b.c). Indo-West Pacific \qquad ("thomsoni" group)

11a. Transverse grooves present on abdominal tergites 2 to 5
12a. No transverse groove present on first tergite (Fig. 123) (J apan, China, Philip pines) M. thomsoni

Fig. 158)
12b. Transverse groove present on first tergite (Fig. 124). China Sea \qquad M. sinensis
(Fig. 156)
11 b. Transverse grooves absent from abdominal tergites 2 to 5

Fig. 123

M. velutinus
abdomen (dorsal view) Fig. 121

M. mozambicus
abdomen (dorsal view)
Fig. 122

M. sinensis abdomen (dorsal view)

Fig. 124

13a. Longitudinal spinulose cardiac ridge absent (Fig. 125a) (New Zealand) \qquad M. challengeri
(Fig. 140)
13b. Longitudinal spinulose cardiac ridge present (Fig. 125b)

14a. Distinct spine present in the middle of inner margin of merus of first pereiopod (Fig. 113b) (Australia) ... M. boschmai
(Fig. 138)
14b. No distinct spine present in the middle of inner margin of merus of first pereiopod (Fig. 113c) (Indonesia, Australia) \qquad M. sibogae.
(Fig. 154)
1b. Carapace rather uniformly spinulose (Fig. 126a, b) \qquad ("arafurensis" group)

15a. Region between postrostral carinae heavily spinulose (Fig. 126a). S China Sea, Australia
M. neptunus
(Fig. 148)
15b. Region between postrostral carinae smooth (Fig. 126b)

16a. Longitudinal furrows present on abdominal tergites (Fig. 127a) \qquad M. arafurensis
(Fig. 130)
16b. Longitudinal furrows a bsent from abdominal tergites (Fig. 127b) \qquad M. australiensis
(Fig. 134)

carapace (dorsal view)
Fig. 125

carapace (dorsal view)
Fig. 126

Metanephrops andamanic us (Wood-Ma son, 1891)
Fig. 128
NEPH Metan 2
Nephrops andamanic us Wood-M a son, 1891, llustrations of the Zoology of H.M.S. Investigator. Crust. 1 :pl. 4.

Synonyms: Nephrops thomsoni andamanicus -
FAO Names : En - Andaman lobster; Fr Langoustine andamane; Sp-Cigala de Andamán.

carapace (lateral view)

Type : Type locality:"Investigator" Station 115, Andaman Sea, 1 1ㅇ31'40"N 92으́'40"E; 188-220 fathoms ($=344-402 \mathrm{~m}$), green mud. Holotype male in ZSI, no. 5812/10, in alcohol, condition poor (not labelled as type).

Geographical Distribution : Indo-West Pacific region: East Africa, the Andaman Sea, the South China Sea, and Indonesia (Fig. 128). Records of M. andamanicus from S.E. Afric a and Madagascar pertain to M. mozambicus, those from Australia to M. velutinus. A record from Madang, Papua New Guinea (King, 1988: 109) needs verific ation.

Habitat and Biology : Depth range from 250 to 750 m , but mostly between 300 and 450 m . Substrate of hard mud; the species possibly lives in burrows.

Size : Total body length up to 20 cm , most common between 15 and 18 cm ; carapace length about 4.5 to 6 cm .

Interest to Fisheries : Longhurst (1970:286) mentioned the species 'as a potential fishery resource off Hong Kong. It is well possible that the same is true in other parts of its range.Its size and the fact that the species lives on trawlable bottoms are in favour of this supposition. Records of commerc ial catc hes of M. andamanic us off SE. Africa and Madagascar refer to M. mozambicus; such records from Australia are actually based on material of \mathbf{M}. velutinus.

Literature : Fischer \& Bianchi (eds), 1984: vol. 5; Chan \& Yu,1991:32 pls 2a, c, 4a, c, 6a, 7d.

Fig. 127

Fig. 128

Metanephrops arafurensis (De Man, 1905)
Fig. 130
NEPH Metan 3
Nephrops arafurensis De Man, 1905, Iijdschrift Nederlandsche Dierkundiae Vereeniging, (2)9: 587.
FAO Names: En - Arafura lobster.

Type : Type locality: Arafura Sea, Indonesia, "Siboga" Expedition "Station 262. Lat. 5053.8'S., long. 132으․8. E . Depth $560 \mathrm{M"}$. Only known from mutilated holotype male in ZMA, no. DE 102.670, condition fair, apart from the original damage.

Geographical Distribution : Indo-West Pacific region: Indonesia; only known from type locality (Fig. 131).

Habitat and Biology : Found at 560 m depth; bottom solid bluish grey mud overlaid by softer brown mud.

Size: C arapace length; including rostrum, 5.5 cm ; total body length about 12 cm .

Interest to Fisheries : As the species is known only from a single specimen, nothing can be said about its potential commercial value.

Literature : De Man, 1916:107, pl. 3 fig. 16.

Fig. 131

carapace and,first three abdominal somites
(after De Man, 1916)
Fig. 130

Metanephrops armatus Chan \& Yu, 1991
Fig. 132
NEPH Metan 15
Metanephrops armatus Chan \& Yu,1991, Crustaceana, 60(1):25, pls Ib, 3b, 5b,d, 7b, 9a,b.
FAO Names: En - Armoured lobster
Type : Type locality: "north-eastem Taiwan, Su-Ao, I-Lan County. fish market, 300-400 m (from fishemen)". Holotype male, NTOU no. 90-3-9H. Paratypes, NTOU, RMNH, TFRI. All type material in good condition, in alcohol.

Geographical Distribution : Indo-West Pacific region: off north-east and south-west Taiwan (Fig. 133).

Fig. 133

Habitat and Biology : At depths of 200 to 450 m , mostly more than 300 m . On a more rocky bottom than the other Taiwan lobsters.

Size: C arapace length 1.7-5.7 cm (males), 1.4-4.8 (females), 3.94.4 cm (ovigerous females).

Interest to Fisheries: The species is sold on the Taiwan markets and fetches better prices than the other Taiwan lobsters as the specimens are larger. However, it is less common in the markets than the other species.

Local Names: TAIWAN: Amoured lobster.
Literature: Original description.
Remarks: Before 1991 specimens of this species were considered to belong to M. japonicus.

(after Chan \& Yu, 1991)

Fig. 132

Metanephrops australiensis (Bruce, 1966)
Nephrops australiensis Bruce, 1966, Crustaceana, 10:245, pls 25-27.
FAO Names: En - Northwest lobster.
Type : Type locality: "N.E. of Port Hedland, northem Westem Australia, approximately 8.5 miles east of Mermaid Reef, 170ㅇㅇ́S 119048'E; depth 434 metres". Holotype male in WAM (no. 1 l-64).

(after Bruce, 1966)
lateral view

Geographical Distribution : Indo-West Pacific region. So far the species has only been found off the northwest coast of Westem Australia near Port Hedland, at $17^{\circ} 05^{\prime}$ S $119^{\circ} 48^{\prime} \mathrm{E}$ and $180^{2} 6^{\prime} \mathrm{S}$ 117034'E (Fig. 135).

Fig. 135

(after Bruce, 1966)
dorsal view
Fig. 134

Habitat and Biology : Depth range from 418 to 500 m , on a bottom of Globigerina ooze.
Size : Total body length to 18 cm ; carapace length 4 to 7 cm , average 5 cm .
Interest to Fisheries : Potential. At the type locality, 39 specimens were obtained by trawl in a single haul. Proper equipment and better knowledge of itsoccurrence, habitat and habits may show the species to be of economic interest. George (1983: 16) counted this species among the 5 of which off Port Hedland the "commercial prospects... are probably the most encouraging". Wallner \& Phillips (1988:36) indic ated that off N.W. Australia, 38% of the Metanephrops catch wasformed by this species. In 1984, Davis \& Ward (1984:42) gave the catch percentages by weight of the trawling off northwest Australia as follows: 50% shrimps, 32.5% M. australiensis, 12.1% M. velutinus, and 5.4% M. boschmai.

Local Names: AUSTRALIA: Northwest scampi.
Literature: Original description.

Nephrops binghami Boone, 1927, Bulletin Binaham Oceanographic Collection, 1(2):91, figs 18-20.

FAO Names : En - Caribbean lobster, Fr - Langoustine caraibe; Sp - Cigala del Caribe.

Type : Type locality: "from north to Glover Reef, in 484 fa thoms of water". The exact type locality and depth are not certa in (see Holthuis, 1974:835), but it probably is 16049 ' 38 "N $87058^{\prime} 15$ "W, 384 fms [= 703 m]. Holotype male in YPM, no. 4380; 4 paratypes in YPM, nos. 4381-4384 (all type material in alcohol and in excellent condition).

Geographical Distribution : Westem Atlantic region: from the Bahama Islands and southem Florida (USA) to French Guiana, including the Gulf of Mexico and the Caribbean Sea (Fig. 137).

Fig. 137

Fig. 136

Habitatand Biology : Depth range from 230 to 700 m , most common between 300 and 500 m ; on a substrate of sand ormud.

Size : Total body length to 17 cm , usually a round 12 cm .
Interest to Fisheries: The species is not a ctively fished for at present, but it was ta ken in commercially attractive quantities during exploratory trawling operations in the westem Caribbean Sea (about $10 \mathrm{~kg} / \mathrm{h}$).

Local Names : USA: Caribbean lobsterette.
Literature: Holthuis, 1974:827, figs 25,26; Fisc her (ed.), 1978:vol. 6.

Nephrops boschmai Holthuis. 1964, Zoologische Mededelingen Leiden, 39: 72, fig. 1.

FAO Names: En - Bight lobster.
Type : Type locality: "Great Australian Bight, 126.5E, S. W. of Eucla, .130-190 fathoms [= 238, 348 ml". Holotype male in AMS, no. E3673 (a female paratype under the same number); paratypes in AMS, USNM, RMNH.

Geographical Distribution : IndoWest Pacific region: off the west and south coasts of Westem Australia from Port Hedland to Eucla (Fig. 139).

Habitat and Biology : Depth range from 300 to 460 m ; on substrates of mud, or mud and rubble.

Size : Total body length to 18 cm ; carapace length about 3 to 5 cm .

Interest to Fisheries : George (1983: 17) observed that off Port Hedland, Westem Australia, the commercial prospects of the 4 species of Metanephrops and one of Puerulus occuming there "are probably the most encouraging" and that of the 4 Metanephrops species, M. boschmai is there the most common one. Wallner \& Phillips (1988:36) remarked that off north-west Australia " M. boschmai, which is smaller [than M. velutinus and M. australiensis] and therefore less marketable, has not been exploited to a ny extent" More exploration remains necessary.

Local Names : AUSTRA $\triangle A$: Bight scampi; Boschma's scampi.

Literature: Original description.

Fig. 138

Fig. 139

Metanephrops challengeri (Ba lss, 1914)
Fig. 140
NEPH Metan 6
Nephrops challengeri Balss, 1914, Abhandlungen Baverischen Akademie Wissenschaften (mathematisch-physikalische Klasse), (suppl.2)10:84.

FAO Names: En - New Zealand lobster.

lateral view
(from Yaldwyn, 1954)

Type : Type locality: "Challenger" Station 166, between Australia and New Zealand, 38050'S 169020'E, 275 fathoms [$=503 \mathrm{~m}$], bottom Globigerina ooze. Two syntype females in BM, no. 88.22 (in alcohol, condition good).

Geographical Distribution : Indo-West Pacific region. New Zealand waters: continental shelf around both North and South Islandsasfareast as Chatham Islands (Fig. 141).

Habitat and Biology : Depth range from 140 to 640 m ; substrate mud or sandy mud, firm enough for burrowing.

Size : Total body length to 25 cm , mostly between 13 and 18 cm .

Interest to Fisheries : Potential. Longhurst (1970:301) reported the species as having "been found in promising quantities in deep water". Wear (1980:25) considered the (still remote) possibility of culture of the species.

Local Names : NEW 飞્ALAND: New Zealand scampi, Deep-water scampi.

Literature: Yaldwyn, 1954:721-732, figs 1,2.

(combined from Bate, 1888 and Yaldwyh, 1954)
Fig. 140

Fig. 141

Metanephrops formosanus Chan \& Yu, 1987, Crustaceana, 52: 173, 184, text-fig. 1,2, pls 1, 2.

FAO Names: En - Formosa lobster.
Type : Type locality: "Ta-Chi, I-Lan Country", off north east coast of Taiwan, 180-400 m, bottom mud or sand. Holotype male and paratypes in NTOU; paratypes in RMNH.

Geographical Distribution : Indo-West Pacific region. Only known so farfrom the north-east and the south coasts of Taiwan (Fig. 143).

Fig. 143

Fig. 142

Habitatand Biology : Depth range from 150 to 400 m, mostly a round 250 m; bottom: mud or sand. Spawning time seems to be in late autumn.

Size : The known maleshave a total body length of 5 to 12 cm , the females, 5 to 9.5 cm ; an ovigerous female measured 8.5 cm . Most specimens are 6 to 9 cm long. C arapace length: 1.8-4.1 cm (males), 1.7-4.8 cm (females), 3.1-4-0 cm (ovigerous females).

Interest to Fisheries: The species is "mainly caught by baby shrimp trawlers" (Chan \& Yu, 1987: 183) a nd sold fresh at the local markets where the price is rather high. The animals are caught throughout the year, but the catch is unstable and not large.

Local Names: CHINA (Taiwan): Te-Chia Shia (=a moured prawn); also used forotherspecies of the genus.
Literature: Original desc ription; Chan \& Yu, 1991:27, pls 1c, 3c, 6d.

Nephrops japonic us Ta ppa rone-Ca nefri, 1873, Memorie Reale Accademia delle Scienze Torino (2)27:326, pl. 1.

FAO Names: En - J a panese lobster.

carapace (lateral view)
(from Holthuis, 1974)

Type : Type locality: "proveniente dal Giappone". Holotype in MZT, no.Cr. 1062.

Geographical Distribution : Indo-West Pacific region: off the Pacific coast of Japan from Choshi, Chiba prefecture, Honshu to east coast of Kyushu (Fig. 145).

Habitat and Biology : Depth range from 200 to 440 m , usually between 200 and 300 m ; bottom mud.

Size : Total body length 9 to 12 cm . Carapace length: 3.7 cm (males), $3-6 \mathrm{~cm}$ (females).
interest to Fisheries: The species is fished throughout its range mostly by trawlers. It is highly esteemed as gourmet food and sold fresh and frozen. In Tosa Bay, the fishing season is between September and April, the catch of this species being smaller there than that of \mathbf{M}. sagamiensis.

Local Names: JAPAN: Akaza, Akata-ebi.
Literature : Baba et al., 1986:280; Chan \& Yu, 1991:22, pls la, 3a, 5a, 7 a .

dorsal view
Fig. 144
(combined afterTapparone-Canefri, 1873 and Chan \& Yu. 1991)

Fig. 145

Fig. 146
NEPH Metan 16

(combined after Macpherson, 1990 and Chan \& Yu, 1991)

Fig. 146

Fig. 147

Fig. 148
NEPH Metan 9
Nephrops neptunus Bruce 1965, Crustaceana, 9:274, pls 13-15.
FAO Names: En - Neptune lobster.

Type : Type locality: ""Cape St. Mary", Cr[uise]. 1/64, Station 26, Tra wl 131 [South China Sea, south of Hong
 Agassiz Trawl, depth 400-435 fmi [=732-796 m]". Holotype female in BM, no. 1964.9.28.1; allotype in RMNH (both types in alcohol, condition good).

Geographical Distribution : Indo-West Pacific region: South China Sea and off westem Australia (Fig. 149).

dorsal view
Fig. 148
(after Bruce, 1965)

Fig. 149
Habitat and Biology : Depth range from 300 to 800 m . Bottom temperature $5 \div \mathrm{C}-11.90 \mathrm{C}$. Substrate unknown.
Size : Total body length 18 to 25 cm .
Interest to Fisheries: Potential. George (1983:16) counts the present species a mong the five lobsters off Westem Australia for which the "commercial prospects \qquad are probably the most encouraging".

Local Names: AUSTRA
Literature: Original description.

Metanephrops rubellus (Moreira, 1903)
Fig. 150 NEPH Metan 10

Nephrops rubellus Moreira, 1903, La voura. Boletim da Socied ade nacional de Agricultura Brazileira, 7:62.

FAO Names: En-Ungavian lobster.

front end of carapace (lateral view)
(from Moreira, 1905)

Type : Type locality: E.S.E. of llha Rasa at the entrance of the Bay of Rio de Janeiro "á distancia de 30 a 35 milhasda costa entre 430 e 43030^{\prime}; W. Greenwich e 6 profundida de de 60 a 100 metros". Syntypes in MNRJ, and USNM, no. 29328.

Geographical Distribution : Westem Atlantic region: off the east coast of South America between 23° (off Rio de Janeiro, Brazil) and 380S (off Buenos Aires Province, Argentina) (Fig. 151).

Habitat and Biology : Found in waters between 50 and 150 m deep.

Size : Total body length of adult specimens between 11 and 18 cm ; carapace length between 5 and 8 cm .

Interest to Fisheries: So far none. The species is rather rare ("se encuentra raramente en nuestrascostas" Barattini \& Ureta, 1960:49) and certainly does not at present form the subject of a fishery.

Local Names : BRAZL: Lagostim, Langostinha, Langostinha do Mar.

Literature : Moreira, 1905:128, pl.3; Ramos, 1950 :83-91, figs l-3; Holthuis, 1974:836-839.

dorsal view (after Moreira 1905)
Fig. 150

Fig. 151

Metanephrops sagamiensis (Pa risi, 1917)
Fig. 152
NEPH Metan 11

Nephrops sagamiensis Parisi, 1917, Atti Società Italiana Scienze naturali, 56: 15.

Synonyms: Nephrops intermedius Balss, 1921.
FAO Names: En - Sculpted lobster.
Type : Type locality Nephrops sagamiensis: "Baia di Sagami" (=Sagami Bay, Honshu, Japan); two paralectotypes in Museo Civico di Storia Naturale, Milano, Italy, no. 12-13 (ex 1494). Type localities of both Nephrops intermedius and \mathbf{N}. sagamiensis: "Misaki und Aburatsubo, Sagamibai, Sammlung Doflein, Nr. 2490"; and of N. sagamiensis (possibly also of N. intermedius): "Station 9, Sa gamibai $\left[=200^{\prime} 10^{\prime} 30 " \mathrm{~N} 139033^{\prime} \mathrm{E}\right]$, 250 m Tiefe, Sammlung Doflein". Through the lectotype selection for both species (see Remarks below), the type locality of both is now restricted to "Aburatsubo, Sagamibai, Japan" [= Aburatsubo near Misaki, Kanagawa Prefecture, Honshu, J apanj; lec totype is the specimen shown on pl. 1 fig. 2 of Balss's (1914) paper, it is preserved in ZSM under no. 33/5, the condition of the alcohol specimen is good; one lot of 3 paralectotypes (of both \boldsymbol{N}. intermedius and \boldsymbol{N}. sagamiensis) from "Sagamibai, Misaki, J apan" is also preserved in ZSM, it has no. $33 / 1$, and is preserved in alcohol in a good condition. The lectotypes and paralectotypes of \boldsymbol{N}. intermedius all were collected by F. Doflein in 1904-1905, the lectotype bearing his collecting number 2490. Six lots (10 specimens) of Metanephrops japonicus from Sagami Bay in the collection of ZSM (nos. 33/1, $33 / 2,33 / 3,33 / 4,33 / 6$ and $36 / 1$) are paralectotypes of N. sagamiensis (not quite certa in for $33 / 1$ and $33 / 3$) but not of \boldsymbol{N}. intermedius.

Geographical Distribution: Indo-West Pacific region: from east coast of J a pan near Sagami Bay to Taiwan (Fig. 153).

Habitat and Biology : Depth range from 300 to 400 m, mostly around 350 m .

Size : Carapace length 3 to 6 cm (males) and 4.5 to 6 cm (females), corresponding to a total body length of 6 to 14 cm (males) and 10 to 14 cm (females).

(after Balss.1914)
Fig. 152
Interest to Fisheries: Very little information is available on this species. Baba et al. (1986:280) observed that "in Tosa Bay [Shikoku Isla nd, J apan], the fishing season for \boldsymbol{M}. sagamiensis as well as for \boldsymbol{M}. japonicus, is between September and April, the catch of \boldsymbol{M}. sagamiensis being greater".

Local Names: J APAN: Sagami akaza-ebi.
Literature : Baba et al., 1986:280; Chan \& Yu, 1991:30, pls 1d, 3d, 5c, 7c.

Remarks : Balss (1914:84, pi. 1 fig. 2), under the name Nephrops japonicus, dealt with several males and females as well as with a juvenile, no exact numbers being given. Later he (Balss, 1921:176) found that this material consisted of two distinct species, and that the specimen figured by him in 1914 was not the true N. japonicus and belonged to a species that he named Nephrops intermedius; again he did not indicate the exact number of specimens of either species before him. Dr. Ludwig Tiefenbacher of the Munich Museum was so kind to inform me that in the collection of his museum there are two

Fig. 153
lots (4 specimens) labelled \boldsymbol{N}. intermedius a nd which form part of the Doflein collection; one of these specimens could be identified as the specimen figured by Balss (1914). All four specimens thus a re syntypes of \boldsymbol{N}. intermedius and the figured specimen is now selected as the lectotype of that species. In addition the Munich Museum holds five lots of Metanephrops japonicus, all labelled Nephrops japonicus and all from Sagami Bay. Three of those lots (5 specimens) definitely form part of the material dealt with by Balss (1914), as one of them was collected in 1904 by Doflein and two others were collected in 1903 (one by K.A. Haberer, of the other the collector is not indicated but this could well be Haberer also). The two remaining lots only camy the indications "Sagamibai, Japan", but may well have belonged to Balss' (1914) material. Finally there is one lot of Metanephrops japonicus collected in Sagami Bay by Doflein, a nd thus certainly part of the 1914 material;however, this lot (1 specimen) bears in Balss' handwriting the incorrect label "Nephrops sagamiensis Parisi" it is not clear whether or not this is a syntype of Nephrops intermedius, most likely it is not.If it were, however, then the type series of Nephrops intermedius would consist of two species and a lectotype selection is required.

Parisi (1917), when describing his new N. sagamiensis included in it all of Balss' (1914) Nephrops japonicus material; therefore all of Balss' specimens, both those of \boldsymbol{N}. intermedius and those of \boldsymbol{N}. japonicus are syntypes of \boldsymbol{N}. sagamiensis as are also the two specimens before Parisi. The type material of \boldsymbol{N}. sagamiensis thus is definitely heterogeneous and a lectotype should be chosen. The lectotype of N. intermedius is here chosen to be also the lectotype of N. sagamiensis; this action now definitely establishes the identity of the two species, at the same time making their names objectively synonymous.

Metanephrops sibogae (De Man, 1916)
Nephrops sibogae De Man, 1916, Siboga Expedition monograph, 39(a2): 102, pl. 4 fig. 18.

FAO Names: En - Siboga lobster
Type : Type loc ality: Near the Kai Islands, Indonesia, " $5^{\circ} 40^{\prime}$ S., $132^{2} 26^{\prime} \mathrm{E}$., 310 m . Bottom fine, grey mud". Syntypes (5 males, 4 females) in ZMA, no. De 104.197, condition fair.

Geographical Distribution : Indo-West Pacific region: Indonesia (type locality only) and Australia (Coral Sea north east of Cape York, and north west of Melville Island, Westem Australia) (Fig. 155).

Fig. 155

Fig. 154
NEPH Metan 12

Fig. 154

Habitat and Biology : Depth range from about 300 to 310 m ; bottom: soft sediments, like fine grey mud. Ovigerous females found in December.

Size : Total body length 11.5 to 18 cm ; ovigerous females 13 and 13.5 cm .

Interest to Fisheries : Potential. The size of the specimens, the fact that they are not solitary (the type haul contained 9 specimens) and that they live on trawlable bottoms, makes them of potential interest for commercial fisheries. But too little is known about the habits and a ctual habitat of the species.

Local Names: AUSTRALA: Siboga's scampi.
Literature: Original description.

Metanephrops sinensis (Bruce, 1966)
Fig. 156
NEPH Metan 13

Nephrops sinensis Bruce, 1966, Crustaceana, 10: 155, pls 10-12.

FAO Names : En - China lobster.
Type : Type locality: South China Sea, "Cape St.Mary"'"Sta. 63, Trawl 54, $15053.0^{\prime} \mathrm{N}$ 109026.0'E to $15053.7^{\prime} \mathrm{N}$ 109025.3'E (approx.)... depth 155 fms [=283.5 m] (and deeper)". Holotype female in BM, no. 1964.9.28.2; allotype in BM, no. 1964.9.28.3 (both in alcohol, condition good); paratypes in RMNH, ZSI, and Fisheries Research Station Hong Kong.

Geographical Distribution : IndoWest Pacific region. Only known from the four localities in the South China Sea mentioned in theoriginal description, all situated between $15053^{\prime} \mathrm{N}-16000^{\prime} \mathrm{N}$ and. 109025.3'E 109으́'E (Fig. 157).

Fig. 157

Habitatand Biology : Depth range from (205-) 260 to 373 (-390) m. Bottom:' mud, sometimes with shells. Ovigerous females were obtained in September.

Size : Total body length 6 to 15 cm .
Interest to Fisheries: One of the type lots was obtained with a commercial Granton trawl and consists of no less than 137 specimens (including 47 ovigerous females). Two otherlots(also taken with a Granton trawl) contained 4 and 11 specimens, and the fourth (with Agassiz trawl) 5 specimens. The size of the specimens, their gregariousness and the configuration of the substrates where they are found, indic ate that the speciesmay be of commercial interest.

Literature: Original description

Metanephrops thomsoni (Bate, 1888)
Nephrops thomsoni Bate, 1888, Report Voyage Challenger. Zool., 24: 185, pl. 25 fig. 1, pl. 26 figs. 1-9.

FAO Names: En - Red-banded lobster.
Type : Type locality: "Challenger" "Station 204A, .. lat. $120^{\circ} 43^{\prime} \mathrm{N}$. , long. $122^{\circ} 9^{\prime} \mathrm{E}$.; between Samboangan [= Zamboanga] and Manila; depth, 100 fathoms [= 182 m]; bottom, green mud". Male lectotype in $B M$, no. 88.22 (in alcohol, condition good).

Geographical Distribution : Indo-West Pacific region: Korea (Korea Strait), China (Yellow Sea, East China Sea, South China Sea), Japan (from Tosa Bay on the east coast of Shikoku Island, and the west coast of Kyushu south to the Ryukyu Islands), Taiwan, and the Philippines (off Tablas) (Fig. 159).

Fig. 159

Fig. 158
NEPH Metan 14

Fig. 158

Habitatand Biology : Depth range from 50 to 500 m , on sandy mud bottom. Ovigerousfemales are generally caught in the East China Sea from the middle of September to the middle of April. The larval development has been described by Uchida \& Dotsu (1973:23-35).

Size : Maximum total body length about 15 cm , usually not more than 12 cm .

Interest to Fisheries : In Korea the species is offered for sale at the Busan markets. According to Uchida \& Dotsu (1973:23) the species "is usually caught in the East China Sea by trawl net fishing and used asfood". In Taiwan the species is sold in markets, and its price is higher than that of \mathbf{M}. formosanus, which is found in greater quantities (Chan \& Yu, 1987:183); it is sold there throughout the year, but is "not valuable" (Chang, 1965:48). Motoh, Dimaano \& Pution (1978:22) mention that "a kind of red shrimp (probably Nephrops thomsoni)" is caught by a bobo ("a kind of baited trap") "at deeper water exceeding to 40 m ", in Mindanao, Philippines.

Local Names: JAPAN: Minami akaza-ebi ; CHINA (Province of Taiwan): Te-Chia Shia (also used for other species of the genus).

Literature : Baba et al.. 1986:280.

Metanephrops velutinus Chan \& Yu, 1991
Metanephrops velutinus Chan \& Yu, 1991, Crustaceana, 60(1):35, pls 2b,4b, 6c, 8a , c,d.

FAO Names: En - Velvet lobster.
Type : Type locality: "Philippines, 13051 'N 120030 ' E , $300-330 \mathrm{~m} "$. Male holotype, NTOU no. PM 1. Paratypes MP, RMNH, USNM, WAM.

Geographical Distribution : Indo-West Pacific region: Philippines (south-west of Luton), Westem Australia (Cape Leveque to Eucla) (Fig. 161)

Fig. 161

Fig. 160
NEPH Metan 17

Fig. 160

Habitat and Biology : Depth range 238 to 702 m , most common at 350 to 450 m . Substrate hard mud.
Size : Carapace length: 3-8.6 cm (males), 2-7.4 cm (females), 4.7-8.2 cm (ovigerous females).

Interest to Fisheries :"M. velutinus, which appears slightly larger than \boldsymbol{M}. armatus, is fished commercially on the North West Shelf of Australia since 1985 (Wallner \& Phillips, 1988, under the name of M. andamanicus). Its price is higher than that of the spiny lobsters in Australia and many are used forexport; however, the demand of the local marketshas greatly increased recently (Bremner, 1985; Ward, Phillips pers.comm.). However, probably due to the low recovery rate of this lobster and the fact that the fishing gear is more selective forovigerousfemales, the catch of the species has fallen signific antly in the last few years (Wallner \& Phillips, 1988)" (Chan \& Yu, 1991:38).

Literature : Chan \& Yu, 1991:35, pls 2b, 4b, 6c , 8a, c, d.
Remarks : Until 1991 spec imens of this spec ies were, often with some doubt, identified as M. andamanicus.

Nephrops Leach, 1814
Nephrops Leach, 1814, Brewster's Edinburah Encyclopaedia, 7:398, 400. Gender masculine. Name placed on the Official List of Generic Names in Zoology in Opinion 104 (published in 1928).

Type Species: by monotypy: Cancer norvegicus Linnaeus, 1758.
Although previously several Indo-West Pacific and tropic al West Atlantic species have been assigned to this genus, at present it contains a single north east Atlantic species only. All other species are now placed in the genus Metanephrops.

The single true Nephrops species, \boldsymbol{N}. norvegicus, is of considerable economic interest.

Nephrops norvegicus (Linnaeus, 1758)
fig. 162
NEPH Neph 1
Cancer norvegicus Linnaeus, 1758, Systema Naturae, (ed. 10)1:632. Name placed on the Offic ial List of Specific Names in Zoology, in Direction 36 (published in 1956).

Synonyms : Astacus norvegicus - Fabric ius, 1775; Homarus norvegicus - Weber, 1795; Astacus rugosus Rafinesque, 1814; Nephropsis cornubiensis Bate \& Rowe, 1880; Nephrops norvegicus meridionalis Zariquiey C enarro, 1935.

FAO Names : En - Norwa y lobster, Fr - Langoustine; Sp - Cigala.
Type : Type locality for Cancer norvegicus: "in Mari Norvegico",restricted by lectotype selection by Holthuis (1974:824) to Kullen Peninsula in southem Sweden, $56{ }^{\circ} 18^{\prime}$ N 12028'E: Lectotype a nd paralectotypes lost.

Type locality for Astacus rugosus: Sic ily. Type no longer extant.
Type loc ality for Nephropsis cornubiensis: "off the Dudman" [= Dodman Point, Comwall, UK, 5013'N 4ㅇ48’W]. Type specimen supposed to be deposited "in the museum of the Athenaeum at Plymouth", but probably no longer extant.

Type locality of Nephrops norvegicus meridionalis: Spain (both the Atlantic coast:Huelva, San Sebastian and Coruña, and the Mediterranean coast: Rosas, Barcelona, Alicante; and Spanish Morocco: Melilla). Type material in Zariquiey collection of the Instituto de InvestigacionesPesqueras, (at present: Instituto de Ciencias del Mar), Barcelona.

Geographical Distribution : Eastem Atlantic region: from Iceland, the Faeroes and northwestem Norway (Lofoten Islands), south to the Atlantic coast of Morocco; westem and central basin of the Mediterranean; absent from the eastem Mediteranean east of 250E; also absent from the Baltic Sea, the Bosphorus and the Black Sea. A record from Egypt is doubtful (Fig. 163).

Fig. 163

Habitat and Biology : Depth range from 20 to 800 m ; the species lives on muddy bottoms in which it digs its burrows. It is noctumal and feeds on detritus, crustaceans and worms. Ovigerous females are found practically throughout the year, the eggs laid a round July are camied forabout 9 months.

Size : The total body length of adult animals varies between 8 and 24 cm , usually it is between 10 and 20 cm .
interest to Fisheries: The species is of considerable commercial value and is fished for practically throughout its range. According to FAO statistics 59767 tons were caught in 1987, 62382 tons in 1988, mainly in
 the northeastem Atlantic (Fishinq Area 27). The species is fished mostly in spring and summer. On the continental shelf, the fishery is most effic ient in the very early moming, at twilight of in nights with full moon; on the continental slope, however, the fishery is most productive in daytime. It is caught mostly by trawling, more rarely with lobster pots. Sold fresh and frozen; also canned, either as plain peeled tails or prepared as "bisque de langoustines". Under the Italian name Scampi (plural of Scampo) it was sold all over Europe asa highly esteemed food; but soon the name Scampi became also used for large Penaeid shrimps.

Local Names : DENMARK: Bogstavhummer; FRANCE: Langoustine, Cacahouete; GERMANY: Norwegischer Hummer, Buchstabenkrebs, Kaisergranat, Kaiserhummer, GREECE: Karavida; ICELAND: Letur humar; ITALY: Scampo, Scampolo; MONACO: Lengustina; MOROCCO: Azeffane, La ngoustine; NETHERLANDS: Noorse kreeft; NO RWAY: Bokstavhummer, Keiserhummer, Sjskreps; PORTUGAL: La gostim; SPAIN: Cigala, Escamarlanc, Maganto; SWEDEN: Kejsarhummer, Havskrafta; TUNISIA: Jarradh el bahr, UK: Norway lobster, Dublin bay prawn, Dublin prawn; YUG OSLAVIA: Skamp.

[^3] 1981:vol.5; Fischer, Bauc hot \& Sc hneider (eds), 1987:302.

Thymopides Burukovsky \& Averin, 1977

NEPH Thy
Thymopides Burukovsky \& Averin, 1977, Crustaceana, 32:216. Replacement name for Bellator Burukovsky \& Averin, 1976 (non Bellator jordan \& Evermann, 1896). Gender ma sc uline.

Type Species: by original designation and monotypy for Bellator Burukovsky \& Averin: Bellator grobovi Burukovsky \& Averin, 1976.

Synonyms : Bellator Burukovsky \& Averin, 1976, Zoolooicheskii Zhumal. Moscow, 55:296. Type species, see under Thymopides. Gender masculine.

So far only one species of this genus is known; it may be potentia lly of economic value.

Thymopides grobovi (Burukovsky \& Averin, 1976)
Fig. 164
NEPH Thy 1

Bellator grobovi Burukovsky \& Averin, 1976, Zoolooischeskii Zhumal, Mosc ow, 55:296, figs 1-4.

FAO Names : En - Bellator lobster.
Type : Type locality:"in the Herd [= Heard] Island region [near Kerguelen] at a depth of 1,010 m", 51응́S 6937' E. Holotype male in ZSL.

abdomen (lateral view)
(from Eurukovsky \& Averin, 1976)

Geographical Distribution : Southem Indian Ocean: area of Kerguelen Islandsand Heard Island (47으51.5ㅇㅇ 66으․75.5E) (Fig. 165).

Habitat and Biology : Depth range from 560 to 1220 m, on muddy substrate.

Size : Total body length between 3 and 11 cm , mostly between 6 and 11 cm .

Interest to Fisheries: The size of the a nimals and the fact that they occur in relatively great numbers (see Ledoyer, 1979) suggest that the species might be of potential commercial value. So far, however, this possibility has not been tested experimentally.

Literature : Led oyer, 1979: 123, figs 1,2.

Fig. 165

2.2 INFRAORDER PAUNURIDEA La treille, 1802

Palinurini Latreille, 1802, Histoire naturelle générale et particulière des Crustacés et des Insectes. 3:31.
This infraorder consists of 3 superfamilies: Eryonoidea De Haan, 1841, Glypheoidea Zttel, 1885, and Pa linuroidea La treille, 1802. Only the last of these conta ins species that are of commercial interest.

Key to the recent representatives of the three Superfamilies of Palinuridea

1a. Pereiopods 1 to 4 (or all) with true chelae, the first pair very slender, more than twice as long as the second pair. Eyes immovable, not protruding above surface of carapace, and without pigment. Telson tria ngular, pointed posteriorly (Fig. 166) \qquad Eryonoidea
1b. Pereiopods 1 to 4 without true chelae, the first pair sometimes with a subchela. Eyes distinct, movable, comea with pigment. Telson posterionly broadly rounded (Figs 167, 168).

2a. Epistome large, 1.5 times as long as wide and about $1 / 3$ of carapace length, its posterior margin about level with cervical groove of carapace. Endo- and exopod of the uropod firm throughout; exopod with a diaeresis. Rostrum well developed, reaching to the base of comea. Eyes inserted on a median elevation of the cephalon, which reaches to about middle of the rostrum, with which it is partly fused. First pereio pods very strong, spiny a nd subchelate, the second somewhat similar, but sma ller and with fewer spines (Fig. 167) \qquad Glypheoidea

2a. Epistome small, wider than long, not reaching much behind level of eyes. Endo- and exopod of the uropods (as well as the telson) soft and flexible in their posterior half, being strongly chitinized only in the basal part. Rostrum usually very small or absent. Eyes not implanted on a median elevation of the cephalon Fig. 168) ... Palinuroidea
eyes unpigmented

telson triangular
Eryonoidea
Fig. 166

Eyonidea De Haan, 1841, in P.F. von Siebold, Fauna Japonica, (Crustacea) (5): 148, 149.
This superfa mily consists of four families, three of which conta in only fossil species. The fourth, Polyc helidae WoodMason, 1875, is the only one with recent representatives.

2.2.1
 FAMILY POLYCHEUDAE Wood-Ma so n, 1875

Polychelidae Wood-Mason, 1875, Annals Maqazine natural History, (4)15: 132

This fa mily has several genera a nd numerous species. All species inhabit the deep sea and none are of commercial value. Although some of them atta in good sizes, they seem to have relatively little meat and for that reason are of no economic interest. However, some species can be caught in considerable quantities. During the 1964 cruises of R.V. JOHN ELUOT PIШSBURY the catch of Stereomastis sculpta talismani (Bouvier, 1917) (Fig. 169), at one of the stations off West Africa, was so large that most of it had to be shoveled overboard.

Notwithstanding all this, none of the numerous (more than 35) species appears ever to have been brought to the fish markets, or sold as food or bait. Therefore this group is not further considered here. The taxonomy of the Polychelidae, especially of the generic level, is still very unsettled.

(from S.I. Smith, 1882) Fig. 169

SUPERFAMILY GLYPHEOIDEA Zttel, 1885

Glyphaeidae Zttel, 1885, Handbuch der Paläontoloqie, 1(2):689
This superfamily has three families, two of which are exclusively fossil. The third, Glypheidae Zttel, 1885, next numerous fossil taxa, contains a single recent genus with a single species.

Zttel (1885) cited Winkler (1881:73) as the a uthor of the name Glyphaeidae. However, Winkler (1881) although dealing extensively with the genus Glyphea did not establish a family name based on this generic na me, he at most used the expression "les glyphees". Zttel (1885) therefore must be considered the author of the family name; Zttel used the incorrect spelling Glyphaea and Glyphaeidae for the genus and family, respectively.
2.2.2

FAMILY GLYPHEIDAE Zttel, 1885
GLYPH

Glyphaeidae Zttel, 1885, Handbuch der Paläontologie, 1(2):689.
The only recent genus is the following:

Neoglyphea Forest \& De Sa int Laurent, 1975
GLYPH Neog
Neoglyphea Forest \& De Saint Laurent, 1975, Comptes-Rendushebdomadaires seances l'Académie Sciences, Paris, (D) 281: 155. Genderfeminine.

Type Species: by original designation (gen.nov., sp.nov.) and monotypy: Neoglyphea inopinata Forest \& De Saint Laurent, 1975.

A single species.

Neoglyphea inopinata Forest \& De Sa int Laurent, 1975
Fig. 170

GLYPH Neog 1

Neoglyphea inopinata Forest \& De Saint Laurent, 1975, Comptes-Rendus hebdomadaires seances l'Académie Sciences, Paris, (D)281 : 155, pls 1,2.

FAO Names: En - Fenix lobster.

Type : Type locality: "Albatross, Station 5278 ... $140^{\circ} 00^{\prime} 10 "$ Nord; 120이'15"Est; $185 \mathrm{~m} "$,south west of entrance of Manila Bay, Philippines. Holotype male, in USNM, no. 152650.

Geographical Distribution: Indo-West Pacific region. The species is known only from 14 specimens all trawled south west of the entrance of Manila Bay in a small area between 13059.0'- $14^{\circ} 08.0^{\prime} \mathrm{N}$ and $12015.8^{\prime}-120020.5^{\prime} \mathrm{E}, 186-189 \mathrm{~m}$, and from 3 specimens taken in the Timor Sea, $9046^{\prime} \mathrm{S} 130000^{\prime} \mathrm{E}, 240-300 \mathrm{~m}$ (Fig. 171).

Habitat and Biology : Depth range from 186 to 300 m ; firm substrate with mud

Size : Total body length between 7 and 14.9 cm , carapace length between 3 and 6.7 cm .

Interest to Fisheries : The scarcity of the species (only 17 specimens known) and its probably very restricted range, do not make it a likely subject for a fishery.

Fig. 171

Palinurini Latreille, 1802, Histoire naturelle générale et particulière des Crustacés et des Insectes, 3:31.
Three families make up this superfamily, namely the Palinuridae (spiny lobsters), Synaxidae (fury lobsters) and Scyllaridae (slipper lobsters), they will be dealt with in this order.

Key to Families

1a. Antennal flagellum reduced to a single, flat, plate which forms the sixth and final segment of the antenna. The shovel-like appearance of the antennae is responsible for the names shovel-nose lobster and bulldozer lobster also used for the a nimals of this group (Fig. 172)

Scyllaridae
1b. Antennal flagellum long and consisting of numerous small artic les, whip-like or spear-like

2a. Rostrum absent or visible as a small spine on anterior margin of carapace. Carapace with a pair of frontal homs above the eyes, and usually with spines on the dorsal surface; hairs on carapace, if present, few and scattered (Fig. 173) \qquad Palinuridae

2b. Rostrum a large, broad and flat triangular or rounded plate between the eyes. Carapace without frontal homs or other spines. Body covered only with granules and a rather dense fur of short ha ir (Fig. 174)

Synaxidae

Palinuridae
Fig. 173

Fig. 172

Fig. 174

Palinurini Latreille, 1802, Histoire naturelle générale et partic ulière, des Crustacés et des Insectes, 3:31. Name placed on the Offic ial List of Fa mily Names in Zoology, in Opinion 519 (published in 1958).

This family, known best as spiny lobsters or langoustes, consists of eight genera (Jasus, Justitia, Linuparus, Palinurus, Palinustus, Panulirus, Projasus and Puerulus). Several of these genera are of great economical value, others are of minor or only potential importance. All known species of the fa mily are dealt with in this catalogue.

Key to Genera:

1a. First pair of legs enlarged in males, ending in subchelae, with wide, red crossbands; carapace omamented with a strong, scale-like sculpture; abdomen brick red, with 4 or 5 conspic uous transverse grooves on each somite and with yellowish spots a nd stripes (Fig.175) \qquad Justitia

1b. First pair of legs not enlarged, with no trace of a pincer, without crossbands; carapace without a scale-like sculpture; abdomen variously coloured, smooth or with at most 2 transverse grooves per somite

2a Frontal homs fused to a broad 2- or 4-spined median projection on the anterior margin of the carapace between the eyes; antennal flagella straight, inflexible (Fig. 176) ...Linuparus

2b. Two distinct, widely separated tooth-like frontal homs, between which the anterior margin of the carapace is visible; antennal flagella although large and firm, quite flexible

3a. Flagella of antennulae long, whip-like, longer than peduncle of antennules (Fig. 177) \qquad Panulirus

3b. Flagella of antennules short, shorter than last segment of a ntennular pedunc le

anterior part of carapace

Fig. 175

4a. Abdominal segments usually with squamiform sculpturation before transverse groove; no distinct antennular plate between bases of antennae (Fig. 178) \qquad Jasus (Jasus)

4b. Abdominal segments with a sometimes intemupted transverse groove, but without squamiform sculpturation; antennular plate between bases of antennae distinct or absent

5a. Frontal homs truncated with anterior margin crenulate; first segment of antennular peduncle reaching beyond antennal peduncle (Fig. 179) \qquad Palinustus

5b. Frontal homs tapering to a shap point; first segment of antennular peduncle not over-reaching a ntennal peduncle

Fig. 178

Palinustus
Fig. 179

6a. Anterior margin of carapace between frontal homs with about 10 small, sharp teeth (Fig. 180a); pleura of second to fifth abdominal somites with a strong anterior tooth followed by a lobe denticulated on the posterior margin (Fig. 180b) \qquad Palinurus (Fig. 180c)

6b. Anterior margin of carapace unarmed between frontal horns, except for the presence, in some species, of a small triangular rostrum and a small denticle near the base of the frontal homs (Fig. 181a). Pleura of second to fifth abdominal somites ending in two simple, strong, sharp teeth without denticles (Fig. 181 b); only in Sagmariasus the second tooth is replaced by a denticulated lobe

7a Antennular plate distinct, a stridulating organ present (Fig. 181a). Carapace with a median ridge behind the cervical groove, often with spines or tubercles, but without submedian rows (Fig. 181 c) \qquad Puerulus

7b Antennular plate hardly if at all, visible in dorsal view. Stridulating organ absent. Carapace behind cervical groove without a median ridge, but with two submedian ridges, each bearing a row of large, sharply, pointed teeth or numerous spinules (Fig. 182)

Fig. 180

Palinurus
b. pleura of second to fifth abdominal samites c. dorsal view

c. dorsal view
(after Ramadan. 1938)

8a. A large single median tooth before the cervical groove. Apart from two submedian and two lateral longitudinal rows of spines the posterior half of the carapace is smooth and without spinules (Fig. 182). Abdominal pleura ending in two single sharp teeth (Fig. 181 b) \qquad Projasus

8b. Two large median teeth before cervical groove. Posterior half of carapace closely set with numerous sharp spinules (Fig. 183). Abdominal pleura ending in a sharp anterior tooth and a broad, distinctly denticulate posterior lobe \qquad Jasus (Sagmariasus)

Projasus
(trum Webber \& Booth. 1988)

Fig. 183

Jasus Parker, 1883, Nature,London, 29:190. Gendermasc uline. Name placed on the Offic ial List of Generic Names in Zoology in Opinion 612 (published in 1961).

Type Species : by selection by Holthuis (1960; Bulletin Zoological Nomenclature, 17:193): Palinurus lalandii H. Milne Edwards, 1837.

Synonyms : Palinosytus Bate, 1888, Report Vovaqe Challenaer, Zool., 24:93. Type species, by selection by Holthuis (1960, Bulletin of Zoological Nomenclature, 17:193): Palinurus lalandii H. Milne Edwards, 1837. Gender masc uline. Name placed on the Official Index of Rejected and Invalid Genus-G roup Names in Zoology in Opinion 612 (published in 1961).

Palinostus Bate, 1888, Report Vovage Challenger. Zool., $24: 56,76,85$. An inc orrect original spelling of Palinosytus Bate, 1888, a nd therefore una vailable. Name placed on the Official Index of Rejected and Invalid Genus-Group Names in Zoology in Opinion 612 (published in 1961).

The genus consists of seven species, all of which are of commercial interest, a nd live in restricted zones in the temperate area of the southem hemisphere.

The genus Jasus can be divided into two subgenera: the nominate subgenus, Jasus or "scalloped rock lobsters", includes all but one of the species, and is characterized by the scalloped sculpturation of the upper surface of the abdominal somites. The other subgenus is Sagmariasus nov. subgen. and includes as type and only species the Packhorse rock lobster, Jasus verreauxi (H. Milne Edwards). It is characterized by that the abdominal somites do not show any scalloped sculpturation.

Subgenus Jasus Parker, 1883
Six species are known in this subgenus.

Key to Species:

1a. Large spines of carapace broad and flattened, about as wide as long, and much larger than the small spines (Fig. 184a). Sculpturation of abdomen wide, with relatively few squamae, and with an extensive smooth area on the anterior part of each somite (Fig. 185a,b,c). Eastem Pacific, South Central Atlantic, Westem Indian Ocean (exclusive of South Africa) \qquad "frontalis" subgroup

2a. First abdominal somite without any squamiform sculpturation. The following somites with only a single transverse row of large squamae before the transverse groove of the somite, sometimes with some very small squamae just before or just behind it Posterior half of the abdominal somites behind the transverse groove without squamiform structures (Fig. 185a) (Juan Femandez Island) \qquad J. frontalis
(Fig. 189)
2b. First and following abdominal somites with a transverse row of squamiform sculpturation behind the transverse groove (Figs 185 b,c)

Fig. 184

3a. Indian Ocean area (St. Paul and Amsterdam Islands, ra rely at Ker-gueien). Frontal homs almost equilaterally triangular, shorter and broader than in J. tristani. Squamiform sculpturation of the abdomen with the squa mae na rrower and more numerous than in \boldsymbol{J}. tristani (Fig. 185b) \qquad J. paulensis
(Fig. 195)
3b South Atlantic Ocean area (Tristan da Cunha Archipelago, Gough Island, Vema Seamount). Frontal homs with the upper margin slightly more convex than the lower, more slender than in J. paulensis. Squamiform sculpturation of the abdomen coarser than in J. paulensis with the squamae fewer and wider (Fig. 185c). \qquad J. tristani
(Fig. 197)
1b. The large spines of the carapace are na rrow, often 3 or 4 times as long as wide and not very different from the small spines (Fig. 184b). The sc ulpturation of the abdomen is more dense, with relatively smaller squamae and a na rower smooth anterior area (Fig. 186a,b,c). South Africa, Australia, New Zealand \qquad "lalandii" subgroup

Anterior half of first abdominal somite with a squa miform sculpturation both anterionly and posterionly of the transverse groove (Fig. 186a). South Afric a J. lalandii
(Fig. 191)
4b. Anterior half of first abdominal somite before the transverse groove entirely smooth, without sculpturation

5a. South and East Australia, Tasmania. The squamiform sculpturation on the posterior half of the second to fifth abdominal somites (behind the transverse groove) dense and covering the entire surface, the squamae arranged in 4 or 5 transverse rows (Fig. 186b) \qquad J. novaehollandiae
(Fig. 193)
5b New Zealand. The squamiform sculpturation on the posterior half of the second to fifth abdominal somites (i.e. the part behind the transverse groove) less dense, with larger squamae, which are a rranged in 2 or 3 transverse rows (Fig. 186c) \qquad J. edwardsii
(Fig. 187)

c. J. tristani
abdomen (dorsal view)
Fig. 185

a. J. Ialandii

b. J. novaehollandiae abdomen (dorsal view) Fig. 186

2 or 3 transverse rows

c. J. edwardsii

Jasus (Jasus) edwardsii (Hutton, 1875)
Patinurus edwardsii Hutton, 1875, Iransactions Proceedings New Zealand institute, 7:279.

Synonyms : No synonyms known. The species for a long time has incorrectly been synonymized with J. lalandii (H. Milne Edwards).

FAO Names : En - Red rock lobster.
Type : Type locality: "Otago Heads" near Dunedin, South Island, New Zealand. Syntypes supposedly in DMW, now lost, at least not located in 1988

Geographical Distribution : All coasts of New Zealand, from Three Kings Islands (north west of-the northem tip of North Island) south to the Auckland Islands, also found at the Chatham Islands; most common off the south west part of South Island, and the east coast south of East Cape (Fig. 188).

Fig. 188

(from Kensler, 1967) Fig. 187

Habitat and Biology : The species lives in crevic es of the rocky shores and among algae at depths between 5 and 200 m . Soft shelled specimen are occasionally caught in December and J anuary.

Size : Ma ximum total body length is 58 cm (males), and 43 cm (females); maximum carapace lengths 23.5 cm (males), 18 cm (females); minimum legal carapace lengths 10 cm (males), and 9 cm (females).

Interest to Fisheries: The species is usually caught with baited lobster pots, sometimes obtained by trawling and by diving. Protective laws have been introduced, like size limits, prohibition of some gear, prohibition of taking ovigerous females or soft specimens, bag limits for sports fishemen, etc. The specimens are sold as frozen tails (mostly to the USA) and whole live specimens (mainly to Japan). According to FAO statistics, 5000 tons were caught in 1987 and 1242 tons in 1988. According to Kensler (1969:516) this species sustains "New Zealand's main and most valuable export fishery". It represents 99% of the total lobster fishing in the a rea (the other 1% is formed by J. verreauxi). In 1988 the species represented the fourth most valuable fishery of New Zealand, after the fishes Orange Roughy (Hoplostethus atlanticus), Hoki (Macruronus novaezelandiae), and squid (Booth, in litt.). Since 1965, the species is also commercially fished at the Chatham Islands. The Chatham fishery expanded rapidly since 1966 and in 1967 provided about 50% of the total New Zealand catch.

Local Names : NEW 正ALAND: Red crayfish, Red spiny lobster, Common crayfish, Marine spiny crayfish, Rock lobster, Southem crawfish, Spiny crayfish; Koura (Maori language).

L̇terature : Kensler, 1968:81-89; Kensler, 1969:506-517; Williams, 1986: 13, figs 26,78d-e.

Fig. 189

Palinurus frontalis H. Milne Edwards, 1837, Histoire naturelle des Crustaces, 2:294.

Synonyms : Palinostus frontalis - Bate, 1888. The spec ies has often, inc orrectly, been synonymized with J. lalandii.

FAO Names: En - Juan Femandez rock lobster; Fr Langouste Juan Femandez; Sp - Langosta de Juan Femandez.

Type : Type locality: "Habite le Chili", now restricted to J uan Femandez Archipelago, Chile. Type material in MP, no longer extant (not found in 1989).

Geographical Distribution: The range of the species is restricted to: (1) the waters around the Juan
 Isla Robinson Crusoe (= Isla Más a Tierra), Isla Marinero Selkirk (= Isla Alejandro Selkirk, = Isla Más Afuera) and Isla Santa Clara, and (2) the waters around the Islas Deswentura das, 26으' -26022'S 7950'-806' W: Isla San Felix and Isla San Ambrosio (Fig. 190).

Habitat and Biology : A species inhabiting a rocky and partly sandy environment at depths of 2 to 200 m . Water temperature between $13^{\prime \prime}$ and $19^{\circ} \mathrm{C}$. Eggs spawned between August and November and camied for about 11 months. Although there is some migration to deeper waters from the end of September onwards, the species never disappears completely from the coast. In January, the migration back to shallow waters starts. The food consists of algae, smaller a nd larger mollusc s a nd crusta ceans, and dead a nimal matter of a ny kind. The species is predated by various fishes.

Size : Maximum body length 48 cm (males) and 46 cm (females), carapace length 22 cm (males) and 19 cm (females). Reports of total body lengths of $60-70 \mathrm{~cm}$ have to be considered with much resenve.

Interest to Fisheries: The early navigators who visited Juan Femandez like Jacob Roggeveen in 1722 and George Anson in 1741 already mentioned that the lobsters were found there "in such abundance near the water's edge [of Isla Robinson Crusoe] that the boat-hooks often struck into them, in putting the boats to and from the shore" (Wafter, 1776: 125, 126), also their excellent quality as food was commented upon. Molina (1808: 144; English translation of Molina's original (1782) Italian edition) mentioned that "Lobsters. are also found in such quantities that the fishermen have no other trouble to take them, than to strew a little meat upon the shore, and when they come to devour this bait, as they do in immense numbers, to tum them on their backs with a stick. By this simple method many thousands are taken annually, and the 'tails which are in high estimation, dried and sent to Chili" Albert (1898:6) mentioned that the species was usually fished at depths between 7 and 14 m . Skottsberg (1956: 178), almost 50 years later, stated that "nowadays the best catch is made in depths from 40 to 80 meters". Evidently, the intensity of fishing drove the species to deeper water, and the easy method of picking them by hand was replaced by lobster pots.

Fig. 190

By the end of the 19th century, canning lobstertails was tried without too much success; canned a nd live lobsters were then exported to Chile. In 1970, the main gear for catching the lobsters were lobster pots and they perhaps still are. Evidently, most lobsters are exported live to the mainland. According to FAO statistics, the annual catch of the species was 36 tons in 1987 and 29 tons in 1988. The fishery is of the greatest importance in the Archipelago and gives employment to a large part of the population. Experimental work on reproduction and development in captivity of this species is being conducted in Chile.

Protective measures are in force and well adhered to: (1) the minimum legal size is a carapace length of 11.5 cm , (2) ovigerous females have to be put back Into the sea, (3) the season is closed from 15 May to 30 September.
local Names: CHILE: Langosta de Juan Femandez, Langosta de tiempo (for larger forms).
Literature : Holthuis \& Sivertsen, 1967:25-32, pl. 5; Arana Espina et al., 1971-1973; Pita rro et al., 1974; Pavez Ca rrera et. al., 1974; Retamal, 1977:13-14, fig. 5; Willia ms, 1986:13, fig. 27.

Jasus (Jasus) lalandii (H. Milne Edwards, 1837)
Fig. 191
PALIN Jas 4

Palinurus lalandii H. Milne Edwards, 1837, Histoire naturelle des Crustacés, 2:293. Name placed on the Official List of Specific Names in Zoology in Opinion 612 (published in 1961).

Synonyms : Palinostus lalandii - Bate, 1888; Palinosytus lalandii - Stebbing, 1893. The question whether the specific name should be written lalandii or lalandei (named for Pierre de la Lande) has been definitely settled in favour of lalandii by the International Commission on Zoological Nomenclature in their Opinion 612. The specific name lalandii has, at times, been used for other species of the subgenus Jasus.

FAO Names: En - Cape rock lobster; Fr - Langouste du Cap; Sp - Langosta del Cabo.

lateral view (from Paterson, 1968)
dorsal view
Fig. 181

Type : Type locality: "Habite les côtes du cap de Bonne-Espérance" ($=$ Cape of Good Hope, South Africa). Type material in MP: 2 dry syntypes, the larger $(410 \mathrm{~mm})$ in good, the smaller (370 mm), in reasonable condition. The larger, no Pa. 437, chosen as the tectotype; the smaller, no. Pa.433, then becomes paralectotype.

Geographical Distribution : Restricted to southem Africa from Cape Cross, South West Africa (Namibia) at 21043'S 13058'E; around the Cape of Good Hope to Algoa Bay, Cape Province at 33050'S 25050'E (Fig. 192).

Habitat and Biology : The species lives in coastal waters at depth between 0 and 46 m , on rocky bottoms, sometimes with patches of sand and mud. The males moult between September and December. In the females, moulting occurs in April or May, after which copulation takes place. Ovigerous females are found from May to October.

Fig. 192

Size : Maximum total body length 46 cm , carapace length 18 cm .

Interest to Fisheries: The fishery for Jasus lalandii is of great importance throughout its range. According to FAO statistics, the catches amounted to 6689 tons in 1987 and 6820 tons in 1988. The fishery is camied out with lobster pots a nd hoop nets. The catch is sold fresh or cooked in local markets. Tails are exported frozen in the shell, orpeeled and canned.Experimental work on culture techniques for this species are underway in South Africa.

Protective measures for the species include a size limit (carapace length 8.5 cm), a closed season from 1 J uly to 31 October, bag limits for sportsfishemen (2 spec imens per day), a nd the prohibition of taking ovigerous females or softshelled specimens.

Local Names: FRANCE: Langouste du Cap; GERMANY: Kaplanguste, Afrika nisc he Languste, Rote la nguste; SOUTH AFRICA: Cape crawfish, Cape crayfish, Cape spiny crayfish, Cape rocklobster, Cape spiny lobster (English); Kaapse kreef, Kreef (Suidafrika ans); UK: South Afric an rock lobster, Cape spiny lobster.

Literature: Bamard, 1950:538-540, fig. 101a b; Willia ms, 1986:12, figs 24, 78a-b.

Jasus novaehollandiae Holthuis, 1963, Proceedings Koninklike Nederlandse Akademie Wetenschappen, (C)66:56.
Synonyms: In the literature prior to 1963 the species was usually indicated as Jasus lalandii, as it was not distinguished from the Cape rock lobster.

FAO Names: En - Southem rock lobster;
Type : Type locality: "Off the coast of New South Wales near Ma roubra, Sydney", east c oast of Australia. Holotype male in RMNH, no. D10642; paratypes in AM.

Geographical Distribution : Australia: from Cape Na tura liste, Westem Australia (at about 33ㅇㅇ; with a few records as far north as Dongara at 29015'S), along the entire coast of South Australia, Tasmania and Victoria to southem New South Wales (with a few records as far north as Sydney (33053 'S) and Port Stephens (at 32은'5) (Fig. 194).

Habitat and Biology : Depths range from 0 to 90 m (seldom 150 m); on a rocky substrate, especially on rocky onshore and offshore reefs with suffic ient hiding places. Mating and egg-laying occurs from May to July after the moult of the female; hatching between July and December or even later. The puenuli settle between May and September. The species is gregarious and noctumal. It is camivorous and feeds on small crustaceans, molluscs and echinoderms.

Size : Maximum total body length about 51 cm , maximum carapace length about 20 cm . Ovigerous femalesabout 5 to 16 cm carapace length.
(from McCoy, 1887)

Fig. 193
interest to Fisheries: The spec ies is fished for throughout its range. Before 1916, a bout 90% of the a nimals were caught in depths less than 20 m , while in 1925 fishing wascaried out in depths of 65 m . Around 1966 the annual catch of the species was about 5500 tons.Recent FAO statistics do not mention the species and it is likely that its catches have been mistakenly added to those of J asus wemeauxi (q.v.). Fished mostly with baited traps (lobster pots, beehive pots, or cray pots) and hoop nets. The animals are marketed fresh on local markets, cooked whole orastailson markets farther away, and exported as frozen tails. mainly to the USA

Local Names: AUSTRALA: Southem rock lobster (official Australian name), Cray, Red lobster, Southem crawfish, Southem (ma rine) c rayfish, Southem spiny lobster, Ta sma nian crayfish, Ta smanian lobster, Melboume crayfish (name given to the species by the fishmongers; see McCloy, 1887:142).

Literature : McCoy, 1887:(15)189-93, pls 149, 150 (as Palinurus lalandi); Hale, 1927:65-70, figs 62-7; Williams, 1986:13, figs 25,78c

Fig. 195
PALIN Jas 1
Palinurus paulensis Heller, 1862, Verhandlungen zoologisch-bota nisc hen Gesellsc haft Wien, 12:525.
Synonyms : The species has often been synonymized with Jasus lalandii, and reported upon under that name (or as Palinurus lalandii).

FAO Names : En - St.Paul rock lobster, Fr - Langouste de St. Paul; Sp - Langosta d‘e St. Paul

Type : Type locality: "St. Paul", [=St Paul Island in the southem part of the Westem Indian Ocean, at $38^{\circ} 44^{\prime} \mathrm{S} 77{ }^{\circ} 30^{\prime} \mathrm{E}$]. Syntypes in NMW.

Geographical Distribution : The species is restricted to St. Paul and Amsterdam Isla nds in the southem Indian Ocean (Fig. 196). A report of the catch of a single lobster in Kerguelen Islands by Aubert de la Rue (1954: 119) seems very reliable and is well documented (the specimen was brought up with algae entangled in the anchor of the ship "Lozere", a catch witnessed by A. Berland); but this evidently is a freak occurence, as no lobster catc hes have been reported from the Kerguelen eitherbefore or after this event.

Habitat and Biology : The species lives at depths between 0 and 60 m , on rocky orgravel bottom, being most numerousin the kelp zone between 10 and 35 m . Egg-laying starts in May, and ovigerousfemales have been observed until November, or exceptionally early December. Females are caught from May to October, while males dominate in most catchesfrom November to April The animals are noctumal and feed on plants and (dead) animal matter.

Size: The largest specimen ever recorded had a total body length of 37 cm . Males have been reported to attain total body lengths of 14 to 34 cm (carapace length 6 to 13 cm), and females, total body lengths of 9 to 24 cm (carapace lengths 4 to 9 cm). The average sizes are 21 to 28 cm (males), 19 to 21 cm (females). The specimens from Amsterdam Island on the average are slightly smaller than those from St. Paul Island.

Fig. 195

Interest to Fisheries: The fishing grounds are restricted to the islands of St. Paul and Amsterdam, the shorelines of which are respectively 12 and 27 km long, and the area in which the speciescan be fished is less than 1 km wide. Early visitors of the then uninhabited islands caught the lobsters by hand in very shallow water. In the crater lake of St. Paul, which is a bay opening to the sea, the lobsters could be brought to the hot springs in the craterbottom without taking them out of the water, and cooked there. In 1928, a rather large fishing enterprise was started with lobster pots. The settlement on St. Paul consisted of a canning factory and the houses for the fishermen and employees of the factory, about 120 people in all. In 1931, the project was abandoned because of health conditions (a beri-beri epidemic). Later attempts (1938-1 939, 1948-1949, 1949-I 950) with factory ships were also unsuccessful. In 1950, a new

Fig. 196 French factory ship, the SAPMER, equipped with deep-
freeze installations, operated near the islands. The lobsters were headed, washed and frozen on board. Six "campagnes" were camied out between 1950 and 1956, each providing between 214 and 255 tons of lobster tails (the equivalent of 5000 tons of whole lobsters). Fearfor overfishing made that several protective measures have been suggested.

Local Names : FRANCE: La ngouste australe; USA: St.Paul spiny lobster.
Literature : Grua, 1960:15-40, figs 1-4; Grua, 1963:1-35, figs I-2, 1-14; Holthuis \& Sivertsen, 1967:18-25, pl. 4; Fisc her \& Bianchi (eds), 1984:vol. 5; Willia ms, 1986:14, fig. 29.

Fig. 197

PALIN Jas 6

Jasus tristani Holthuis, 1963, Proceedings Koninklijke Nederlandse Akademie Wetenschappen, (C)66:57.
Synonyms: In older literature the species is sometimes referred to as J asus (or Palinostus, or Palinosytus) lalandii.
FAO Names : En - Tristan rock lobster, Fr-Langouste de Tristan; Sp - Langosta de Tristan.
Type : Type locality:"Tristan da Cunha", in net off beach. Male holotype in MT; paratypes in MT, RMNH.

Geographical Distribution : Southem Atlantic Ocean. On the shelf of the islands of the Tristan da Cunha group (viz., Tistan da Cunha, Inaccessible Isla nd, Nightingale Island, and Gough Island), as well as on Vema Sea Mount, 1680 km ENE of Tristan da Cunha (Fig. 198).

Habitat and Biology : Depth range from 0 to 200 m ; the greatest concentration of animalsoccursbetween 20 and 40 m . The spec ies is found on rocky bottoms, sometimes with gravel or shells, in the kelp zone. Ovigerous females were taken in September.

Size : Maximum total body length, 355 cm (males), and 27 cm (females); maximum carapace length, 14.5 cm (males) and 10 cm (females). Average carapace length, 8 to 9 cm . Pueruli are 2 to 3 cm in length.

Interest to Fisheries : Until about 1950, the fishery of the species was oriented, almost exclusively towards local consumption. But in 1949, a Tristan da Cunha Exploration (later. Development) Company wasfounded and the lobsterfishery was developed on a commercial basis, a cold storage and a canning plant were built, and one fishing vessel was operated.

Fig. 198

Diesel-powered dinghies were used to bring the catch to the mother vessel for.cold storage and subsequent delivery to the factory. The volc anic eruption of 1961 destroyed the shore installations and the company, which had not been very successful a nyhow, was liquidated in 1962. In 1963, a new fishing compa ny, the South Atla ntic Isla nds Development Comoration, started operations after the islanders had retumed to Tristan da Cunha. A harbour was built and in 1966 a new factory was established. Two fishing vessels with refrigeration facilities on board, worked with a number of dinghies, and resumed fishing operations in 1963. Later the largerfishing vessels were modemized, and the fleet was enlarged in 1971 to 4 vessels with facilities on board for heading the lobsters and freezing the tails. The number of vesselswasagain reduced in 1978, when there were aga in two. They were based in Cape Town and operated nearthe Inaccessible, Nightingale and Cough Istands. They used dinghies and latermotorboats to put out and retrieve the nets and traps. From Tristan da Cunha Island, the dinghies and motorboats worked from the shore, the catch being processed in the factory there.

The gear used in the early days was a piece of bait on a long string and weighted with a stone. The bait was lowered into the sea and aftera few minutes hoisted to the surface. The lobsters clinging to the bait (often like "a bunch of grapes") were then taken. Later, the dinghies and motorboats used hoop-nets and since 1967, metal trapson long lines. The inclement weather conditions allow only about 70 fishing days a year.

The yield in 1960-1961 was 52.5 tons of tails. Pollock (1981:49) estimated total annual yield at 500-800 tons. FAO statistics give the annual catch for 1987 as 405 tons, and for 1988 as 441 tons.

Local Names: TRISTAN DA CUNHA (UK): Crawfish, Tristan crawfish, Tristan da Cunha crayfish, Tristan da Cunha Spiny

Literature : Holthuis \& Sivertsen, 1967:7 18, text-figs 1,2, pls. 1-3; Roscoe, 1979:1-47, figs 1-3; Pollock, 1981:49-66, figs 1-11; Williams, 1986: 14, fig. 28.

Subgenus Sagmariasus nov.

Type spec ies : Palinurus vemeauxi H. Milne Edwards, 1851. Gender masculine.
This new subgenus of the genus Jasus differs from the nominotypical subgenus by the absence of any sculpturation on the abdomen: the characteristic scalloped pattem found in all species of Jasus s.s. is completely lacking here. Furthemore, the rostrum of Sagmariasus is as large and strong as the frontal homs and is of the same shape, forming with the frontal homs a tridentate plate. In Jasus s.s. the rostrum is a small spine, much smaller than the frontal homs and placed on a much lower level. In Sagmariasus the antennulae are much less slenderthan in Jasus s.s.

The new subgenus includesa single species, J asus (Sagmariasus) verreauxi (H. Milne Edwards, 1851), which is itstype.

Derivatio nominis the greek word Sagmarion, meaning packhorse, iscombined here with J asus. The name alludes to the vemacular name "Packhorse crayfish" given in New Zealand to large specimensof the type species. The derivation of the generic name Jasus has not been given by its author, but it may referto lasus, the latin name of a locality in Asia Minor west of the town of Milas in south west Turkey ($377^{\circ} 19^{\prime} \mathrm{N} 27^{\circ} 48^{\prime} \mathrm{E}$).

J asus (Sagmariasus) verreauxi (H. Milne Edwa rds, 1851)
Fig. 199

PALIN Jas 7

Palinurus vemeauxi H. Milne Edwards, 1851, Annales Sciences Naturelles, Paris, Zool., (3)16:255, 290, pl. 8 fig. 15.

Synonyms : Palinurus huegelii Heller, 1862; Palinurus tumidus Kirk, 1880; Palinurus giganteus Kirk, 1880; Jasus huegelii - Ortmann, 1891; Palinosytus huegelii Stebbing, 1893:

FAO Names: En - Green rock lobster; Fr-Langouste d'Océanie; Sp - Langosta de Oceania.

Type : Type locality of Palinurus vemeauxi: not mentioned in the original description but Gruvel (1911: 15) made clear that H. Milne Edwards' type material came from New South Wales, Australia and is in MP, evidently no longer extant (not located in 1989).

The type locality of Palinurus huegelii: "wurde von Baron Hügel im indischen Ocean gesammelt" (Heller, 1862:393). This information is obviously erroneous as the species does not occur in the Indian Ocean. Kar Alexander Anselm Freiherr von Hügel, baron of the Geman Empire (bom in Regensburg (= Ratisbon), Bavaria, 25 April 1795, died in Brussels, Belgium, 2 J une 1870) spent most of his youth in Austria and was in the service of the Austrian govemment until his retirement in 1867. Being much interested in horticulture and natural history, he travelled between 1830 and 1836 to England, France and India. He left India in September 1833 and then visited the Philippines, Malaysia, the NetherlandsEast Indies, the South Pacific but also "the Swan river, King George's Sound, and Sydney in Australia; Van Diemen's Land [=Tasmania], New Zealand, Norfolk Island" (A. von Hügel, 1903:73). His visits to New Zealand and Australia took place between September 1833 and 6 October 1834, at the last mentioned date he left Sydney for the Philippines, from where he retumed home via China, Malaysia and India. The type of Palinurus huegelii can originate either from the Sydney area orfrom New Zealand, as those are the two only localities visited by Von Hügel, where the species occurs. The type material, probably a holotype, is in NMW.

Fig. 199

Type loc ality of Palinurus tumidus (and P. giganteus): "Wha inga roa, a small ha rbour on the West Coast of the North Island", New Zealand (Kirk, 1880:313), collected in 1877 by J. Buchanan. Holotype male, dry in DMW, no. 5700.

Geographical Distribution : New Zealand (all around North Island, but most common on the north coast; rare in South Island waters, with a few records from the west, north and north east coast and one from the south point), Kermadec Islands (rare, Chilton (1911:549) reported on 2 specimens from Sunday (=Raoul) a nd Denham Islands, but no recordshave been published from the Archipelago since), Chatham Islands (Michael \& Booth, 1985:18). Australia (from southem Queensland to Victoria; a few records from Tasmania) (Fig. 200).

Habitat and Biology : The species usually occurs in depths between 0 and 155 m , but very few data on depth are published. Booth (1986:2212) indicated that specimens with a tail length of lessthan 21.6 cm occur at depths between 20 and 130 m , and that the ma in fishery takes place between 50 a nd 150 m . The substrate is said to be usually sand, gravel, or rocks. Smaller specimens seem to be more frequent on a rocky bottom. Females

Fig. 200 are ovigerous from late September to J anuary.

Size : The maximum total body length is 60 cm (carapace length about 25 cm). Ovigerous females with a total body length of 38 to 56 cm have been reported (carapace lengths 16 to 24 cm). This species, probably together with Homarus americ anus, is the largest known dec a pod as far as body length is concemed (see Ka estner, 1970:274).

Interest to Fisheries: The species is fished in the northem part of its range both in New Zealand and Australia. Eighty percent of the New Zealand catchesare taken on the north coast of North Island between Cape Maria van Diemen and North Cape; the rest of the catchescome mainly from the north coast between North Cape and Cape Runaway (Kensler, 1967:419). Booth (1986:2213) reported that "the species is caught most commonly along the north and east coasts of North Isla nd north of C ape Tuma ga in [$=40 \div 29^{\prime}$ S]. In Australia, the fishery for this species a lso is c oncentrated in the northem part of its range, na mely north and south of Sydney (Port Stephens, 32042'S, to Ba teman's Bay, 3545'S). Ogilby (1893:201) remarked that "so abundant is this C rayfish, and with proper legislative precautions, so apparently inexha ustible the supply, that at but little expense a great and profitable canning industry might with ease be established". Gruvel (1911:16) described the fishery for this spec ies near Sydney, ca ried out with motor boats with a crew of 2 to 4 men, putting out lobster pots a nd trammel nets among the rocks in coastal waters. Dakin, Bennett \& Pope (1969:183) mention that in New South Wales the species is mostly taken with lobster pots, but that it a lso "constantly falls a prey to the wiles of the spear-gun fisherman", while "we have seen an expert catch over a dozen with his hands in an hour ortwo while wading amongst the weed along the edge of a rock platform at low water". The same authors also mention that the animals a re preferably shipped alive to the markets, since by freezing and cooking much of the taste is lost. Kensler \& Skrzynski (1970:46-54) observed that in New Zealand lobster pots are used most, but that lobsters are also obta ined by trawling and with Danish seines. Asto protective measures, in New Zeala nd the size limit is 21.6 cm ta il length,or cara pace length 16.3 cm (males) and 15.5 . cm (females), while also the catch of ovigerous females is prohibited.

Asfarasthe commercial importance of Jasus vemeauxi in New Zealand isconcemed, this is dwarfed when compared to that of J. edwardsii; its a nnual catch being less than 1% of that of J. edwardsii (see Kensler \& Skrzynski, 1970:46). Between 1962 and 1966 these a nnual catches of J. vemeauxi in New Zealand varied between 23 and 66 tons, with an average of 36 tons. The FAO Yearbook of Fishery Statistics gives the following landings (in metric tons) for New Zealand:10 tons in 1987 and 6 tons in 1988. The annual landings (in tons) for the species in Australia are much higher, in Fishing Area 81 (=New South Wales) they totalled 200 in 1987 and in 1988, and in the area 57 (=Victoria, Tasmania, South Australia a nd Westem Australia) 5000 tons in both these years. Since J. vemeauxi is absent or scarce in fishing a rea 57 and asJ. novaehollandiae is not represented in the FAO statistics, it seems most likely that these Australian figures comespond to \boldsymbol{J}. vemeauxi and \boldsymbol{J}. novaehollandiae combined, and thus give a wrong impression.

Local Names: AUSTRALA: Eastem rock lobster (official Australian name), Australian crayfish, Common crayfish, Common Sydney crayfish, Eastem crayfish, Green cray, Green crayfish, Marine crayfish, New South Wales spiny lobster, Sea crayfish, Sydney crayfish; NEW ZEALAND: Pa ckhorse crayfish, Green crayfish, Green lobster, Pa ckhorse lobster, Smooth-tailed crayfish; Pawharu (Maori)

Literature : Kensler, 1967:207-10, pl. 1.
Remarks: The name Palinurus giganteus was only qualifiedly given by Kirk, 1880:313 ("although perhaps, giganteus, would be quite as appropriate"). It falls as an objective synonym of Palinurus tumidus Kirk.

J ustitia Holthuis, 1946,Iemminckia,7:113,115.Genderfeminine.
Type Species: by original designation: Palinurus longimanus H. Milne Edwards, 1837.
Synonyms : Nupalirus Kubo, 1955, LoumalTokyo University Fisheries, 41(2): 185. Type spec ies, by origina I designation and monotypy: Nupalins japonicus Kubo, 1955. Gender masculine.

The genus includes three species, none of which so far is of commercial importance; the possibility that they will ever be of interest to fisheries is very slim.

Key to Species:

1a. Frontal homs with three dorsal teeth Anterior margin of carapace between the small, spiniform rostrum and the frontal homs without teeth. Carapace without spines behind the cervical groove (Fig. 201a); 6 or 7 transverse grooves on the second to fifth abdominal somites, all reaching to the base of the pleura (Fig. 202a); Indo-West Pacific \qquad . japonica
(Fig. 203)
1b. Frontal homs with. two dorsal teeth. Anterior margin of carapace with several sha mply pointed small teeth between the small spiniform rostrum and the frontal homs. Carapace behind cervical groove with spines (Fig. 201 b); 4 or 5 transverse grooves on the second to fifth abdominal somites, not all reaching to the base of the pleura, and some intemupted dorsally (Fig. 202b)

2a. Atlantic species \qquad J. longimanus
(Fig. 205)
2b. Indo-West Pacific species.. J. mauritiana

a. J. japonica
carapace (dorsal view) (from Crosnier, 1977) Fig. 201

b. J. mauritiana
(Fig. 207)

1st and 2nd, and 5th and 6th abdominal
somites in lateral View (from Gordon, 1960)
Fig. 202

Nupalinus japonicus Kubo, 1955, Loumal Tokyo University Fisheries, 41(2); 185, pls. 12,13.

FAO Names: En - J apanese furrow lobster.
Type : Type locality: "about 8 miles off Shimokawaguchi (Shimizu city), Kôchi Pref., Japan". Holotype male "in the biological museum of Kôchi Prefecture Women's University"

Geographical Distribution : Indo-West Pacific region: Madagascar(N.W. coast near Majunga, and SE. coast nearFort Dauphin), Ma uritius, Reunion, J a pan (off Pacific coast of central and southem Japan from Kii Peninsula to the south coast of Shikoku Island; Bonin Islands) (Fig. 204).

Fig. 204

(after Baba et al, 1986)
Fig. 203

Habitatand Biology : Depth range from 40 to 200 m . According to Crosnier \& J ouannic (1973: 13) the spec ies seems to prefer rocky substrates.

Size : Maximum total body length 24 cm ; usually not more than 20 cm . Carapace length 6 to 9 cm .
Interest to Fisheries: At present none. Specimens are occasionally taken in lobster pots and trap nets; the habitat evidently is inaccessible to trawls. Sekiguchi \& Okubo (1986:21) reported an annual catch of 4 to 41 specimens (between October and April) of thisspecies in Mie Prefecture, Japan. Many of the specimenswere placed in the several public aquaria in Japan.

Local Names: JAPAN: Ryoma ebi
Literature: Gordon, 1960, pp. 296-305, figs l-6; Baba et al., 1986, pp. 154, 155,282, fig. 105.

Palinurus longimanus H. Milne Edwards, 1837 Histoire naturelle des Crustacés, 2:295.

Synonyms: Sometimes when used with-the generic name Justitia, the specific name is inc orrectly spelled longimana, probably beca use Justitia is a feminine name. However, as longimanus is a noun, its ending is not to be changed with the gender of the generic name (International Code, Art. 31(b)ii).

FAO Names : En - West Indian furrow lobster, Fr-Langouste caraibe; Sp - Langosta de muelas.

Type : Type locality: "Habite les Antilles". Type material in MP, no. Pa 421, dry in rather good condition. This type specimen, if not the holotype, is here selected the lectotype. Not located in 1989.

Geographical Distribution : Westem Atlantic region: Bermuda, S. Florida (USA), Caribbean arc from Cuba to Isla Margarita (Venezuela), Curaçao, and E. Brazil (Espinitu Santo State) (Fig. 206).

Habitat and Biology :Depth range from 1 to 300 m, usually between 50 and 100 m . Inhabits the outer parts of coral reef sopes.

Size : Maximum total body length a bout 15 cm , usually up to 10 cm .

Interest to Fisheries: Very slight. The species is not the object of a special fishery, but is sometimes caught inc identa lly in lobster pots at greater depths. Morice (1958:86) lists the species among the edible Crustacea of Martinique, and states that it is consumed locally by the fishemen, but appears hardly, if ever, on the ma rkets.

Fig. 205
Local Names: CUBA: Camarón de lo alto; CURACAO: Kreef di laman hundu (= deep sea lobster), Kreef diawa blau (= blue water lobster) (Papiamento language); GUADELOUPE: Criquet (St. Barthelemy); MARTINIQUE: Homard bresilien; USA: Long-armed lobster, Longarmed spiny lobster.

Literature: Fischer (ed.), 1978: vol. 6.

Fig. 206

Palinurus longimanus mauritianus Miers, 1882, Proceedings Zoological Society, London, 1882:540, pl. 36 fig. 1.

Synonyms: Justitia longimana mauritania - Holthuis, 1946.
FAO Names: En - G ibbon furrow lobster; Fr-Langouste gibbon.
Type : Type locality: Ma uritius,"in a fishing-net at a depth of 40 fathoms" (=73 m). Holotype male, in BM, no 81.12 (dry, condition fair).

Geographical Distribution : Indo-West Pacific region: Westem Indian Ocean (Mauritius, Reunion), Hawa iian Archipelago. Larvae supposed to be of this species have been reported from the Philippines, the Gilbert Islands and Tahiti (Fig. 208).

Fig. 208

(after Miers, 1882)

Habitat and Biology : Depth range from 30 to 200 m . The species seems to prefer rocky or coral substrates.
Size : Maximum total body length 16 cm , carapace length 6 cm ; average carapace length 4 to 5 cm .
Interest to Fisheries: The spec ies is not actively fished for. Experimental fishing with lobster pots a nd tra mmel nets nearReunion resulted in small catches. Its small size, a pparent sc arcity a nd habitat (rough bottom and relatively great depth) make it an unlikely subject for a fishery.

Local Names: USA: Long-handed spiny lobster, Ula (Hawaii).
Literature : Fischer \& Bianchi (eds), 1984:vol 5.

Linuparus White, 1847, List of the specimens of Crustacea in the collection of the British Museum: 70. Gender masculine. Name placed on the Official List of Generic Names in Zoology in Opinion 519 (published in 1958).

Type Species: by monotypy: Palinurus trigonus Von Siebold, 1824.
Synonyms : Podocratus Geinitz, 1849, Das Oua dersandsteingebirge oder Kreidegebirqe in Deutschland:96. Type species, by monotypy: Podocratus duelmense Geinitz, 1849; gender masculine.
Thenops Bell, 1858, A monograph of the fossil malacostracous Crustacea of Great Britain, (1):33; type species, by monotypy: Thenops scyllariformis Bell, 1858; gender masculine.
Avus Ortmann, 1891, Zooloaische J ahrbücher. Systematik, 6: 15,21; type species, by monotypy: Palinurus trigonus Von Siebold, 1824; gender masculine.
Eolinuparus Mertin, 1941, Nova Acta Leopold ina, (n.ser... 10(68):215; type spec ies, by original designation: Thenops catteri Reed, 1911; gender masculine.

Apart from a great number of fossil species, the genus Linuparus has three recent species, all are dealt with here.

Key to Recent Species (after Berry \& George, 1972: 18).

1a. Submarginal posteriorgroove of carapace much wider medially than laterally (Fig. 209a). Vestigial pleopods present on first abdominal segment of female \qquad L somniosus
(Fig. 211)
1b. Submarginal posterior groove of carapace as wide medially as laterally (Fig. 209b). No pleopods on first abdominal segment of female

2a. Epistomal ridges coarsely granulated, without an acute well developed anterior tooth (Fig. 210a). Chitinous margin of male genital aperture with toothed median border and entire lateral border L sordidus
(Fig. 213)
2b. Epistomal ridges feebly granulated, with an acute well developed anterior tooth (Fig. 210b). Chitinous margin of male genital aperture toothed throughout its length

L trigonus
(Fig. 215)

carapace (dorsal view)
Fig. 209

a. L sordidus

b. L trigonus

Linuparus somniosus Berry \& George, 1972
Fig. 211

Linuparus somniosus Bery \& George, 1972, Zoologische Mededelingen, Leiden, 46:18, text-fig-1, pls 1,2.

Synonyms: In older literature the species was sometimes incorrectly identified as L trigonus.

FAO Names : En- African spear lobster; Fr Langouste javelot d'Afrique; Sp - Langosta jabalina africana.

Type : Type locality: "N.E. of Bazaruto Island", Natal, South Africa, 234 m depth. Holotype female in BM, no. 1971: 120; 2 paratypes BM, no. 1971:121; 2 paratypes RMNH, nos D 27137 and D 27138 (all types in alcohol, condition good).
lateral view

antennal flagellum

Fig. 211

Geographical Distribution : Off the east coast of Afric a from Kenya to Natal, South Africa (Fig. 212).

Habitat and Biology : Depth range from 216 to 375; on rough substrate with sand and mud.

Size : Maximum total body length about 35 cm , carapace length 14 cm ; average carapace length about 10 cm .

Interest to Fisheries: At present very minor. The species is not fished commercially in most of its range, but according to Iva nov \& Krylov (1980:286) it supports a commercial fishery in Tanzanian waters, where, off Zanzibar, catc hes of over $10 \mathrm{~kg} / \mathrm{h}$ were taken by bottom trawls. The animals are mostly marketed fresh

Local Names : MOZAMBIQUE: Lagosta lanceira.
Literature : Fischer \& Bianchi (eds), 1984:vol. 5; Williams, 1986: 14, fig. 30.

Fig. 212

Linuparus sordidus Bruce, 1965, Zoologische Mededelingen, Leiden, 41(1): 1, text-fig.1, pls. 1,2.

FAO Names: En - Oriental spear lobster
Type : Type locality: "South China Sea, 19" 40.0^{\prime} N 1130 41. 0'E to 19039.5’N 113036.0’E, 182-172 fathoms [= 315-333 m], coarse sand". Holotype female in BM, no. 1965.5.21.1 (in alcohol, condition fair); paratype in RMNH, no D 21213 (in alcohol, condition good).

lateral view

Geographical Distribution : Indo-West Pacific region: Taiwan, South China Sea and N.W. Australia (off Port Hed land, Westem Australia) (Fig. 214).

Habitat and Biology : Depth range from 200 to 333 m; bottom mud and limestone rocks.

Size : The total body length (including the antennae) of the holotype is 38 cm , carapace length 7 cm .

Interest to Fisheries: None at present. However, the size of the specimens and the fact that they occur in not very deep water, suggest that, once the right fishing grounds have been found, the spec ies may be commercially exploited, like \mathbf{L} trigonus.

Local Names: AUSTRAபA: Spear lobster
Literature : Original description; George, 1983: 16-20; Willia ms, 1986.15, fig. 32.

dorsal view
Fig. 213

Fig. 214

Palinurus tigonus Von Siebold, 1824, De Historia Naturalis in Laponia statu: 15. Name placed on the Official List of Specific names in Zoology, in Opinion 519 (published in 1958).

Synonyms: Avus trigonus - Ortmann, 1891
FAO Names: En - Japanese spear lobster.
Type : Type locality: J apan, possibly neighbourhood of Naga saki; restric ted to Omura Bay nearNagasaki, Kyushu, Japan, by Holthuis (1966:265-266). Lectotype in RMNH; no. D 5611 (dry, condition good, paralectotypes in RMNH, BM, USNM).

lateral view

Geographical Distribution: Indo-West Pacific region: J apan, Korea, China, Taiwan, Philippines, eastem and westem Australia (Fig. 216).

Habitat and Biology : The species has been reported from depths between 30 and 318 m . The substrate on which it is caught is described as sand or mud, sometimes with shells; some older records indicate rocky environments.

Size : Maximum total length 47 cm ; carapace length 8 to 18 cm .
Interest to Fisheries: Already H. Burger around 1830, sa id that the species is scarce in Japan, but when caught, is used as food (Holthuis, 1966:266). Also in Korea and China the species is sold on the markets as food, but is nowhere plentiful. Chang (1964: 11) remarked that it is very scarce in Taiwan and on the markets it is pric ed cheaper than the other spiny lobsters because of its coarse flesh and thick shell. Motoh \& Kuronuma (1980:56) reported that in the Philippines the species" is rarely offered for sale in the market", and that it is caught there by commercial trawlers. George (1983: 17) remarked that in Westem Australia, off Port Hedland, Linuparus trigonus wastrawled with deepwater Engel trawls in 200 m of water "in sufficient quantities to provide occasional excellent meals for the crew and that in J apan this same species IS the basis for a small commercial enterprise". Off Townsville, Queensland, Australia, the species "occurs in densities high enough to support an occasional fishery. The fishery is confined to a small, well-defined area of the continental slope, about 70 km by 20 km , in depths of 200 to 250 m . Here \mathbf{L} trigonus is taken mainly by prawn trawlers during their off-season" (T.J. Ward, in press).
local Names: AUSTRALA: Spear lobster, Champagne lobster, Barking crayfish; J APAN: Hako-ebi (=box lobster), Ishi-ebi (= stone lobster); PHILPPINES: Uson (llongo).

Fig. 215

Pallinurus Weber, 1795, Nomenclatorentomologicus:94. Gendermasculine. Name emended underthe plenary power of the Intemational Commission on Zoologic al Nomenclature to Palinurus, and placed on the Official List of Generic Names in Zoology, in Opinion 519 (published in 1958).

Type Species: by monotypy: Astac us elephas Fabric ius, 1787
This is the oldest known among the Palinurid genera, and has a restricted distribution:it is found only in the Eastem Atlantic, Mediterranean, and off south east Africa. Five species are known, all of present or potential commercial interest.

Key to Species :

1a North-eastem Atlantic, from S. Norway to the Cape Verde Islands. Abdominal somites with a single distinct transverse groove (Fig. 217a)

2a. Propodus of first pereiopod of male with an anterodorsal spine (Fig. 218a). C olour dark brown or purple; abdominal somites 2 to 5 each with a distinct pair of large white spots, somite 6 with a single posteromedian white spot (Fig. 217a). Legs longitudinally streaked with brown and yellowish. Depth 0 to 70 m .
P. elephas
(Fig. 224)
2b. Propodus of first pereiopod of male without anterodorsal spine (Fig. 218b). Colour a pink or reddish marbled with white; abdominal somites iregularly marbled. Legs ringed with whitish a nd pink. Depth 40 to 600 m or more

a. P. elephas
a. P. elephas

b. P. delagoae abdomen (dorsal view)
b. P. mauritanicus
c. P. charlestoni

Fig. 218

3a. Frontal homs flat, their inner margins forming with the anterior margin of the carapace a sha llowly concave arc (Fig. 219a). Carapace in adult males strongly swollen. Ca apus of first leg without anterodorsal spine (Fig. 218b). Eastem Atlantic from W. of Ireland to S. Senegal, including the westem Mediterranean, depth from 40 to 600 m .
P. mauritanic us
(Fig. 228)
3b. Frontal homs with the innermargins and the anterior margin of the carapace forming a V -shaped line (Fig. 219b). Carapace in adult male not swollen. Capus of first male leg with an anterodorsal spine (Fig. 218c). Cape Verde Islands, 50 to 300 m
P. charlestoni
(Fig. 220)
1b. South and Southeast Africa (False Bay, South Africa, to Mozambique, S.E. Madagascar). Abdominal somites 2 to 5 with two transverse grooves (Fig. 217 b, c)

4a. Anterior groove of abdominal so mites 2 to 5 shorter and less distinct than the posterior groove (Fig 217b). Carapace before cervical groove naked. Merus of walking legs cylindric al and naked \qquad P. delagoae
(Fig. 222)
4b. Anterior groove of abdominal somites 2 to 5 very deep and as hairy as the posterior groove (Fig. 217c). Carapace in front of the cervical groove pubescent. Merus of walking legs triangular in transverse section, the flat outer surface pubescent
P. gilchristi
(Fig. 226)

a. P. mauritanicus

$$
\begin{aligned}
& \text { b. P. charlestoni } \\
& \text { anterior pat-t of carapace } \\
& \text { (dorsal view) }
\end{aligned}
$$

Fig. 219
-

Palinurus charlestoni Forest \& Postel, 1964
Fig. 220
Palinurus charlestoni Forest \& Postel, 1964, Bulletin Museum National d'Histoire Naturelle. Paris, (2)36: 100, 102, figs 2, 5, 7.

FAO Names: En - Cape Verde spiny lobster, Fr-Langouste de Cap Vert; Sp - Langosta de Cabo Verde.
Type : Type locality: "lles du Cap Vet-t, groupe nord, de St. Vincent à Sal, entre 180 et 200 m ". Holotype male in MP, no. Pa. 331; paratypes in MP, Pa. 84, Pa. 330; RMNH D. 19544. All type material in alcohol, in excellent condition.

Geographical Distribution : So far known only from Cape Verde Islands (Fig. 221).

Habitat and Biology : Depth range from 50 to 300 m , perhaps deeper, on an uneven rocky bottom, sometimes on steep slopes.

Size : Maximum total body length to 50 cm , average length to 40 cm .

Interest to Fisheries : Minor. In 1963 the first attempts were made for a commercial fishery, using lobster pots. In the most productive areas, two lobsters were caught per pot perday. Due to the rough bottom, the loss of pots was rather substantial. Longhurst (1970:277) reported actual la ndings of 10 to 20 tons.

Literature : Original description. Fischer, Bianchi \& Scott (eds), 1981:vol. 5; Williams, 1986: 16, fig. 36.

Fig. 220

Fig. 221

Palinurus delagoae Ba rna rd, 1926
Fig. 222
PALIN Palin 4
Palinurus gilchristi delagoae Ba ma rd, 1926, IransactionsRoyal Society SouthAfrica, 13: 123, pl. 11.
Synonyms : Palinurus gilchristi natalensis Ba mard, 1926.
FAO Names: En - Natal spiny lobster; Fr-Langouste du Natal; Sp - Langosta del Natal

Type : Type locality: of \boldsymbol{P}. gilchristi delagoae: off Delagoa Bay, S. Mozambique, "25058'S., 3305'E., 228 metres, sand and shell"; male type evidently lost, a neotype selected by Bery \& Plante, 1973:374; the neotype. locality is: "off Tongaat, Natal, 324 m", South Africa. Neotype male in SAM, no. A 13179 (in alcohol condition good).

Type locality of P. gilchristi natalensis: "Natal coast, from off Umkomaas River in the south as far north as off Tugela River and off Delagoa Bay, 100-260 fathoms [=183480 ml ";syntypes in SAM.

Geographical Distribution

Indo-West Pacific region: East coast of Africa from 170S (Mozambique) to 30ㅇ (Natal, South Africa), south east Madagascar (Fig. 223).

Habitat and Biology : Reported from 0 to 400 m depth, usually between 180 and 324 m . Off South Africa it is found, on muddy or sandy sub-strates, sometimes with coral fragments; off Madagascar it has been reported from a rocky substrate The species is gregarious and seems to migrate; it can sometimes be caught in enormous numbers.

Fig. 222

Size : Maximum total body length 35 cm , carapace length to 17 cm ; average carapace length about 10 cm .

Interest to Fisheries: Off south east Africa the species is taken by trawlers, while off Madagascar, lobster pots were used during experimental fishing. It is marketed frozen. The annual catch was 89 tons in 1987 and 25 tons in 1988 (FAO Yearbook of Fishery Statistics, 1990).

Local Names: MOZAMBIQUE: Lagosta de profundidae:
Literature : Bery \& Plante, 1973:374-7, text-fig.1, pl. 19; Fischer \& Bianchi (eds), 1984:vol.5; Williams, 1986: 15, fig. 33

Fig. 223

Palinurus elephas (Fa bric ius, 1787)
Astacus elephas Fabricius, 1787, Mantissa Insectonum, I :331. Name placed on the Official List of Species Na mes in Zoology in Opinion 519 (published in 1958).

Synonyms : Cancer elephas - Gmelin, 1789; Cancer locusta Wulfen, 1791 (not Cancer locusta Linnaeus, 1758) (= Gammarus locusta (L.)); Palinurus quadricornis Fabricius, 1798; Palinurus vulgaris Latreille, 1803; Palinurus locusta - Olivier, 1811; Palinurus langusta Rafinesque, 1814 (nom.nud.); Pagurus maculatus Bowdich, 1825 (not Pagurus maculatus Risso, 1827 (= Paguristes eremita (L., 1767)); Palinurus marinus Bate, 1868. "[Palinurus] adriaticus, Costa" was cited by Carus (1885:487) under Palinurus and treated as a good species of that genus. Stephensen (1923:77) treated "Palinurus adriaticus Costa" as a synonym of P. elephas (which he indic ated as P. vulgaris). However, there exists no Palinurus adriaticus Costa, as Costa never described such a species. He did describe Palaemon adriaticus in "Fauna del Regno di Napoli" (Crostacei; Pandalus):7 in 1844-1847. It is clearthat with Palinurus adriaticus Carus really meant Palaemon adriaticus Costa, since he cited textually Costa's diagnosis for that species. It is interesting that Carus (1885:474) listed Palaemon adriaticus Costa under the species incertae of the genus Palaemon, a ga in with the same diagnosis.

Fig. 224
anterior part of carapace (dorsal view)
FAO Names: En - Common spiny lobster, Fr - Langouste rouge; Sp - Langosta común.
Type : Type. locality of Astacus elephas Fabricius, 1787 (and Palinurus quadricornis Fabricius, 1798): the original statement of the type locality"Habitat in Americae meridionalis Insulis" is erroneous. As shown in Fabricius' description of the large supraorbital homs as dentate, and by his reference to Herbst's (1792:2(2): PI.29 fig.I), his specimen was the common European spiny lobster (in 1787 Fabricius referred to the then still unpublished figure by Herbst). Herbst gives as the loc ality of his material: 'im Mittellandischen Meer" and elaborates: "In Italien wird er... häufig gegessen und auf den Markten verkauft". We may therefore correct the type locality to "Italy". A syntype, originally preserved dry, but recently transferred to alcohol is kept in UZM, condition rea sonable. A second dry syntype is in $\triangle \mathrm{MB}$, no. 19649, condition good; this is the spec imen figured by Herbst, 1792.

Type loc a lity of Cancer locusta Wulfen: near Rovinj, Yugoslavia. The type was bought at the fish market of Trieste, Italy (for 2 florins) from a fisheman from Rovinj:"Non aliter, quam duorum florenorum pretio hunc mihi Tergestino in foro Cancrum pisc a tor vend id it Rovignensis" (Wulfen, 17911314); its present wherea bouts unknown.

Type locality of Palinurus vulgaris Latreille: "dans I'Ocean Asiatique et dans la Mediterranee". Types in MP no longer extant (not located in 1989).

Type locality of Palinurus marinus Bate, 1868. The name "marinus" probably is a lapsus for "vulgaris", but if the specific names isconsidered to be new, the type locality of the species is the south coast of Devon and Comwall, U.K. "mostly between Bigbury Bay [Devon] toward the east, and the Dodman [Comwall] toward the west"; wherea bouts of type material unknown.

Type locality of Pagurus maculatus Bowdich: Madeira. Types probably no longer extant.

Geographical Distribution : Eastem Atlantic, from southwestem Norway to Morocco, also in the Mediterranean, except the extreme eastem and south eastem parts (Fig. 225).

Fig. 225

Habitat and Biology : On rocky bottoms, rarely on sand, in depths from 5 to 160 m , mostly between 10 and 70 m . O vigerous females from September-October to February-March.

Size : Maximum total body length 50 cm , but usually not la rger than 40 cm .
Interest to Fisheries: The species is mostly caught with lobster pots, occasionally on hook-and-line and by spearing, rarely with trawls, tangles, or trammel nets. Longhurst (1970:260) reported the catching of this species "by full-time SC UBA divers off southwest England". In the central and westem Mediteranean the species is regularly found at fish markets, and in the eastem Atlantic, outside the Mediterranean, it is fished on a minor scale in England, and more intensively in France and Portugal. No catch statistcsare known, but probably the catc hes of Palinurus spp. reported in the FAO Yearbook of Fisheries Statistic scomespond partly to P. elephas and partly to P. mauritanicus (4921 tons in 1987 and 7869 tons in 1988).

Local Names: CYPRUS: Astakos; DENMARK: Langust; FRANCE: Langouste, Langouste commune, Langouste europeenne; GERMANY: La nguste, Europaische languste, Gemeine languste; GREECE: Astakis; ITALY: Aragosta mediterranea (official name), Aragosta, Aligusta, Arigusta; MALTA: Agusta; MONACO: Lengusta; MOROCCO: Azeffane, Bakhouche, Langouste; NETHERLANDS: Langoest, Hoomkreeft; NORWAY: Langust; PORTUGAL: Lagosta; SPAIN: Langosta, Lagosta; SWEDEN: Langust;TUNISIA: Jarradh el bahr, Jrad bharr, Sid; TURKEY: Bocek, Beudic; UK: Spiny lobster, Crawfish, Red crab, Sea crayfish; YUG OSLAVIA: Jastog.

Literature : Rolland, 1881:234 (for regional French names); Pa lombi \& Santarelli, 1961:369-370 (for regional Italian names); Fischer, Bianchi \& Scott (eds), 1981 :vol. 5; Fischer, Bauchot \&Schneider (eds), 1987:307-308.

Palinurus gilc hristi Stebb ing, 1900

Fig. 226

PALN Palin 5

Palinurus gilchristi Stebbing, 1900, South African Marine Fisheries Investigations, 1:31, pl. 1.
FAO Names : En - Southem spiny lobster; Fr - Langouste du Sud; Sp - Langosta del sur.
Type : Type locality: "False Bay",southem Cape Province, South Africa, and " 25 miles S.W. 1/4 w. from Cape St. Blaize" near Mosselbaai, Cape Province, South Africa; syntype male in SAM, no. A 970 (in alcohol).

Geographical Distribution : South Africa: south coast of Cape Province from False Bay to Port Alfred (from 18030' to 27으). Also reported from the Fort Dauphin area of Madagascar (Crosnier \& J ouannic, 1973:13) (Fig. 227).

Fig. 227
Habitat and Biology : The species has been reported from depths between 55 and 360 m ; it inhabits rocky a reas and shelters in the crevices of the rocks.

Size : Maximum total body length 16 cm (males) and 31 cm (females). The recorded carapace lengths vary from 3 to 13 cm , usually between 6 and 10 cm .

Fig. 226

Interest to Fisheries: Ac cording to Bery (1971:18) the species did not support a commercial fishery. But Pollock \& Augustyn (1982:57-73) reported that commerc ially exploitable densities of this species were disc overed near the edge of the continental shelf between Cape Agulhas and Port Alfred in about 110 m depth. The FAO Yearbook of Fisheries Statistics reports annual catches of 1820 metric tons in 1987 and 880 tons in 1988, all by South Africa. Near Fort Dauphin, Madagascar, Crosnier \& Jouannic (1973: 13) found only small qua ntities of lobsters in areas with rocky bottoms diffic ult to exploit with the gear available to them.

Local Names : SOUTH AFRICA: Gilchrist's crayfish (Ba mard, 1950:542).
Literature : Bery, 1971: I-23; Berry \& Plante, 1973:373-380, pls 19, 20; Pollock \& Augustyn, 1982:57-73; Williams, 1986: 15, figs 34,78 h-i.

Palinurus mauritanicus Gruvel, 1911

Fig. 228

PALIN Palin 3

Palinurus vulgaris mauritanicus Gruvel, 1911, Annaleslnstitutoceanoaraphiaue, Monaco, (3)4:22, pl. 1 fig. 4
Synonyms: Palinurus vulgaris inflata Gruvel, 1910 (not Palinurus inflatus Bduvier, 1895 (= Panulirus inflatus (Bouvier)); Palinurus thomsoni Selbie, 1914.

FAO Names : En - Pink sp iny lobster, Fr-Langouste rose; Sp - La ngosta mora.

Type : Type locality: (for P. v. inflata and P. v. mauritanicus)" sur toute la côte maunitanienne, du cap Barbas [= Cabo Barbas, westem Sahara, $22^{\circ} 18^{\prime}$ N, $46^{\circ} 41^{\prime}$ W] jusque un peu au nord de Saint-Louis [Senegal, $16^{\circ} 01^{\prime} \mathrm{N}, 16030^{\prime} \mathrm{W}$], par des fonds de 20 m à 50 m et souvent sur le sable coquillier". Syntypes in MP, no longer extant (not located in 1989).

Type locality of P. thomsoni: " 58 mls . W $\ 12 \mathrm{~N}$ of Blackball Head [SW. Ireland], 51020'N., 11030'W., 212229 fms [$=388-420 \mathrm{~m}$], sand" Holotype male in NMI, no. 104.1916, in good condition in alcohol.

Geographical Distribution : Eastem Atlantic from W. of Ireland ($53^{\circ} \mathrm{N}$) to southem Senegal ($14^{\circ} \mathrm{N}$), also in the westem Mediterranean, West of about 160E, not in the Adriatic (Fig. 229).

Habitat and Biology : Depth range from 180 to 600 m . In the westem Mediterranean mostly between 400 and 500 m . On rocky and coral substrates, as well as on mud. At times gregarious. Trawl hauls of 200 to 500 specimens have been recorded off N.W. Africa.

Size : Maximum total body length 50 cm ; a single record of a specimen of 75 cm needs confirmation. Usually the body length ranges between 20 and 40 cm .

Interest to Fisheries: The main commercial fishery of the species is off N.W. Africa. At its inception, this fishery was mainly operating by trawls, especially after 1954. From 1958 onwards, however, the lobster-pot fishery gradually replaced trawling. In the westem Mediterranean, the commercial importance of the species is not very high, but it is regularly taken by deep sea trawlers as a bycatch. It is brought to the markets in Spain and Italy, but it is far from frequent there. Sold mostly fresh, sometimes frozen. Catch statistics are not recorded for this species. However, the figures given for Palinurus spp. in the FAO Yearbook of Fishery Statistics most probably corespond to mixed catches of \mathbf{P}. elephas and P. mauritanicus (4921 metric tons in 1987 and 7869 tons in 1988).

Local Names: FRANCE: Langouste rose, Langouste du large; ITALY: Aragosta bianca, Aragosta mauntanica; MOROCCO: Azeffane, Bakhouche, Langousta; SENEGAL: Soum. Soumpe; SPAIN: Langosta rosada, Langosta roja.

Literature: Fischer, Bianchi \& Scott (eds), 1981:vol. 5; Fisc her, Bauc hot \&Sc hneider (eds), 1987:309-310.

Fig. 229

Palinustus A. Milne Edwards, 1880
PALIN Palinus
Palinustus A. Milne Edwards, 1880, Bulletin_Museum Comparative_Zooloav, Harvard College, 8(1):66. Gender masculine. Placed on the Offic ial List of Generic Names in Zoology in Opinion 519 (published in 1958).

Type Species : by monotypy: Palinustus truncatus A. Milne Edwards, 1880.
The genus is characterized by the shape of the frontal homs, that do not end in a sharp point but in a broad, bluntly truncated top that sometimes is crenulated; a strong spine is present on the outer margin of each hom.

Fourspecies have been described of thisgenus, none with any commercial value as the species all seem to be very scarce and all occur at considerable depths. The taxonomic status of some of the species is not yet clear.

From the data in the literature it seems most likely that almost all the specimens, other than the type material, that have been identified as Palinustus mossambicus do not belong to that species but must be assigned to Palinustus waguensis. This assumption, which still has to be proven by thorough study of an extensive material, has been adopted here, admittedly without sufficient basic data. However, this seems the best solution at the present time.

Tentative Key to Species:

1a. Anteriormargin of carapace between the frontal homs convex, with a single median spine; no other spines on this margin, but a single, small denticle on the inner margin of each hom (Fig. 230a). Epistome with 5 to 7 spines on the anterior margin, and small spines in the a nterolateral comer(Natal, South Africa) \qquad P. unicornutus
(Fig. 235)
1b. Anterior margin of carapace between the frontal homs straight or convex, with two or more spines. Epistome with spinules or tubercles on the anterior margin;anterolateral comers with a single spine or unarmed

2a. A strong median spine, in addition to several others, on the anterior margin of the carapace between the frontal homs. Inner margin of the homs without spines (230b). Epistome with 5 tubercles on the anteromedian margin; anterolateral comer with a strong spine. Westem Atlantic . P. truncatus
(Fig. 233)
2b. No median spine on anterior margin of carapace. Epistome with tubercles or spinules on anteromedian margin; anterolateral comer with a small spine or unarmed. Indo-West Pacific.

3a. Anterior margin of carapace between frontal homs with a single pair of strong submedian spines; rest of the margin as well as the inner margin of the horns unarmed or with 2 very small spinules (Fig. 230c). Deep sea (406 m), but also reported from 59 to 61 m . East Africa (Somalia, Mozambique) \qquad P. mossambicus
(Fig. 231)
3b. Anterior margin of carapace as well as inner margin of the frontal homs with several distinct spines (Fig. 230d). Shallow water form, 0 to 180 m . Indo-West Pacific region (India, Tha ila nd, Philip pines, J apan)
.P. waguensis

a. P. unicornutus

b. P. truncatus

c. P. mossambicus

d. P. waguensis
anterior margin of carapace (dorsal view)
fig. 230
(Fig. 237)

Palinustus mossambic us Ba rna rd, 1926
Palinustus mossambicus Bamard, 1926, Iransactions Royal Society South Africa, 13: 126, pl. 11.

FAO Names: En - Buffalo blunthom lobster.
Type : Type locality: Off Mozambique, " 25 " S., 3310'E., 406 metres, mud". This position cited by Bamard (1926) is definitely incorrect, as it would be on dry land; it is possible that a number of minutes has to be added to 25 " S. Holotype male in SAM, no. A 10684 (in alcohol; condition good).

anterior part of carapace (dorsal view) (from Barnard, 1950)

Geographical Distribution: The species has been reported from East Africa (Mozambique and Somalia) (Fig. 232).

Habitat and Biology: Found in deep water (406 m), but also in 59-61 m depth. Reported from a muddy substrate.

Size : Total body length 9.5 cm . Carapace length 3cm.

Interest to Fisheries: So far none. Very little is known of this species of which only very few specimens have been found.

Literature : Bamard, 1950:545, figs 102 a,b; Bemy, 1979:88,89, fig. 1A.

Remarks: Specimens reported under the name \boldsymbol{P}. mossambicus from India and the Philippines have here, provisionally, been assigned to \boldsymbol{P}. waguensis. The status of these two species, however, needs further investigation.

Fig. 231
PALIN Palinus 2

(after Bamard. 1926)

Fig. 232

Palinustus trunc atus A. Milne Edwa rds, 1880
Fig. 233
PALIN Palinus 1
Palinustus truncatus A. Milne Edwards, 1880, Bulletin Museum Comparative Zooloqy, Harvard College, 8:66. Name placed on the Official List of Specific Names in Zoology in Opinion 519 (published in 1958).

Synonyms: Palinurus truncatus - Gruvel, 1911.

FAO Names : En - American blunthom lobster; Fr - Langouste aliousta; Sp Langosta ñata.

Type : Type locality: "Blake" "Station No. 241. Profond. 163 brasses. Cariacou" (=off the Grenadines, $12028^{\prime} 22^{\prime \prime} \mathrm{N}, 61032^{\prime} 18^{\prime \prime} \mathrm{W}$, 163 fms ($=298 \mathrm{~m}$), sand and coral): type in MCZ

anterior part of carapace (dorsal view)

Geographical Distribution: Westem Atlantic: from Camiacou Island, Grenadines, to off the mouth of the Amazon River, Amapá and Pa rá States, Brazil (Fig. 234).

Habitat and Biology : The species has been taken in depths between 120 and 298 m , but there is a record from the littoral zone, and one from 4111-4122 m . The bottom is variously described as "sand and coral","sandy calcarenite", and "smooth, consisting of brown mud".

Size : Carapace lengths of 1.6 to 3.2 cm have been reported, the known maximum body length is 10 cm .

Interest to Fisheries :So far none. The species is evidently rare, and perhaps has a restricted range. Better knowledge of its occurrence and habits is required for deciding whether a future fishery will prove feasible.

Literature : Fischer (ed.), 1978: vol. 6.

Fig. 234

Pa linustus unic omutus Berry, 1979
Palinustus unicornutus Bery, 1979, Annals South African Museum, 78(3).93, figs 1,2,3G.

FAO Names: En - Unicom blunthom lobster.
Type : Type locality: "Due east of Boteleur Point, Natal (approximately 26057 'S $322^{\circ} 58^{\prime} \mathrm{E}$). Depth 390 m "; holotype ovigerous female in SAM, No. A 15880 (in alcohol, condition good); paratype in SAM, No. A 15881 (in alc ohol condition good).

Geographical Distribution : Off Natal, South Africa (off Boteleur Point, and off Park Rynie, ca. 30응ㅇ́S 30은'E) (Fig. 236).

Fig. 236

Fig. 235
PALIN Palinus 3

Fig. 235
(after Bery, 1979)

Habitat and Biology : Depth range from 305 to 390 m .
Size : The two known specimens (both females) have a total body length of 14.2 cm (ovigerousfemale) and 13.4 cm , corresponding to a carapace length of 4.8 and 4.4 cm .

Interest to Fisheries : Since only 2 specimens are known, captured in lobster pots,it is clear that so far there is no fishery for the species.

Literature: Original public ation.

Palinustus waguensis Kubo, 1963
Fig. 237
PALIN Palinus 4
Palinustus waguensis Kubo, 1963, Loumal Tokyo University Fisheries, 49(1):63, figs 1-3.
FAO Names: En - J apanese blunthom lobster.

Type : Type locality:"Shallow waters in the vicinity of Wagu, Mie Prefecture", Honshu, Japan; whereabouts of holotype male unknown.

Geographical Distribution : Indo-West Pacific region. The species so far is only known from Honshu Island, Japan, viz. from Wagu and Kii-nagashima, both Mie Prefecture, and from Sagami Bay. Sekiguchi \& Okubo (1986) mentioned 15 specimens from the east and south coast of Kii peninsula (Mie and Yamagata prefectures) without giving precise localities. What is believed to be this species has been reported under the name P. mossambicus from S-W. India and the Philippines (Sulu Sea). In the Zoological Museum at Copenhagen there is a juvenile (c 18 mm) from the Bay of Amboina (Moluccas, Indonesia). Specimens from the Andaman Sea near Ranong, Thailand, are present in Chulalongkom University, Bangkok and RMNH (Fig. 238).

Fig. 238

Fig. 237

Habitat and Biology : Reported from rather shallow water in J apan, where it sometimes is caught in lobstertrap nets. The specimens from India and the Philippines were taken in depths between 72 and 84 m , the juvenile from Amboina came from a depth of "ca. 100 fms " (about 180 m), from a stony bottom. Some data on the biology and body posture are published by Sekiguchi \& Okubo (1986).

Size : Total body length 5 to 10 cm , carapace length 0.8 to 3.2 cm .
Interest to Fisheries: In J apan there is no commercial fishery for this relatively rare species, but fishemen obtaining specimens in their lobster nets (which in J apan can only be legally used from October to April), often give or sell these specimens to the public aquaria on the J apanese east coast. George (1973), however, reported that the species, he had indic ated as P. mossambicus, has been obtained in large numbers from certain localities in India and that it may be the object of a fishery there (Kurian \& Sebastian, 1982: 162).

Local Names: J APAN: Wagu-ebi.
Literature : Bery, 1979:88,89, fig.3; Sekiguc hi \& Okubo, 1986: 19-26.
Remarks : The taxonomic status of this species vis à vis P. mossambicus is far from clear, and a closer study of the complex is highly desirable.

Panulirus White, 1847, List of the Crustacea in the collection of the British Museum:69. Gender masc uline. Name placed on the Official List of Generic Names in Zoology, in Opinion 507 (published in 1958).

Type Species: selected by Holthuis, 1956 (Bulletin of zoological Nomenclature, 12:55): Palinurus japonicus Von Siebold, 1824.
Synonyms: Phyllosoma Leach, 1817, in Tuckey, Narative of an expedition to explore the River Zaire: plate without number. Type species, selected by Holthuis, 1956 (Bulletin of zoological Nomenclature, 12:55): Phyllosoma commune Leach, 1817 (= Panulirus regius De Brito Capello, 1864). Gender neuter. Name suppressed under the plenary power of the Intemational Commission on Zoologic al Nomenclature in their Opinion 507 (published in 1958), and placed on the Official Index of Rejected and Invalid Names in Zoology.
Senex Pfeffer, 1881, Verhandlungen naturwissenschaftlichen Vereins Hamburg, 5:30. Replacement name for, and thereby objective junior synonym of Panulirus White, 1847; junior homonym of Senex Gray, 1838 (Aves). Gender masculine. Name placed on the Official Index of Rejected and Invalid Names in Zoology in Opinion 507 (published in 1958).

A circumtropical genus of large, often brightly coloured, spiny lobsters. All of the 19 species known are to a greater or lesser extent of commercial interest. All are treated below.

Key to Species:

1a. Abdominal somites with a distinct transverse groove, which may be intemupted in the middle. Third maxilliped with or without exopod

2a. Anterior margin of transverse groove of abdominal somites crenulated. Groove itself either complete or intemupted in the middle (Fig. 239b). Antennular plate with 4 equal, large, well separated spines, a ranged in a square with additional very small spinules scattered in between (Fig 239a). Exopod of third maxilliped absent. Colour. body dark green or reddish brown, finely spotted with white. No distinct bands of light colour on the abdomen. A light anterior spot at the base of the abdominal pleura. Antennulae banded. Legs rather uniform in colour, sometimes with faint, longitud inal streaks. Indo-West Pacific P. homarus
(Fig. 267)
2b. Transverse groove of abdominal somites with straight margins, not crenulated

3a. Antennular plate with 4 strong spines, which are fused at their bases, forming a single bunch of 4 diverging points; the anterior pair shorter than the posterior (Fig 240a). Exopod of third maxilliped present, with flagellum. Transverse grooves over the abdominal somites usually unintemupted (Fig. 240b). Colour: body greenish or reddish, ranging from yellowish green through brown green to blue-black or dark reddish brown; speckled on carapace and abdomen with tiny whitish spots. No transverse colour bands on abdomen, but two rather large whitish spots on first somite. Antennulae not banded. Legs with wider or narrower longitudinal yellowish lines or streaks on a dark (greenish or reddish) background. Indo-West Pacific \qquad P. penicillatus

b. abdominal somites (lateral view) P. homarus

Fig. 239

b. abdominal somites (lateral view)

3b. Antennular plate with 2 or 4 large spines, which are widely separated from each other

4a. Antennular plate with 2 large spines, sometimes with scattered small spinules behind these (Fig. 241)

5a. The transverse grooves of abdominal somites 3 and 4 do not join the groove along the anterior margin of the corresponding pleuron (Fig. 242)

6a. J apanese species. Exopod of third maxilliped present, with flagellum. Body of a uniform dark brownish red colour. No pale bands on abdominal somites. Antennulae not banded. Pereiopods with some narrow longitudinal yellowish lines. No conspicuous spots \qquad P. japonicus
(Fig. 273)
6b. Atlantic species (N.E. Brazil, Central Atlantic Islands from the Canary Islands to St. Helena). Exopod of third maxilliped reduced, without flagellum. Colour: body and especially the tail covered by distinct rounded whitish spots. Antennulae and legs streaked with yellowish or whitish longitudinal lines, not banded or spotted. \qquad P. echinatus
(Fig. 262)
5b. The transverse grooves of abdominal somites 3 and 4 join the groove along the anterior margin of the corresponding pleuron (Fig 243, 244)

7a Transverse groove of abdominal somite 2 does nol join the groove along the anterior margin of the corresponding pleura (Fig. 243). Exopod of third maxilliped present, with flagellum. Colour: body dark purple with some greenish, not speckled. Iregular pale bands along posterior margin of abdominal somites, sometimes with whitish spots mixed in with them; spots on basis of tail fan. Antennulae not banded. Legs with narrow pale longitudinal streaks. Only known from Easter and Pitcaim Islands \qquad P. pascuensis
(Fig. 283)
7b Transverse groove of abdominal somite 2 confluent with groove along anterior margin of corresponding pleura (Fig. 244)

8a Anterior margin of pleuron of abdominal somite 2 with distinct teeth (Fig. 244). Exopod of third maxilliped present, with flagellum. Colour: carapace with yellowish, reddish and brownish colour, not spotted. Abdomen bright to dark purple with a very conspicuous transverse yellow band over the middle of each somite. Legs rather uniform in colour, with a few spots, but not streaked. Antennulae rather uniform in colour. Upper surface of abdomen pubescent in the grooves only Hawaiian Archipelago.
P. marginatus
(Fig. 279)

antennular plate P. longipes

Fig. 241

anterior groove of pleuron
abdominal somites (lateral view)
P. japonicus

Fig. 242

abdominal somites (lateral view)
P. pascuensis

Fig. 243

abdominal somites (lateral view)
P. marginatus

Fig. 244

8b. Anterior margin of pleura of abdominal somite 2 without distinct teeth. Colour: abdomen without a transverse light coloured band (although sometimesthe hairs of the transverse groove may give the impression of such a coloured band), but with more or less distinct light spots. Legs with longitudinal streaks or with spots

9a. Abdominal somites with the grooves pubescent; a pubescent area on the dorsal surface of somitesalong the posterior margin (Fig. 245). Exopod of third maxilliped present and with flagellum. Colour: pale to dark purplish brown. Abdomen with widely scattered small pale spots, which sometimes are, hardly noticeable. Antennulae uniform in colour or with a pale longitudinal streak. Legs pale or dark brown with longitudinal streaks. Westem Australia
P. cygnus
(Fig. 259)
96. No pubescent area on the abdominal somitesbehind the transverse groove. Colour: abdomen dark purple with numerous very conspicuous rounded whitish spots

10a Indo-West Pacific. Exopod of third maxilliped present, with flagellum. Colour: body, a nd especially the abdomen covered with numerous distinct round spots. Legs with light longitudinal streaks, which sometimes end just before a single pale spot. Antennulae with longitudinal streaks .. P. longipes
(Fig. 277)
10b Westem Atlantic. Exopod of third maxilliped reduced, without flagellum. Body, especially abdomen with numerous distinct rounded pale spots. Also the legs spotted on carpus, merus and isc hium, without streaks there; propodus longitudinally striped \qquad P. guttatus
(Fig. 265)
4b. Antennular plate with 4 large spines arranged in a square (Fig. 246); scattered small spinules may be present in addition

11a. Eastem Pacific. Exopodite of third maxilliped present, with flagellum. Transverse grooves of abdominal somites wide, abruptly intemupted in the middle (Fig. 247). Colour: body and abdomen dorsally rather uniformly brownish red, without light bands or spots. Legs brownish red with one or more pale longitudinal streaks. Califomia (USA) and Baja Califomia (Mexico)
P. intemuptus
(Fig. 271)
11b Atlantic. Transverse grooves of the abdomen, where interrupted, gradually na rrowing towards the middle of the body, not ending abruptly. Colour: abdominal somites 2 and 6 , or abdominal somites 2 to 6 , with a single, large, white eyespot, surrounded by dark colour, on each half above the base of the pleuron

abdominal somites (lateral view)
P. Cygnus

Fig. 245

antennular plate
P. ornatus

Fig. 246

Fig. 247

12a. Ea stem Atlantic. Third maxilliped without exopod. Colour. abdominal somites greenish with a very distinct white transverse band along the posterior margin and separated from that margin by a dark band. A distinct eyespot (white or yellowish surrounded by an open dark ring) above the bases of the pleura of somites 1 to 6 ; those of the posterior pleura smaller and more elongate than those of the anterior (Fig. 248). Tail fan rather uniformly greenish or brownish in colour \qquad P. regius
(Fig. 289)
12b. Westem Atlantic. Third maxilliped with an exopod provided with a fla gellum. Colour: abdominal somites reddish or brownish, sometimes greenish, without transverse colour bands. A large eyespot of whitish or yellowish, surrounded by a dark colour is placed over the anterior end of the base of the pleura of abdominal somite 2 , a similar, even slightly larger one in the anterolateral parts of somite 6. Tail fan with a broad transverse reddish band along orjust before the posterior margin (Fig. 249) \qquad P. argus
(Fig. 257)
1b. Abdominal somites smooth, without transverse groove. Third maxilliped without exopod

13a. Abdominal somites 1 to 6 with a distinct unintemupted white transverse band along the posterior margin

14a. Antennular plate with 2 strong spines (Fig. 250a). Surface of abdominal somites naked and smooth. Colour: abdominal somites 2 to 5 with a white transverse band along the posterior margin which, however, is not set off by dark bands(Fig. 250b). C olour of body a nd abdomen usually greyish green without spots. Tailfan of a rather uniform colour. Legs irregula ly spotted, not distinctly streaked. Indo-West Pacific \qquad P. polyphagus
(Fig. 287)
14b Antennular plate with 4 strong spines arranged in a quadrangle (Fig. 252a). The whitish transverse bands along the posterior margin of the abdominal somites very distinct because they have a dark band in front and just behind them (Fig. 251,252b)

Fig. 250

tail fan uniform
abdomen (dorsal view) P. regius Fig. 248

tailfan banded
abdomen (dorsal view) P. argus Fig. 249

abdomen (dorsal view) P. gracilis

Fig. 251

15a. Eastem Pacific. Colour. carapace brownish or bluish green, almost uniform in colour or slightly and iregularly mottled. Antennae with the basal segments greenish, the flagella bluish green \qquad P. gracilis
(Fig. 263)
15b. Indo-West Pacific. Colour. carapace whitish with well defined, sharply delimited areas of bluish black, which contrast very conspicuously with the light background. Antennal peduncles pink, the flagella white \qquad P. versic olor
(Fig. 293)

13b. Abdomen without distinct transverse bands on all somites, sometimes there is a line of pale spots there, or a narrow line is present on somites 1 to 3 , but on somites 4 and 5 this is replaced by a row of spots. Antennular plate with 4 spines

16a. Abdominal somites 1 to 3 with a na rrow transverse whitish line just before the posterior margin; somites 4 to 6 with a transverse row of rather large whitish spots there. Surface of abdominal somites smooth and naked (Fig. 253). Eastem Pacific \qquad P. inflatus
(Fig. 269)
16b. Abdominal somites 1 to 6 without tra nsverse whitish bands; if a row of spots is visible a long the posterior margin, these spots are very minute and the rows are found on all somites

17a. Westem Atlantic. A line of very small spots along the posterior marg in of the abdominal somites, the rest of the upper surface of the abdomen not spotted. Pleura and hard part of tail fain with numerous very distinct spots in addition to a largereye spot nearthe base of the pleura (Fig. 254). Frontal homs spotted
P. laevic auda
(Fig. 275)
17b. Indo-West Pacific. No line of small spots along the posterior margin of the abdominal somites. Colour of the abdominal pleura and of the hard part of the tail fan similar to that of the dorsal surface of the abdomen. Frontal homs with iregular transverse bands above, whitish below

P. laevicauda

Fig. 254

b. abdomen (dorsal view)
P. versicolor
Fig. 252

abdomen (dorsal view)
P. inflatus

Fig. 253

18a. Abdominal somites with a large pubescent area on each half of the dorsal surface (Fig. 255). The nomal eyespot is present in the anterior half of the abdominal somites above the base of the pleura, but this spot is not ac companied by a light streak. Pleura without spots, but with a white line along the posterior margin. Tail fan of the same colour as the rest of the abdomen. Carapace without a peculiarmarbling near the bases of the frontal homs. Legs longitudina lly steaked \qquad P. stimpsoni
(Fig. 291)
18b. Abdominal somites smooth and naked. Colour of abdomen brownish or greenish grey with at most minute indistinct speckles. The usual large eyespot in the anterior half near the base of the pleura is accompanied by an oblique pale streak placed somewhat mediad of the eyespot. The pleura have the tips white, sometimes this white colour extends slightly up the anterior and posterior margins (Fig. 256). Carapace with a peculiar and very characteristic marbling of -pale lines near the bases of the frontal homs. Legs not streaked, but with very sharply defined irregular dark spots of a bluish or brownish colour, which .often form incomplete rings around the various segments. Antennal flagella distinctly ringed \qquad P. omatus
(Fig. 281)
somite 2

abdominal somites (lateral view)

> P. stimpsoni

Fig. 255

P. ornatus

Fig. 256

Fig. 257

PALIN Panul 1

Palinurus argus La treille, 1804, Annales Muséum Histoire Na lurelle, Pa ris, 3:393.
Synonyms: Palinurus ricordi Guérin-Méneville, 1836; Palinurus americanus H. Milne Edwards, 1837; Palinurus (Senex) argus - Pfeffer, 1881.

FAO Names : En - Caribbean spiny lobster; Fr - Langouste blanche; Sp - Langosta común del Caribe.
Type : Type locality of Palinurus argus: unknown:"J e la soupçonne des Grandes-Indes", later corrected by La marck (1818) to "I'Océan du Bresil". Type material in MP: 3 possible syntypes from "Antilles", nos. Pa. 438, 439, 442 dry, in tolerable condition.

Type locality of Palinurus ricordi: "aux Antilles". Lectotype (dry spec imen in reasonable condition) in ANSP, no. 207 (Guerin coll. no. 276).

Type locality of Palinurus americanus: "les Antilles". Syntypes in MP, possibly one, no. Pa. 443, left. "M. I'HerminierGuadeloupe", a dry specimen in tolerably good condition.

Geographical Distribution : Westem Atlantic: Bermuda and the east coast of USA at North Carolina, to Rio de Janeiro, Brazil, including the entire Gulf of Mexico and the Caribbean Sea (Fig. 258). Reported twice from West Africa (Ivory Coast).

Fig. 258
Habitat and Biology : Inhabits shallow waters, occasionally down to 90 m depth, perhaps even deeper. Found among rocks, on reefs, in eelgrass beds or in any habitat that provides protection. The species is gregarious and migratory. Females move to deeper water for spawning and there are mass migrations in the autumn when the animals, in single files of up to 50 individuals, move in a certain direction in daytime, each animal having body contact with the next through the antennae. In the northem part of its range, larvae are found mainly from June to December.

Fig. 257
Size : Maximum body length about 45 cm , average length to about 20 cm .
Interest to Fisheries : This is the most important commercial Palinurid in American waters. It is fished practically throughout its range. The catches of this species reported in the FAO Yearbook of Fisheries Statistics amounted to 32 854 metric tons in 1987 and 33903 metric tons in 1988, taken mainly by Cuba, Brazil, Bahamas, USA and Honduras. The species is mostly caught with traps, but also taken by hand, speared and trawled. It is marketed fresh; the tails are exported frozen or canned.

Local Names : ARUBA: Kreef; CURACAO: Kreef; CUBA: Langosta; FRANCE: Langouste d'Amérique, La ngouste amèricaine, Langouste argus; MARTNIQUE: Homard blanc; MEXICO: Langosta del Golfo; USA: Spiny lobster, Bermuda spiny lobster, Common spiny lobster, Crawfish, Florida spiny lobster, West Indian langouste, West Indian spiny lobster.

Literature : Fisc her (ed.), 1978: vol. 6; Willia ms, 1986: 19, figs 44, 79 b,c.

Panulinus Cygnus George, 1962
Fig. 259

PALIN Panul 12

Panulirus Cygnus George, 1962, , Loumal Royal Society Westem Australia, 45(4): 100, text-figs 1-4, pls 1,2.
Synonyms: Panulirus Iongipes Cygnus - Chittleborough \& Thomas, 1969. In the older literature conceming Westem Australian lobsters, the present species has often incorrectly been given the name Panulirus longipes (A. Milne Edwards).

FAO Names : En - Australian spiny lobster; Fr Langouste d'Australie; Sp-Langosta de Australia.

Type : Type locality:"Radar Reef, Rottnest Island, Westem Australia ($32^{\circ} 00^{\prime} \mathrm{S} 115030^{\prime} \mathrm{E}$), in reef pool at depth of 1 metre". Holotype male in WAM, no. 90-62.

antennular plate

abdominal somites (lateral view)

Geographical Distribution : Indo-West Pacific region: restricted to Westem Australia, na mely on the west coast between Northwest Cape (21048 'S) and Hamelin Harbour ($34^{\circ} 30^{\prime} \mathrm{S}$) and at the offshore islands (Fig. 260).

Habitat and Biology : Found in depths between 0 and 90 m ; rarely as deep as 120 m . The a nimals are noctumal and shelter in the daytime in rock crevices and among coral. They undertake limited migrations. The species is omnivorous.

Size : Maximum carapace length 14 cm , corresponding to a total body length of about 40 cm . Average between 8 and 10 cm carapace length. The carapace length of ovigerous females or those with spermatophores is 9 to 11 cm ..

Interest to Fisheries: The fishery of this species is of major importance in Australia. According to FAO Yearbook of Fisheries Statistics the annual catches were 11025 metric tons in 1987 and in 1988. The season used to extend from 15 November to 14 August, but was reduced in 1978 from 15 November to 30 June. At the beginning of the season (November and December) the fishery takes the freshly moulted a nimals (the so-called "whites") which then leave the shallow reef areas. During the remaining part of the season, the ".coastal red" lobsters are fished. The Abrolhos Islands are exceptional as the season starts there on 15 March. The fishing activities are concentrated between 24° and $35^{\circ} \mathrm{S}$, and the largest yields are obtained between $28 \circ$ and 320 .

Fig. 259

Fig. 260

The fishery operates lobster traps of various design and divers take specimens by hand. Apart from the closed season there are several protective measures: a minimum size limit (cl .7 .5 cm), bag limit for sports fishermen, restriction of the size of the lobster pots, etc.

The species is marketed fresh, but the greatest percentage is exported as frozen tails.

Local Names : AUSTRALA: Westem rock lobster (official name), Westem Australian crayfish, Westem cray.
Literature : Sheard, 1962; George \& Holthuis, 1965:19, text-fig. 1d, pl. 4; Morgan \& Barker, 1982-1987; Williams, 1986: 18, figs 39,78 k-l.

Panulirus ec hinatus Smith, 1869

Panulirus echinatus S.I. Smith, 1869, Iransactions Connecticut Academy Arts Sciences, 2:20,39.

Synonyms: ? Panulirus inermis Pocock, 1891; Panulirus guttatos brasiliensis Fa ria \& Silva, 1937.

FAO Names : En - Brown spiny lobster, Fr - Langouste brune; Sp - Langosta ma rón.

Type : Type locality: of Panulirus echinatus: "Pemambuco" (= Recife, Pemambuco State, Brazil). Whereabouts of type material unknown.

Type locality of Panulirus inermis: "Dredged in Water Bay [Femando do Noronha, Brazil]. About 10 fathoms depth". Holotype (puerulus stage) in BM, no. 1888: 19, in alcohol, condition fair.

Type locality of Panulirus guttatus brasiliensis: "Atóll das Roccas. - lattitude S. $3^{\circ} 52^{\prime} 30^{\prime \prime}$ e longitude EM do Rio de Janeiro 9020'26" - e Pemambuco". Whereabouts of type material unknown.

Geographical Distribution : Extreme N.E. Brazil (Ceará Rio Grande do Norte, and Pemambuco States) and the Central Atlantic Islands (Canary Islands, Cape Verde Islands, St. Pauls Rocks, Femando do Noronha, Atol das Rocas, llha da Trindade, Ascension, St. Helena) (Fig. 262).

Fig. 261

Fig. 262

Habitat and Biology : Depth range from 0 to 35 m . but usually not deeper than 25 m ; in deep crevices in rocks, among boulders, etc. The animals are noctumal.

Size : The carapace length varies from 3 to 19 cm (males) and 2 to 15 cm (females), the total.body iength from 7 to 39 cm (males) and 5 to 38 cm (females). Ovigerous females with carapace length 5 to 10 cm have been reported. In some areas the population consists of a nimals much smaller than in other a reas.

Interest to Fisheries: The species is fished for throughout its range. In St. Helena it is reported to be of commercial importance. In the Cape Verde Islands it is the most abundant coastal lobster, and it might support a more intensive fishery. In Brazil it is fished and marketed in the states where it occurs, as well as at Femando do Noronha and Atol das Rocas.

The species is caught with lobster traps, by diving and. by hand (at night with torches in shallow water). In Brazil it is often taken together with Panulirus argus or P. laevicauda.

Local Names : BRAZL: Lagosta pintada, Lagosta encamadinha, iagosta roxa, Lagostinho, Potiquiquiya; CAPE VERDE ISLANDS: Lagosta vermelha; FRANCE: Langouste brune des lles du Cap Vet-t; STHELENA: Long legs.

Literature : Fisc her, Bianchi \& Sc ott (eds), 1981 :vol. 5; Willia ms, 1986:20, fig. 47

Panulirus gracilis Streets, 1871
Fig. 263
PALIN Panul 13

Panulirus gracilis Streets, 1871, Proceedings Academy Natural Sciences, Phila delphia, 1871: 225, pl 2, fig. 2.

FAO Names: En - Greenspiny lobster; Fr - Langouste verte; Sp-Langosta barbona.

Type : Type locality of \boldsymbol{P}. gracilis: "Gulf of Tehuantepec, Mexico". Holotype in ANSP (not located in 1989).

Type locality of P. brevipes and P. paessleri: "Mazatlan", Mexico. The male syntype specimen from this locality in ZMH, no. 8074, is chosen by Holthuis \& Villalobos (1961: 265) as the lectotype of both Palinurus brevipes Pfeffer, 1881 and Palinurus paessleri Pfeffer, 1897.

Type locality of \boldsymbol{P}. martensii: "sulle coste Pacifiche del Darien" (=region of Golfo de San Miguel, Pacific coast of Panama; see E. Festa, 1909: 1253, map). Syntypes in MZT no.Cr. 1185.

Geographical Distribution : Eastem Pacific from Baja Califomia (Mexico) to Paita (Peru), and the Galapagos Islands (Fig. 264).

Habitat and Biology: Inhabits shallow coastal waters (0 to 18 m); among rocks and in cracks and crevices. The animals are noctumal.

Size : Maximum total body length 32 cm (males) and 30 cm (females); carapace length 1 to 13 cm (males), and 1 to 12 cm (females).

Interest to Fisheries: The species is fished for commercially throughout its range and is sold in local markets. It is taken with trammel nets, by hand or with lobster pots.

Local Names : ECUADOR: Langosta Verde; Blue lobster, Langosta azul (Galapagos Islands); MEXICO: Langosta Verde, Langosta güera, Langosta de playa, Langosta caribe; PANAMA: Langosta barbona; PERU : Langosta Verde.

Fig. 264

Literature : Holthuis \& Villalobos, 1961:252, figs; Holthuis \& Loesch, 1967:220, pl. 9; Williams, 1986:24, figs 56,80 e-f.

Panulirus guttatus (La treille, 1804)
Palinurus guttatus Latreille, 1804, Annales Muséum Histoire Naturelle, Pa ris, 3:392.

Synonyms: Palinurus (Senex) guttatus - Pfeffer, 1881.
FAO Names : En - Spotted spiny lobster, Fr - Langouste tachetee; Sp-Langosta moteada.

Type : Type locality:"dans les mers des Grandes-Indes". Through the lectotype selection by Holthuis (1959: 126) the type locality is restricted to Suriname. Whereabouts of lectotype unknown.In MP are two dry specimens of this species (nos. Pa 440 and Pa 441) in a reasonable condition, labelled "Antilles", which may be syntypes.

Geographical Distribution : Western Atlantic: Bermuda, Bahamas, South Florida, Belize, Panama, Caribbean Arc from Cuba to Trinidad, Curaçao, Bonaire, Los Roaues, Suriname. (Fig. 266).

Fig. 266

Fig. 26

Fig. 265

Habitat and Biology : A shallow water species, inhabiting rocky areas, mainly in crevices.
Size : Maximum total body length about 20 cm , commonly to 15 cm
Interest to Fisheries : The species is taken throughout its range, but rather incidentally; there is no special fishery for it. It is taken by hand or speared and occasionally caught in traps, mostly those set for other species. Marketed fresh and mostly used for local consumption.

Local Names : BERMUDA: Guinea chick lobster, Star lobster, Spotted spiny lobster, CUBA: Langosta manchada, Langosta Verde; MARTNIQUE: Homard bissie, Homard brésilien; NETHERLANDS ANTLEES: Kreef spanjo, Kreef indjan (Curaçao, Papiamentu language), Spanish lobster (St. Martin), Sand lobster (St. Eustatius); USA: Spotted lobster, Guinea lobster, Rock lobster, Spotted crawfish, Spotted spiny lobster.

Literature : Fisc her (ed), 1978:vol. 6; Williams, 1986: 19, figs 43,78o,79a.

Panulirus homarus (Linnaeus, 1758)
Cancer homarus Linnaeus, 1758, Systema
Naturae, (ed. 10)1:633.
Synonyms: Astacus homarus - Fabricius, 1775; Palinurus homarus - Fabricius, 1798; Palinurus dasypus H. Milne Edwards, 1837; ? Palinurus spinosus H. Milne Edwards, 1837; Palinurus burgeri De Haan, 1841; Palinurus (Senex) buergeri - Pfeffer, 1881; Senex dasypus - Ortmann, 1891; Panulirus dasypus - Henderson, 1893; Panulirus buergeri Ortmann, 1897; Panulirus burgeri megasculpta Pesta, 19 15; Panulirus homarus rubellus Bermy, 1974.

FAO Names: En - Scalloped spiny lobster, Fr - Langouste festonnee ; Sp - Langosta festoneada.

antennular plate

abdominal somites (lateral view)

Fig. 267
PALIN Panul 6

Fig. 267

Type : Type locality of Cancer homarus:"Habitat in Mari Asiatico". Lectotype is the specimen figured by Rumphius (1705, Amboinsche Rariteitkamer: pl. I fig. A). The figure was drawn in Holland, as Rumphius had not provided an illustration himself. As noted in Rumphius' book (1705:3) the figure was prepared after a specimen in the collection of Henric us d'Ac quet, then burgomaster of Delft. The specimen is now lost, but d'Acquet's collection of water colours of this material is still extant and held by the Koninklijk Instituut voor de Tropen (Royal Institute for the Tropics, formenly Colonial Institute) in Amsterdam. The figure of the lectotype of Cancer homarus has the following legend "9: Augusti 1698: Astacus Maximus Ambonensis egregie coloratus". The type locality of Cancer homarus thus definitely is Amboina, Moluccas, Indonesia.

Type locality of Palinurus dasypus: "Habite les mers de I'Inde". Type material in MP, no longer extant (not located in 1989).

Type locality of Palinurus burgeri: J a pan, probably Naga saki area. Holotype male in RMNH, no. D 21129.
Type locality of Panulirus burgeri megasculpta: "Gischin (= Kischin) an der Südküste Arabiens" (= Qishn, South Yemen), 5 male, 2 female syntypes in NMW.

Type locality of Panulirus homarus rubellus: South Africa (Natal and Zululand), s. Mozambique and S.E. Madagascar. Syntypes in SAM, in RMNH, no. D 29843 (in alcohol, condition good), a nd in BM, no. 1928.12.1.326 and 1925.8.18.86-87 (in alcohol, condition fa ir)

Geographical Distribution : Indo-West Pacific region: East Africa to Japan, Indonesia, Australia, New Caledonia and probably the MarquesasArchipelago (Fig. 268). The nominotypical form (Panulirus h. homarus) is found throughout the range of the species; \boldsymbol{P}. homarus megasculpta is only known from the northem Arabian Sea (Socotra, south coast of Arabia, perhaps west coast of India); P. h. rubellus inhabits S.E. Africa (Mozambique to Natal) and S.E. Madagascar.

Habitat and Biology : Inhabits shallow waters between 1 and 90 m depth, mostly between 1 and 5 m ; among rocks, often in the surf zone, sometimes in somewhat turbid water. The species is gregarious and noctumal.

Size : Maximum total body length 31 cm , carapace length 12 cm . Average total body length 20 to 25 cm .

Fig. 268

Interest to Fisheries : In South Africa, until 1965 the exploitation of this species was "restricted to the efforts of Bantu children in the intertidal zone, and of divers in somewhat deeper waters" (Heydom, 1969: I). In 1969, a company was formed for the exploitation of the species on a commercial basis. Although off the S.E. Afric an coast (Natal) P. homarus is the most frequent of the Panulirus species, on the East Afric an coast (Zanzibar, Kenya) it belongs to the less common lobsters. In S.E. Africa it is caught with baited lines, baited nets and traps. Off Somalia, the annual catch is about 120 tons. It is the most important contributing species to the lobster fishery off the Indian S.W. and s. coast (Kerala and Ta mil Nadu), it is caught there with anchor hooks, traps and gill nets, and supports a lucrative freezing industry (J ones, 1967:1339). Gruvel ($1911: 33,34$) remarked that the species (evidently ssp. rubellus) "se prête . . à une exploitation industrielle intéressante" in S.E. Madagascar. In the Philippines the species"is abundantly caught by gill nets partic ularly after heavy rains" (Motoh, 1980:50,51). In Taiwan the species is common in the markets from spring to a utumn (Chang, 1964:6, fig. 4; 1965:36,37). Also in Thailand the species is offered for sale in markets especially in the southem area. However, the fishery is mostly local, a nd the a nimals are marketed fresh or cooked, in some areas there is a minor export of frozen ta ils. In most places the species is caught by hand, with traps, gill nets, cast nets, baited lines etc. In Tha iland, mounted specimens often in fancy glass cases, a re sold to tourists (e.g. in Rayong).

Local Names : INDONESIA: Udang karang;JAPAN: Kebuka ise-ebi, Samehada ise-ebi; MOZAMBIQUE: Lagosta escamosa; PHILPPINES: Banagan (also used for other species of the genus); THAILAND: Kung mangkon (also used for other spec ies of the genus).

Literature : Fischer \& Bianchi (eds), 1984:vol. 5; Williams, 1986:17, figs 38,78j.

Remarks: A possible synonym of Panulirus homarus is Palinurus spinosus H. Milne Edwards, 1837. That species was described as having 4 teeth on the antennular plate, a transverse groove on each abdominal somite as P. guttatus, 3 or 4 dentic les on the posterior margin of the abdominal pleura, the abdomen with numeroussmall specks and no distinct lines or spots on the legs. The morphological characters would fit P. homarus, P. intemuptus and \mathbf{P}. regius, but the colour characters are most like those of \mathbf{P}. homans. For the time being \mathbf{P}. spinosus is therefore regarded here as a probable synonym of the present species. The type material in MP is no longer extant (in 1989).

Panulirus inflatus (Bouvier, 1895)
Fig. 269
PALIN Panul 14
Palinurus inflatus Bouvier, 1895, Bulletin Museum Histoire Naturelle, Paris, 1:8.

Synonyms: Palinurus digueti Gruvel, 1911; a manuscript na me cited by Gruvel, 1911, in the synonymy of P. inflatus of which name it is an objective synonym.

FAO Names : En - Blue spiny lobster; Fr - Langouste bleue; $\mathbf{S p}$ - Langosta azul.

Type : Type locality of P. inflatus and P. digueti: "Basse Califomie" (= Baja Califomia, Mexico). Type specimens in MP, no. Pa 412 (27 cm long), Pa 446 (23 cm) both dry in rather good condition and labelled P. digueti.

Geographical Distribution : Eastem Pacific region: west coast of Mexico from Baja Califomia to Puerto Angel (Oaxaca) (Fig. '270); a record from San Diego, Califomia, USA, needs verification.

Fig 270
Fig. 269
Habitat and Biology : Sublittoral to 30 m deep; on rocky, rarely gra velly bottom.
Size : Maximum carapace length 15.5 cm , but usually not more than 12 cm ; the coresponding total body lengths are respectively 38 and 30 cm

Interest to Fisheries: The species is of interest to fishery throughout its range, although mostly used for local consumption. It is caught by hand and with gill nets, and sold fresh or frozen.

Local Names : MEXIC O: Langosta azul, Langosta caribe, Langosta cabezona, Langosta de roca, Langosta prieta; USA: Pinto lobster, Blue spiny lobster.

Panulirus intemuptus (Ra nd a ll, 1840)
Fig. 271
PALIN Panul 15

Palinurus intemuptus Randall, 1840, Lournal Academy Natural Sciences. Philadelphia, 8: 137

FAO Names : En - California Spiny lobster; Fr - La ngouste mexicaine; Sp Langosta mexicana.

Type: Type locality: "from Upper Califormia, where it IS used as food by, the natives". T. Nuttall. who collected the type material visited Monterey, Santa Barbara, San Pedro and San Diego in Califomia (March - May 1836); he was most active in Santa Barbara and San Diego, and one of these two localities in all probability is the true type locality. Two dry syntypes in ANSP, No. 4188 (condition poorto reasonable).

abdominal somites (lateral view) (from WIlliams,1986)

Geographical Distribution : Eastem Pacific region: Califomia, USA (from San Luis Obispo Bay southwards; there is a doubtful record from Monterey), to Baja Califomia, Mexico (entire west coast); the species is also reported from the Gulf of Califomia (Fig. 272).

Habitat and Biology: From the littoral zone (tide pools) to depths of about 65 m , being more frequent in the deeper waters; on rocky substrates. The species is nocturnal; spa wning takes place from May to August.

Size : The maximum total body length reported is 60 cm , usually it does not exceed 30 cm . The legal size limit is a carapace length of 3.25 inch ($=8 \mathrm{~cm}$), corresponding to a total length of about 20 cm

Interest to Fisheries: Panulirus intemuptus is the economrcally most important lobster of the American west coast. In Califomia it is taken almost exclusively with traps, also trammel nets are used, a nd occasionally they a re obta ined by trawling. The species is also taken by diving by sports fishermen;according to Frey (1971) "the sport catch may equal 50% of the commercial catch". The total catches in 1976 were about 135 tons. The major fishing area is the west coast of Baja Califomia.

Fig. 272

The demandfor the lobster in Califomia "is so great that imports from Mexico average about twice the Califomia catch" (Frey,1971); of course the imported lobsters do not all need to be P. intemuptus. Protective measures as to season, size,bag limit, etc. are at present in force. Sold fresh, cooked and frozen. Best known as gourmet food, sometimes used as bait.

Local Names: MEXICO: Langosta colorada, Langosta roja; USA: Califomia lobster, Califomia manine crayfish, Califomia spiny lobster, Red lobster.

Literature : Mitc hell etal., 1969:121-131; Frey, 1971:19; Williams, 1986:21, figs 49 , 79 h-i.

Panulirus japonic us (Von Siebold, 1824)
Fig. 273

PALN Panul 16

Palinurus japonic us Von Siebold, 1824, De Historiae naturalis in Japonia_statu: 15. Namé placed on the Offic ialal List of Specific Names in Zoology in Opinion 507 (published in 1958).

Synonyms: Senex japonicus - Ortmann, 1891; Puer pellucidus Ortmann, 1891; Puerulus pellucidus - Calman, 1909.
FAO Names: En-J apanese spiny lobster; Fr-Langouste japonaise; Sp - Langosta japonesa.
Type : Type locality of Palinurus japonicus: "J a ponia",J apan, probably near Nagasaki. Lectotype in RMNH, no. 60, selected by George \& Holthuis, 1965: 10, in alc ohol condition excellent; paralectotypes in BM, MP, RMNH, USNM.

Type loc ality of Puer pellucidus: "J apan, Kochi, 15-20 Faden" (= Kochi, Shikoku Island, J apan, 27-37 m). Two syntypes in MZS, preserved in alcohol, condition poor.

abdominal somites (lateral view) (from George, \& Holthuis. 1965)

Geographic al Distribution : Westem Pacific: J apan (south of $38^{\circ} 30^{\prime} \mathrm{N}$ to Ryukyu islands), Korea, East China Sea, China, Xiamen (=Amoy), Taiwan (Fig. 274).

Fig. 274

Fig. 273
(after George \& Holthuis, 1965)

Habitat and Biology : Inhabits shallow waters, between 1 and 15 m depth on rocky bottoms.
Size : Maximum total body length 30 cm ; common length up to 25 cm .
Interest to Fisheries: Panulirus japonic us is fished for commercially in J apan. Longhurst (1970:286) reported the total a nnual catch of spiny lobsters in J apan to a mount to 1600 tons; by far the larger part of this is made up by the present species. The lobsters in Japan are sold fresh and frozen. The FAO Yearbook of Fishery Statistics reports for Japan no catches of P. japonic us, but only for P. longipes, viz. 1083 tons for 1987, 969 tons for 1988. However, as P. longipes is much less abundant than \mathbf{P}. japonicus, it is likely that these figures actually correspond to \mathbf{P}. japonicus, or to a combination of all Japanese spiny lobsters. In Taiwan, the species is found in markets throughout the year, but mostly so from March to October (Chang, 1965:41).

Local Names: J APAN: Ise-ebi (official name), J a panese crayfish, No-ebi (for old specimens).
Literature: George \& Holthuis, 1965:8-14, text-fig. la, pl. 1.

Panulirus laevic auda (La treille, 1817)
Fig. 275
PALIN Panul 3

Palinurus laevicauda Latreille, 1817, Nouveau Dictionnaire d'Histoire naturelle, (ed. 2) 17:295.

Synonyms: Senex laevicauda - Von lhering, 1897.

FAO Names : En - Smoothtail spiny lobster, Fr - Langouste indienne; Sp Langosta Verde.

Type : Type locality: "M. Delalande fils l'a trouvé sur les côtes du Bresil": Pierre Antoine Delalande (1787-1828) arived from France in Rio de Janeiro, Brazil on 1 J une 1816, "He retumed to France after a short voyage through the Province of Rio de Janeiro, carrying the collections obtained" (Papavero, 1971, pp.115, 116). The type locality thus may be restricted to Rio de Janeiro, Brazil. Type material in MP; no longer extant in 1989.

Geographical Distribution : Westem Atlantic: Bermuda and Florida to E. Brazil, including Yucatan and the Caribbean Sea (Fig. 276).

Habitat and Biology : Coastal waters, down to 50 m depth; substrate: rock or coral.

Size : Maximum total body length about 31 cm , common to 20 cm .

Interest to Fisheries: The species is caught throughout its range, but there is no special commercial fishery for it. Sometimes it is taken together with Panulirus argus. The yield of its fishery seems to be largest in Brazil.

Local Names : BERMUDA: Smooth-tailed spiny lobster, BRAZL: Lagosta cabo Verde; MARTNIQUE: Grosses bresiliennes (for large specimens), Homard d'indien; USA: Brazilian lobster, Smooth-tailed crawfish.

Literature : Fischer (ed.), 1978: vol. 6; Williams, 1986:22, figs 52, 79 n -o.

Fig. 276

Palinurus longipes (A. Milne Edwards, 1868)

Fig. 277

PALIN Panul 7

Palinurus longipes A. Milne Edwards, 1868, Nouvelles Archives Museum Histoire Naturelle, Pa ris, 4:87, pl. 21.
Synonyms: Palinurus femoristriga Von Martens, 1872; Palinurus longitarsus Lenz \& Richters, 1881 (erroneous spelling of P. longipes); Senex femoristriga - Ortmann, 1891; Panulirus bispinosus Borradaile, 1899; Panulirus japonicus longipes - De Man, 1916.

FAO Names: En - Longlegged spiny lobster; Fr - Langouste diablotin; Sp - Langosta duende.
Type : Type locality of \boldsymbol{P}. longipes: "trouvée sur les côtes de l'île Zanzibar", through the lectotype selection by George \& Holthuis (1965:25); the paralectotype came from "Maurice" ($=$ Maunitius). Type material in MP, no longer extant in 1989.

Type loc a lity of P. femoristriga: "Amboina", Moluccas, Indonesia. Holotype (or lectotype) female in ZMB, no. 1333, preserved in alcohol; could not be located in 1989.

Type locality of P. bispinosus: "Sandal Bay, Lifu, Loyalty Islands". Holotype male, ZMC, in alcohol, condition good.

a. P. longipes longipes
b. P. longipes femoristriga (after George \& Holthuis. 1965) Fig. 277

Geographical Distribution : Indo-West Pacific region: East Africa to Japan and Polynesia. Two subspecies can be recognized: P. l. longipes (Fig. 277a) is the westem form occuring from East Africa to Thailand, Taiwan, the Philippines and Indonesia and the eastem subspecies P.I. femoristriga (Fig. 277b) inhabiting J apan, the Moluccas, New Guinea, eastem Australia, New Caledonia and Polynesia (Fig. 278). Intermediate forms have been observed, especially in the area of overlap between the two ranges.

Habitat and Biology : The species lives in clear or slightly turbid water at depths of 1 to 18 m (also reported from 122 m), in rocky areasand coral reefs. The a nimals are noctumal and not grega rious.

Size : Maximum total body length 30 cm , average length 20 to 25 cm . Maximum carapace length 12 cm , average carapace length 8 to 10 cm . The smallest ovigerous female has a total length of 14 cm .

Fig. 278

Interest to Fisheries: The species is caught throughout its range, mostly by hand when diving or with spears, also with traps, tangle nets and lobster pots. In Taiwan it is also known to be taken as by-catch by trawls. Fishing is of local interest only The animals are sold fresh in the markets and directly to restaurants. The FAO Yearbook of Fishery Statistics reports for this species catches in Japan of 1083 tons in 1987 and 969 tons in 1988. As P. longipes is not partic ularly common in Japan, and as P. japonicus was not listed in those statistics it is likely that the figures refer to the latter species or to both.

Local Names : AUSTRALA: Blue spot rock lobster, Coral crayfish, Painted crayfish, Red cray, Tropical rock lobster, Tropical spiny lobster, White whiskered rock lobster; JAPAN: Kanoko ise-ebi; MOZAMBIQUE: Lagosta de coral; NEW CALEDONIA: Langouste rouge; PHIUPPINES: Banagan (also used for other spiny lobster species), Coral crayfish, Marine crayfish, Marine rock lobster, Tropical rock lobster, Tropical spiny lobster, SOUTH AFRICA:, Long-legged crayfish; THAILAND: Kung mangkon (also used for other species of spiny lobster); TUVALU: Oula.

Literature: George \& Holthuis, 1965:21-28, text-fig. le, pl. 5, Fischer \& Bianchi (eds), 1984:vol. 5; Willia ms, 1986:20, figs 46,79 f-g

Panulinus marginatus (Quoy \& Gaimard, 1825)
Fig. 279
PALIN Panul 17
Palinurus marginatus Quoy \& Gaimard, 1825, in L de Freyc inet, Vovaoe autourdu monde surlescorvettesl'Uranie et la Phvsicienne, Zool.:537, pl. 81.

FAO Names : En - Ba nded spiny lobster; Fr - La ngouste bordée.
Type : Type loc a lity: "Iles Sandwich" (= Hawaiian islands). Type material no longer extant in MP in 1989.

abdominal somites (lateral view)
(from George \& Holthuis, 1965)

Geographical Distribution : Only known from the Hawaiian Islands, including Pearl and Hermes Reef, and Lavsan Island (Fia. 280).

Fig. 280

(after George \& Holthuis. 1965)
Fig. 279

Habitat and Biology : The species has been reported from depths down to 143 m , but usually in shallow water, in well protected places on a rocky substrate, under rocks and in rock crevices. The animals are noctumal.

Size : Total body length to 40 cm , carapace length to 12 cm .
Interest to Fisheries : Used as food throughout its range. Fished with traps or nets. Also taken by hand, in daytime by diving, at night with lights and spears. Sold fresh in local markets. The 1971 USA fishery statistic sindicate a total of 5 725 pounds ($=2600 \mathrm{~kg}$) of lobsters caught in the Hawaiian Islands, of which 5371 pounds in Oahu, 263 pounds in Maui, 70 pounds in Hawaii and 21 pounds in Lanai. Of these slightly more were caught in gill nets (3253 pounds) than in traps (2113 pounds) and 339 pounds were registered as fished by hand. These figures include the catches of P. penic illatus.

Local Names : HAWAIl: Ula (general name for spiny lobsters).
Literature : George \& Holthuis, 1965: 14-17, text-fig 1 b, pl. 2; Willia ms, 1986:20, figs 45,79 d-e.

Panulinus omatus (Fa bric ius, 1798)
Fig. 281
PALIN Panul 8
Palinurus omatus Fabric ius, 1798, Supplementum Entomoloaiae systematicae:400.
Synonyms: Pa linurus sulcatus H. Milne Edwards, 1837; Panulirus sulcatus - White, 1847; Palinurus (Senex) sulcatus Pfeffer, 1881; Senex omatus - Lanc hester, 1900.

FAO Names: En - Omate spiny lobster; Fr-Langouste omée; Sp - La ngosta omamentada.

Type : Type locality of P. omatus: "in Oceano Indico. Dom. Daldorff". I.K. Daldorff, a Danish officer, was stationed from 1790 to 1793 in Tranquebar, SE. India ($11022^{\prime} \mathrm{N}, 7951^{\prime} \mathrm{E}$) in which area he collected; he did not retum to India until 1798. His material is from Tranquebar or the nearby region, which may be considered the restricted type locality. Lectptype in UZM, originally preserved dry, recently transferred to alcohol, condition reasonable.

Type loc ality of P. sulcatus: "Habite les còtes de I'Inde". presumed type specimen in MP, no. Pa 448; a dry specimen in reasonable condition la belled "Palinurus sulc atus Lmk. Indes".

Geographical Distribution: Indo-West Pacific region from the Red Sea and East Africa (south to Natal) to southem Japan, the Solomon Islands, Papua New Guinea, SW., W., N., N.E. and E. Australia, New Caledonia and Fiji. Recently (1988) a specimen was found on the coast of Israel in the E. Mediterranean (Fig. 282).

Habitat and Biology : In shallow, sometimes slightly turbid coastal waters, from 1 to 8 m depth, with a few records from depthsasgreat as 50 m . On sandy and muddy substrates, sometimes on rocky bottom, often near the mouths of rivers, but also on coral reefs. The species has been reported as solitary or as living in pairs, but has also been found in larger concentrations.

Fig. 282

Size : This is one of the largest of the Panulirus species and can atta in a total body length of about 50 cm , but usually is much smaller (30 to 35 cm).

Interest to Fisheries: Panulirus omatus is fished for throughout its range, but in most places only on a small scale. Taken mostly by hand by divers, or speared. Handnets are used also, but trapsprove to be ineffective. Sold mostly fresh or frozen in local markets. In the Philippines a minorexport activity hasdeveloped. In Australia a commercial fishery was developed since about 1966, it uses freezing installations ashore, as well asfreezer boats; these operations cover the Torres Strait area, as well as N.E. Queensland, with an annual catch of over 120 tons tail weight around 1986 (Channells et al., 1987). Mounted dry specimens (sometimes in glass cases) are sold to tourists in several areas (e.g., in Thailand).

Local Names : AUSTRALA: C oral crayfish, Omate rock lobster, Painted cray, Tropic al rock lobster, FIJ I: Coral crayfish, Omate rock lobster, Painted crayfish, Tropical rock lobster, Uraubola, Urautamata; JAPAN: Nishi ki-ebi; MOZAMBIQUE: La gosta omamentada; NEW CALEDONIA: Grosse langouste porcelaine; PAKISTAN: Kikat (Sindhi), Kikka (Baluchi); PHILPPINES: Banagan; SOUTH AFRICA: Omate crayfish, Omate spiny lobster, THAILAND: Kung mangkon.

Literature : Fisc her \& Bianchi (eds), 1984:vol. 5; Willia ms, 1986:22, figs 51,79 I-m.

Fig. 283
Panulinus pascuensis Reed, 1954, Scientia, Valpa raiso, 21:121,136,fig s1-9.
Synonyms: Palinurus pasc halis (Philip pi Ms.) Holthuis, 1972.
FAO Names : En - Ea ster Isla nd spiny lobster

Type : Type locality of P. pascuensis: "Isla de Pascua" (= Easter Island, southem Pacific). Holotype male in Museo de la Dirección General de Pesca y Caza de Chile, Valparaiso, Chile.

abdominal somites (lateral view)
(from George. \& Holthuis 1965)

Geographical Distribution: Easter Island and Pitcaim Island, southem Pacific Ocean (Fig. 284).

Habitat and Biology : Lives in shallow water (from 0 to 5 m depth) in crevices of a rocky substrate. Impregnated and ovigerous females have been taken in December.

Size: Reported carapace lengths of males 6 to 10 cm ; females cl. 6 to 9.5 cm . This corresponds to total body lengths of about 15 to 25 cm (males), and 15 to 24 cm (females); the smallest ovigerous female has a cl. of 6 cm .

Interest to Fisheries : Both at Easter Isla nd and at Pitcaim the species is mainly taken by hand or speared by divers in daytime, and with torch light at night; also gill nets and lobster pots are used. The lobsters are sold fresh for local consumption.

Local Names : CHILE: Langosta de Pascua, Ura (Ea ster Island).

Literature: George \& Holthuis, 1965:17-19, textfig. Ic, pl.3; Holthuis, 1972:36-44, figs 1,2.

Fig. 283

Astacus penicillatus Olivier, 1791, Encyclopedie méthodique. Histoire naturelle. Insectes, 6:343.

Synonyms: Palinurus gigas Lamarck, 1801; Palinurus penicillatus - Olivier, 1811; Palinurus ehrenbergi Helter, 1861; Palinurus (Panulirus) ehrenbergi - Heller, 1865; Palinurus (Senex) penicillatus - Pfeffer, 1881; Cancer theresae C urtiss, 1938.

FAO Names : En - Pronghom spiny lobster; Fr - Langouste fourchette; Sp - Langosta horquilla.

antennular plate

Type : Type locality of \boldsymbol{A}. penicillatus (and \boldsymbol{P}. gigas, which is a replacement name for \boldsymbol{A}. penicillatus): unknown ("Elle se trouve"). Type material in La marck collection, in MP? In the Paris Museum there are 7 specimens of this species labelled "Mer des Indes", or without locality indication. One or more of these may belong to the type lot, but this cannot be made certain.

Type locality of P. ehrenbergi: "Coseir" (= Quseir, Red Sea coast of Egypt). Type in NMW.

Fig. 285

Type locality of Cancer theresae: "At Tautira, in the bamier reef", Tahiti; whereabouts of type material unknown.

Geographical Distribution : IndoWest Pacific and Eastem Pacific regions: Red Sea, E. and S.E. Africa to Japan, Hawaii, Samoa and the Tuamotu Archipelago and further east to the islands off the west coast of America (Clipper-ton Island, Revillagigedo Archipelago, Cocos Istand, Galapagos Arc hipelago) and in some localities near the continental coast of Mexico (Sinaloa, Nayarit and Guerrero) (Fig. 286).

Fig. 286

[^0]: It proved not very easy to establish who has to be cited as the author of the name Crustacea. This name actually dates from the earliest published books dealing wrth these animals. Belon (1553. De aquatilibus Libri duo: 343) used the name Crustata for lobsters, shrimps and crabs One year later G Rondelet (1554, Libri de Piscibus Marinis: 534) used the actual spelling Crustacea for the group ("De Piscibus Liber XVIII. Quae drcantur Crustacea") Many subsequent authors adopted this name However, Linnaeus (1758, Systema Naturae (ed. 10)1) Ignored the term Crustacea and placed the crustaceous animals together with the spiders, millepeds, etc. in his "Insecta Aptera". The name Crustacea can be found in some early post-Irnnean non-brnomrnal works like those by Roesel von Rosenhof (1755-1759. Monatlrche Insektenbelustrgungen, 3:305; and its 1764-1768 Dutch translation, De Natuurlijke Historie der Insecten, 3 (2):267), and the one by Brisson (1762, Regnum Animale rn Classes IX:6) The first nomenclaturally available work to use the term Crustacea IS. to my knowledge, that by Brünnich (1772, Zoolograe Fundamenta Prdelectronrbus Academicis Accomodata. Grunde I Dyrelaeren: 174, 184). who separated the Crustacea (in which he included Chelicerata and Crustacea in the modern sense) from the Insecta Aptera (in which he left true insects like Lepisma, Podura, Temmes, Pediculus and Pulex) Pennant (1777, British Zoology (ed.4)4) listed the groups dealt wrth in this fourth volume as "Crustacea Mollusca Testacea", and carried the term again on the title page preceding p. 1 of the text of Class V "Crustacea Crustaceous Animals" In the same year also Scopoli In his 1777 book "Introductio ad Historiam Naturalem" on p 404 used the term Crustacea namely for his Gens I of Tribus IV "Crustacea Brunnich".

[^1]: * The abbreviation q.v. (for "quod vide"=which see), placed after a tem is a cross reference to that tem in the

[^2]: Type : Type localities:"Albatross" Station 3418, off Acapulco, Mexico, 16033 ' N 99052 ' 30 " W ; 660 fms [$=1207$.m], brown sand, broken specks; syntype in USNM, no. 21081. "Albatross" Station 3424, nearTres Marias Islands, Mexic o, 21015'N 106023'W, 676 fms [= 1236 m], grey sand, broken specks; syntype in USNM, no. 21082.

[^3]: Literature : Palombi \& Santa relli, 1961:365-365 (local Italian names); Farmer, 1975; Fischer, Bianchi \& Scott (eds),

