
Fig. 18. Spermatozoan types of the Decapoda. A: Unistellate 
spermatozoan of Palaemonetes kadiakensis. SEM. X4,000. B: 
Ventral view of spike region of spermatozoan pictured in A; 
note that the three basic divisions (spike, cap, and cell body) of 
the spermatozoan can be easily recognized. SEM. X 10,000. C: 
Transverse section through unistellate spermatozoan shown in 

A. TEM. x4,200. D: Unistellate spermatozoa of Penaeus setif-
erus. SEM. X4,000. E: Transverse section of unistellate sper­
matozoan pictured in D. TEM. X4,500. F: Multistellate sper­
matozoa of Callinectes sapidus; note multiple arms (a) 
extending from the cell body. SEM X4,100. s, spike; cp, cap; 
cb, cell body; n, nucleus. 
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in many species (Koehler, 1979; Lynn and 
Clark, 1983b; Felgenhauer and Abele, 1988). 
The fibrils may anastomose and extend down 
into the spike (Fig. 18C). An organized ac­
rosomal complex has been described for the 
dendrobranchiate shrimp Sicyonia ingentis by 
Kleve et al. (1980), but for most species, es­
pecially caridean shrimp, no distinct ac-
rosome has been demonstrated. Shigekawa 
and Clark (1986) provide an excellent discus­
sion of what is known concerning the acroso­
mal reaction. 

The spike may be elongate in some species 
(Fig. 18A-C) to quite short in others (e.g., 
Crangon; see Arsenault et al., 1979; Boddeke 
et al., 1991). Two basic types of spike associ­
ation with the egg surface have been de­
scribed: either a spike-first contact with the 
egg (Kleve et al., 1980; Barros et al., 1986) 
or a cap-first egg interaction (Lynn and Clark, 
1983a,b). 

Multistellate Spermatozoa. This spermato-
zoan type is a multistellate cell with radiating 
arms (= spikes of some authors) extending 
from the cell body (Fig. 18F). These append­
ages are not homologous to the unistellate 
spike (Talbot and Summers, 1978; Hinsch, 
1986). The most striking feature of this ga­
mete is its highly structured acrosome (Fig. 
19A,B). The nucleus surrounds the large 
electron-dense acrosomal complex that is 
composed of several distinct ultrastructural 
features. The acrosomal vesicle is bilayered 
in most brachyuran crabs, consisting of an 
inner and outer region (Fig. 19A,B,D). The 
acrosomal vesicle may be flanked by a prom­
inent lamellar region (Fig. 19A,B). The ac­
rosomal tubule is presumably supported by a 
battery of microfilaments or microtubules 
(Fig. 19A-D), depending on the species. The 
anterior portion of the acrosomal tubule is 
covered by a distinct electron-dense acroso­
mal cap (Fig. 19A,B). At the base of the 
acrosomal tubule is a thickened ring that evi­
dently aids in the support of the tubule (Fig. 
19A). The nucleus may or may not extend 
into the usually stellate arms. The brachyuran 
crab Iliacantha sp. exemplifies nuclear pene­

tration into the arms (Fig. 19E,F). Other spe­
cies of reptant decapods may have a microtu-
bular component within the radiating arms, as 
in the crayfish Procambarus leonensis (Fig. 
20A-C,E). The acrosomal reaction is essen­
tially an eversion of the cell, turning the ac­
rosome "inside out" with subsequent injection 
of the nucleus (Brown, 1966, Talbot and 
Chanmanon, 1980; Goudeau, 1982, and oth­
ers; Fig. 19G). 

The spermatozoan of astacoid reptant deca­
pods (e.g., crayfish) is different in its organi­
zation from that described above. The promi­
nent acrosomal vesicle is horseshoe-shaped 
and is not bilayered, but is crystalline in na­
ture (Fig. 20A,D). The acrosomal tubule is 
much reduced and distinct microtubules are 
not easily discerned (Fig. 20D,F). The radiat­
ing arms are greater in number (up to 20 or 
more in some species) and are supported by 
microtubular arrays (Fig. 20A,B,E). The cell 
membrane of this gamete is much thicker than 
that of most decapod spermatozoa and has 
been termed the cell capsule (Fig. 20A,E). 
Mechanics of the acrosomal "reaction" and 
egg interactions have not been described. 

Female System 

The ovary is located in the dorsal portion of 
the cephalothorax in the same relative posi­
tion as the male testis (Fig. 3), e.g., lying 
dorsal to the hepatopancreas (Fig. 12A). As in 
the testis, the ovary is paired and its size de­
pends on the age and reproductive condition 
of the individual. Unlike the testis, the ovary 
commonly extends into the abdominal 
somites, and in some groups, such as many of 
the anomuran crabs, the ovary is restricted to 
this position (Kaestner, 1970; McLaughlin, 
1983). Details concerning the maturation pro­
cess and ultrastructural features of the ovary 
and follicles can be found in Johnson (1980) 
and Talbot (1981a,b). In macrurous forms, 
the ova pass from the ovary down the oviducts 
and exit via the gonopore on the third walking 
legs (pereiopods). In brachyurous forms, the 
short oviducts lead to a saclike spermatheca 
within the musculature of the second walking 
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Fig. 19. Ultrastructural details of decapod multistellate sper­
matozoa. A-F by TEM. A: Multistellate spermatozoan of Calli-
nectes sapidus. X3,000. B: Close-up of acrosomal region of 
Callinectes sapidus. X 10,000. C: Oblique section through ac­
rosomal tubule from the spermatozoan of Parthenope sp.; note 
numerous microtubules (arrow). X22,000. D: Cross section 
through the acrosomal tubule of I liacantha sp. Note the microtu­
bules within the tubule and the bilayered condition of the acroso­
mal vesicle, x 80,000. E: Multistellate spermatozoan of Ilia-

cantha sp. x9,000. F: Cross-section through the arms of the 
spermatozoan pictured in E; note chromatin extending into the 
arms from the nucleus. X35,000. G: Artificially induced ac­
rosomal reaction of the multistellate spermatozoan of Eurydium 
sp. SEM. X8,500. a, arm; ac, acrosomal cap; at, acrosomal 
tubule; av, acrosomal vesicle; cb, cell body; ir, inner region; Ir, 
lamellar region; mt, microtubules; n, nucleus; or, outer region; 
tr, thickened ring. 
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Fig. 20. Ultrastmctural features of crayfish spermatozoa. 
TEM. A: Ultrastmctural aspects of the spermatozoan of Pro-
cambarus leonensis. x3,000. B: Oblique section through ante­
rior region showing arms supported by microtubules. X 22,000. 
C: Close-up of acrosomal vesicle and microtubules within the 
arms. x40,000. D: Ultrastmctural details of acrosome. 

X 36,000. E: Close-up of acrosomal vesicle; note thick cell coat 
and microtubules supporting the arms. X36,000. F: High mag­
nification of acrosome and presumed acrosomal tubule. 
x50,000. a, arm; av, acrosomal vesicle; at, acrosomal tubule; 
cc, cell coat; mt, microtubules; n, nucleus. 

legs (pereiopods). Unlike most macrurous 
decapods, internal fertilization is practiced by 
this large group of crabs and spermatozoa are 
stored within the spermatheca following cop­
ulation. The eggs are fertilized as they pass 
onto the abdominal pleopods for brooding 

(Warner, 1977). The method by which deca­
pods incubate their eggs varies depending 
upon the group. Dendrobranchiate decapods 
release eggs into the water (although Lucifer 
carries them briefly on the pereiopods; 
Burkenroad, 1981), while all other decapods 
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for which data are available carry the eggs on 
the pleopodal setae (Felgenhauer and Abele, 
1983). 

THE EXCRETORY-OSMOREGULATORY 
SYSTEMS 

The antennal, urinary or green glands are 
paired excretory organs located at the base of 
the second antennae. The excretory pore exits 
on the coxa of the antenna (Fig. 21 A, arrow) 
and its location is a constant feature among 
decapods. Antennal glands are generally 
composed of four components: the coelomo-
sac (= end sac), labyrinth, proximal and dis­
tal tubules (= nephridial canal), and bladder 
(Fig. 22). The description below is of the 
green gland of the crayfish Procambarus le-
onensis. 

The mesodermally derived coelomosac is 
composed of podocytes that perform an ul­
trafiltration function similar to that of the ver­
tebrate glomerular nephron (Kummel, 1964; 
Schmidt-Nielsen et al., 1968; Tyson, 1968; 
Peterson and Loizzi, 1974; Johnson, 1980). 
The labyrinth is composed of an extensive 
network of coiled cuboidal cells in the inac­
tive state and columnar cells in the active 
secretory condition. The labyrinth cells typi­
cally have a centrally located nucleus (Fig. 
2IE) with numerous mitochondria packed 
within the extensive infoldings of the basal 
lamina (Fig. 21F,G) characteristic of trans­
port tissue (e.g., gills, branchiostegite; Man­
tel and Farmer, 1983). The apical portion of 
these cells has an extensive brush border (Fig. 
21E,F). The labyrinth is a transport system 
involved in the movement of ions and reab-
sorption of proteins (Peterson and Loizzi, 
1974). The nephridial canal (= proximal-dis­
tal tubules) acts as the conduit between the 
labyrinth and bladder. The length of the 
nephridial canal varies greatly depending 
upon species. The bladder is usually a large 
reservoir for urine storage and may play a role 
in final urine modification (Riegel, 1972). 

CIRCULATORY SYSTEM 

The circulatory system of decapods is cen­
tered around a bulbous, dorsal heart, located 

in the posterior region of the cephalothorax. 
The heart receives blood through a series of 
ostia (Figs. 3, 23). It is surrounded by a peri­
cardial sac that is penetrated by passageways 
where venous blood returns to the pericardial 
chamber. The number of ostia of the heart 
may vary depending on the species, but three 
pairs is the most commonly reported number 
(McLaughlin, 1983; Schram, 1986). The lo­
cation of the ostia varies also from paired 
arrangements in the dorsal, lateral, and ven­
tral positions around the heart (Figs. 12A, 
23). 

Figure 23 illustrates the general layout of 
the major arteries comprising the circulatory 
pattern of most decapods (Burnett, 1984). 
Several major arteries exit the anterior aorta 
(Fig. 23) servicing the rest of the body. The 
anterior aorta (= dorsal artery) may be 
equipped with an enlargement termed the cor 
frontale, first described by Baumann (1917). 
The basic anatomy of this modification is re­
markably similar among the decapods studied 
by Steinacker (1978), who considered the cor 
frontale to function as an "auxiliary heart" 
(= accessory heart of Maynard, 1960). 

The hemocytes of decapod crustaceans are 
circulating cells (Fig. 14F,G) of the he-
molymph that perform a diversity of physio­
logical and pathological functions (see Ravin-
dranath, 1980; Bauchau, 1981; Hose et al., 
1987), from wound repair (Fontaine and 
Lightner, 1973), to clotting of the he-
molymph (Stutman and Dolliver, 1968), to 
hardening of the cuticle (Vacca and Finger-
man, 1983), to name but a few. Classification 
of these cells has been attempted for many 
years, but owing to the different criteria used 
to determine types by many investigators, 
much confusion still remains and has pre­
vented comparative inferences to be made on 
form and function (Martin and Graves, 1985); 
however, see Vascular Elements and Blood 
(Hemolymph) chapter 5, by Martin and Hose, 
this volume. Most of the investigations on 
these cells have been cytochemical in nature 
and were focused on devising a means of clas­
sifying these difficult cell lines (for discussion 
see Martin etal. , 1987). 
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Fig. 21. Ultrastructural features of the decapod urinary and 
osmoregulatory systems. (A, from Systellaspis sp.; B-G are 
from Procambarus leonensis). A: Urinary pore (arrow) at base 
of antennal peduncle. SEM. x50. B: Paraffin-carved section 
through the labyrinth region of the green gland; arrow indicates 
region that exits to the proximal tubule. SEM. x50. C: 
Close-up of the convoluted cell layers of the labyrinth shown in 

B. SEM. X450. D: Region of labyrinth that leads to the proxi­
mal tubule. SEM. X 200. E: Ultrastructure of the labyrinth cells; 
note centrally located nucleus (n). TEM. x3,000. F: Close-up 
of brush border of labyrinth cells; note mitochondria (m) and 
long microvilli. TEM. X 18,000. G: Close-up of mitochondria 
packed within the basal lamina indicated by arrow in E. TEM. 
X20,000. 
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Proximal tubule 

Fig. 22. Schematic drawing of the antennal green gland of the crayfish indicating the major regions of the 
gland. (After Riegel, 1972.) 

Dorsal aorta Ostia Heart 

Anterior aorta 

Lateral cephalic artery 

Ventral venous sinus 

Fig. 23. Schematic drawing of the circulatory system of a typical decapod. (After Burnett, 1984.) 
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Fig. 24. A: The central nervous system of the crayfish, showing the basic ladderlike arrangement ot tne 
ventral nerve cord. B: Schematic drawing of the regions of the brain. (After Brusca and Brusca, 1990.) 
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Fig. 25. The nervous system of a typical brachyuran crab. Note fusion of abdominal ganglia. (After 
Pearson, 1908.) 
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NERVOUS SYSTEM 
The central nervous system is composed of 

a dorsal brain connected to a ventral longitu­
dinal nerve cord located below the alimentary 
canal (Fig. 24). The brain is composed of 
three regions: the protocerebrum, deuterocer-
ebrum, and tritocerebrum. The ventral nerve 
cord is typically a "ladderlike" system 
wherein fused paired ganglia occur in each of 
the abdominal somites of macruous forms and 
are reduced to a single postesophageal gan­
glion in brachyurous forms (Fig. 25). 
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