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Abstract.—The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models 
necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximum-
likelihood principle, which clearly satisfies these requirements. The core of this method is a simple hill-climbing algorithm 
that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast 
distance-based method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment 
of the topology and branch lengths, only a few iterations are sufficient to reach an optimum. We used extensive and realistic 
computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing 
maximum-likelihood programs and much higher than the performance of distance-based and parsimony approaches. The 
reduction of computing time is dramatic in comparison with other maximum-likelihood packages, while the likelihood 
maximization ability tends to be higher. For example, only 12 min were required on a standard personal computer to analyze 
a data set consisting of 500 rbcL sequences with 1,428 base pairs from plant plastids, thus reaching a speed of the same order as 
some popular distance-based and parsimony algorithms. This new method is implemented in the PHYML program, which 
is freely available on our web page: http://www.lirmm.fr/w3ifa/MAAS/. [Algorithm; computer simulations; maximum 
likelihood; phylogeny; rbcL; RDPII project.] 

The size of homologous sequence data sets has in­
creased dramatically in recent years, and many of these 
data sets now involve several hundreds of taxa. More­
over, current probabilistic sequence evolution models 
(Swofford et al., 1996; Page and Holmes, 1998), notably 
those including rate variation among sites (Uzzell and 
Corbin, 1971; Jin and Nei, 1990; Yang, 1996), require an 
increasing number of calculations. Therefore, the speed 
of phylogeny reconstruction methods is becoming a sig­
nificant requirement and good compromises between 
speed and accuracy must be found. 

The maximum likelihood (ML) approach is especially 
accurate for building molecular phylogenies. Felsenstein 
(1981) brought this framework to nucleotide-based phy-
logenetic inference, and it was later also applied to 
amino acid sequences (Kishino et al., 1990). Several vari­
ants were proposed, most notably the Bayesian meth­
ods (Rannala and Yang 1996; and see below), and the 
discrete Fourier analysis of Hendy et al. (1994), for ex­
ample. Numerous computer studies (Huelsenbeck and 
Hillis, 1993; Kuhner and Felsenstein, 1994; Huelsenbeck, 
1995; Rosenberg and Kumar, 2001; Ranwez and Gascuel, 
2002) have shown that ML programs can recover the cor­
rect tree from simulated data sets more frequently than 
other methods can. Another important advantage of the 
ML approach is the ability to compare different trees 
and evolutionary models within a statistical framework 
(see Whelan et al., 2001, for a review). However, like all 
optimality criterion-based phylogenetic reconstruction 
approaches, ML is hampered by computational difficul­
ties, making it impossible to obtain the optimal tree with 
certainty from even moderate data sets (Swofford et al., 
1996). Therefore, all practical methods rely on heuristics 
that obtain near-optimal trees in reasonable computing 
time. Moreover, the computation problem is especially 

difficult with ML, because the tree likelihood not only 
depends on the tree topology but also on numerical pa­
rameters, including branch lengths. Even computing the 
optimal values of these parameters on a single tree is 
not an easy task, particularly because of possible local 
optima (Chor et al., 2000). 

The usual heuristic method, implemented in the pop­
ular PHYLIP (Felsenstein, 1993) and PAUP* (Swofford, 
1999) packages, is based on hill climbing. It combines 
stepwise insertion of taxa in a growing tree and topolog­
ical rearrangement. For each possible insertion position 
and rearrangement, the branch lengths of the resulting 
tree are optimized and the tree likelihood is computed. 
When the rearrangement improves the current tree or 
when the position insertion is the best among all pos­
sible positions, the corresponding tree becomes the new 
current tree. Simple rearrangements are used during tree 
growing, namely "nearest neighbor interchanges" (see 
below), while more intense rearrangements can be used 
once all taxa have been inserted. The procedure stops 
when no rearrangement improves the current best tree. 
Despite significant decreases in computing times, no­
tably in fastDNAml (Olsen et al., 1994), this heuristic 
becomes impracticable with several hundreds of taxa. 
This is mainly due to the two-level strategy, which sepa­
rates branch lengths and tree topology optimization. In­
deed, most calculations are done to optimize the branch 
lengths and evaluate the likelihood of trees that are 
finally rejected. 

New methods have thus been proposed. Strimmer and 
von Haeseler (1996) and others have assembled four-
taxon (quartet) trees inferred by ML, in order to recon­
struct a complete tree. However, the results of this ap­
proach have not been very satisfactory to date (Ranwez 
and Gascuel, 2001). Ota and Li (2000, 2001) described 
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NJML, an algorithm that is a the continuation of that 
of Adachi and Hasegawa (1996), combining neighbor 
joining (NJ) and ML. NJML first builds a tree by the 
fast distance-based NJ algorithm (Saitou and Nei, 1987); 
the unreliable branches of this initial tree are then de­
tected using the bootstrap procedure (Felsenstein, 1985) 
and resolved by computing the branch lengths and the 
likelihood of alternative resolutions. In this way, NJML 
avoids spending time on the well-supported parts the 
tree. Ranwez and Gascuel (2002) proposed another com­
bination of distance-based and ML approaches, with the 
computation speed of the former and topological ac­
curacy midway between both. This method relies on 
triplets of taxa, sharing a divide-and-conquer strategy 
with the quartet approach. 

Stochastic optimization is another attractive strat­
egy Markov chain Monte Carlo (MCMC) algorithms 
are widely used by Bayesian methods (Li, 1996; Mau, 
1996; Rannala and Yang, 1996; Simon and Larget, 2000; 
Huelsenbeck and Ronquist, 2001). This approach has 
several advantages. It generates a number of trees (in­
stead of a single one) and allows estimation of their 
posterior probabilities, as well as that of various (e.g., 
clade) hypotheses. Moreover, these posteriors are based 
on the integrated likelihood, i.e., the likelihood aver­
aged over branch lengths and model parameters val­
ues. In this way, Bayesian approaches take into account 
sources of uncertainty due to numerical values that the 
standard ML methods do not. Salter and Pearl (2001) 
described a simulated annealing algorithm that is sub­
stantially faster than DNAML (Felsenstein, 1993) and 
PAUP*. This algorithm simultaneously perturbs branch 
lengths and tree topology and then accelerates the com­
putations in comparison with standard hill climbing. The 
genetic algorithms recently proposed by Lewis (1998) 
and Lemmon and Milinkovitch (2002) are specially ef­
ficient. These algorithms navigate in the tree space, ran­
domly perturbing a population of trees by modifying 
their branch lengths and topology, combining these trees 
to obtain better trees, and selecting the best trees until 
an optimum is reached. In this way, large phylogenies 
containing hundreds of taxa are obtained in few hours 
on a standard computer (Lemmon and Milinkovitch, 
2002). Moreover, due to the fact that these approaches 
build a number of trees, they permit approximation 
of the posterior probabilities of trees or clades. Finally, 
an efficient parallel implementation of the genetic opti­
mization approach has been described by Brauer et al. 
(2002). 

The hill-climbing principle is usually considered faster 
than stochastic optimization and sufficient for numer­
ous combinatorial optimization problems (Aarts and 
Lenstra, 1997), particularly when the function to be op­
timized is a simplification of the overall reality of the 
problem at hand. This is clearly the case with phy-
logenetic reconstruction because we do not know the 
real substitution process that occurred. Moreover, de­
spite the ever increasing size of databases, the length 
of sequences used to build phylogenies is not limitless. 
Sampling variations in the likelihood are inevitable, even 

when the chosen evolutionary model fits the sequences 
well. 

Here, we present a new, simple hill-climbing algo­
rithm that avoids the limits of the previous ones. The 
tree topology and branch lengths of a unique tree are 
simultaneously and progressively modified so that the 
tree likelihood increases at each step until an optimum 
is reached. During this process, we can also adjust the 
model parameters, such as the transition/trans version 
ratio or the gamma shape parameter accounting for rate 
variation among sites. This algorithm is implemented in 
the PHYML package, which is faster than other exist­
ing ML programs, including MetaPIGA (Lemmon and 
Milinkovitch, 2002). Here, we present this algorithm and 
then compare PHYML with other packages using exten­
sive computer simulations and two large data sets com­
prising 218 and 500 taxa. It is shown that PHYML is at 
least equivalent to other ML programs, both in terms of 
topological accuracy and likelihood maximization, while 
having a speed similar to that of some popular distance-
based and parsimony methods. Such a speed not only 
makes possible the inference of very large trees, but also 
greatly facilitates the building of multiple trees in boot­
strap analysis. 

METHOD AND ALGORITHMS 

The principle is to start from an initial tree constructed 
by a fast distance-based algorithm and to improve it. We 
first present how every branch can be adjusted indepen­
dently of the other branches, to maximize tree likelihood. 
We then show how this process extends to tree swapping, 
without much more computation. Branch-length opti­
mization and tree swapping define possible modifica­
tions of the current tree, and we explain how these mod­
ifications are selected and combined. Finally, we present 
the whole method, including model parameter optimiza­
tion. For the sake of simplicity, the method is described 
for nucleotide sequences, but it can also be applied to 
proteins. 

Branch-Length Optimization 

Let e be the branch under consideration and / its cur­
rent length. U and V are the subtrees at the two extrem­
ities of e, with roots u and v (Fig. la). We assume that 
these subtrees are fixed. We then define the conditional 
likelihood L(i =h\U) as the probability of observing the 
data at site / at the tips of U, given that node u has nu­
cleotide h. When U is reduced to taxon u, L{i =h\U) is 
equal to 1 if site i of taxon u has nucleotide h, and 0 other­
wise. L(i =h\V) has the same meaning when V (and v) 
replaces U (and u). We also assume, as usual, that the se­
quence substitution model is homogeneous, stationary, 
and time reversible. The a priori probability of nucleotide 
h is then denoted as 7th, and Phh'Q) is the probability for 
the nucleotide h to become h' in interval /. With this no­
tation, and assuming that all sites independently evolve 
at the same rate, the likelihood of the whole tree is equal 
to the product of the site likelihoods and may be written 
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FIGURE 1. The three alternative topological configurations around an internal branch. W, X, Y, and Z are four subtrees, and lw, lx, ly, and lz 

are the lengths of the four branches connected to the roots of W, X, Y, and Z, respectively. These lengths are the same in the three topological 
configurations. U and V are the subtrees on the left and right, respectively, of the internal branch, and la, lb, and lc are the internal branch lengths 
that maximize the likelihoods of the corresponding phylogenies. 

(Adachi and Hasegawa, 1996) as 

1 = I I J2 ^L ( i = h I U)Ui = h' I WPhh'd). 
i h,h'£{AC,G,T} 

(1) 

This equation is easily adapted to incorporate site-to-
site variation using a discrete rate (e.g., gamma) distri­
bution. The full likelihood of a given site is then ob­
tained by summing over rate categories the likelihoods 
of the site according to each rate weighted by the prob­
ability that the site is drawn from each category (Yang, 
1994). Equation 1 applies to both internal and external 
branches. In the latter case, either U or V is reduced to 
a single extant taxon. When the conditional likelihoods 
L(i =h\U) and L(i =h\V) are known for every site, com­
putation of Equation 1 is fast and requires 0(s) time, 
where s denotes the sequence length, i.e., a time propor­
tional to s. 

Because U and V are fixed, likelihood L in Equation 1 
only depends on /, and we adjust / by maximizing L. 
This optimization of one parameter function is achieved 
using Brent's (1973) method. This very simple method 
does not require function derivatives and in our experi­
ments the computational speed was similar to that of the 
Newton-Raphson method (Olsen et al., 1994; Felsenstein 
and Churchill, 1996; Yang, 2000). The optimal length of 
e is denoted as la, and the tree likelihood increases when 
the current length / is changed into la. We denote as La the 
likelihood of tree a when e has length la, while subtrees 
U and V remain identical. 

Tree Swapping 

Let e now be an internal edge; e then defines four 
subtrees (Fig. 1). When swapping these subtrees, which 
corresponds to a nearest neighbor interchange, the ini­

tial configuration a is changed into b or c (Fig. 1). Con­
sider configuration b. Subtree U now contains subtrees 
W and Y, and V contains subtrees X and Z. How­
ever, we assume that W, X, Y, and Z are unchanged 
from configuration a, and branch lengths lw, lx, h, and 
lz remain the same. The conditional likelihood of U 
for any given site i (Felsenstein, 1981 ) is then equal 
to 

L(i=h | ID-
Kg£{A, 

J2 Ld=g\ WPhgdw)) 

( J2 W=g\Y)PhgQY)\ (2) 

and the conditional likelihood of V is obtained by sym­
metry from X and Z. Once the conditional likelihoods 
of U and V have been computed, we adjust the length 
of e by Equation 1. We thus obtain the likelihood of con­
figuration b, denoted as L^, and /& is the corresponding 
branch length ofe.Lc and lc are defined and obtained in 
the same way for configuration c. When the conditional 
likelihoods of W, X, Y, and Z are known, the computa­
tion of Equation 2 for all sites is fast and requires 0(s). 
So computing L^ and Lc has essentially the same cost as 
computing La. 

If Lb is larger than La and Lc/ then configuration b is 
more likely than the two other configurations. Moreover, 
the larger the gap between Lb and La, the more confident 
we are in the swap from the current configuration a to 
configuration b. When Lb is larger than La and Lc, we 
say that e defines b as a possible swap, with score S = 
Lb — La. The same holds by symmetry when Lc is larger 
than La and L^. 



2003 GUINDON AND GASCUEL—FAST MAXIMUM LIKELIHOOD TREE INFERENCE 699 

Selecting and Combining These Modifications 

Changing / into la or performing a possible swap in­
creases the tree likelihood. However, edges are not in­
dependent, and when simultaneously modifying two 
edges with values computed as described above we can­
not be sure that the tree likelihood will increase. The stan­
dard approach is to perform one modification at a time; 
after each modification, the conditional likelihoods (and 
even all branch lengths in case of branch swapping) are 
updated. However, this process is slow because condi­
tional likelihood (and branch length) updating is time 
consuming. 

Our approach involves first independently computing 
all modifications, i.e., the optimal lengths of all branches 
and possible swaps around all internal branches, and 
then simultaneously applying "most" of these modifica­
tions to the current tree. This latter step is performed as 
follows: 

1. The possible swaps are ranked according to their 
scores S. When two possible swaps correspond to two 
adjacent branches, they have one subtree in common 
and only the best swap is conserved. We then apply 
a proportion X of the remaining swaps to the current 
tree, starting from the higher values of S. However, 
the best possible swap is always performed, even for 
very low X value. 

2. For external branches and internal branches that do 
not correspond to a possible swap (or that have not 
been retained in the previous selection), we change the 
current branch length / into / + X(la — /), i.e., we apply 
a proportion X of the change that has been computed 
using Equation 1. 

3. Having X = 1 would simultaneously apply all possi­
ble modifications, whereas X = 0 would leave the cur­
rent tree unchanged. We start with a high X value but 
check that the tree likelihood increases. In the (rare) 
cases where the likelihood decreases, X is divided by 
2, the tree is modified accordingly, and we again check 
the likelihood. If the likelihood still decreases, X is di­
vided by 2 again, and the process is repeated until 
we get a tree with higher likelihood than the current 
tree. When there are possible swaps and when X be­
comes very small, the best swap is the only one to be 
selected and all branch lengths (except the new one) 
remain identical, resulting in a tree that is better than 
the current tree, thus ensuring convergence. When no 
more possible swaps remain, only branch lengths have 
to be optimized, and our algorithm becomes close to 
the global Newton-Raphson algorithm described by 
Felsenstein and Churchill (1996). This algorithm uses 
the first and second derivatives of the log-likelihood 
function, assumes that the Hessian is diagonal, and 
therefore independently computes the changes for ev­
ery branch. Moreover, it uses the same X "safeguard" 
to ensure convergence and was a source of inspira­
tion when we designed our algorithm. The main dif­
ferences between both algorithms are that we use the 
Brent method and then do not compute the derivatives 

and, most importantly, that our algorithm not only op­
timizes the branch lengths but also the tree topology. 
When only branch length optimization is concerned, 
both algorithms have similar convergence guarantees 
and can be trapped in local optima, which fortunately 
are very sparse with real data (Rogers and Swofford, 
1999). 

In practice, the backward movement by dividing X 
is rare. For example, with the first 1,000 data sets in our 
simulation, X is divided by 2 only 71 times and only 
when there are possible swaps; with the 218-taxon 
ribosomal data set, the backward movement occurs 
only once. PHYML uses 0.75 as the initial X value and 
resets X to this value after each refinement stage. The 
initial X value is not a sensitive parameter; nearly iden­
tical trees (but different run times) are obtained with 
X in the [0.1,1.0] range. 

Whole Method 

We have seen in the previous sections how the possi­
ble modifications are computed and how they are com­
bined to refine the current tree. We detail here how these 
components are incorporated into the complete method, 
which is described step by step. 

1. A pairwise evolutionary distance matrix is computed 
from the sequences, by an algorithm analogous to 
DNADIST (Felsenstein, 1993). This step necessitates 
comparing all sequence pairs and then requires 0(n2s) 
time, where n is the number of taxa. 

2. An initial tree is built from this matrix, using BIONJ 
(Gascuel, 1997). Tests with other distance-based meth­
ods led to identical results, so the main criterion at this 
step is computational speed. BIONJ is just as fast as NJ 
but is slightly more accurate and requires Oin3) time. 

3. The conditional likelihoods L(i =h\U) are computed 
for all sites and every subtree IT, as well as the like­
lihood of the whole tree, using Equations 1 and 2, 
respectively. These computations are achieved using 
an algorithm similar to that of Adachi and Hasegawa 
(1996), which requires Oins) time. 

4. The values of the free parameters of the substitution 
model (i.e., the transition/trans version ratio(s) and 
the gamma shape parameter measuring the variabil­
ity of substitution rates among sites) are adjusted to 
increase the likelihood of the starting phylogeny This 
adjustment is achieved independently for each param­
eter using the golden section numerical optimization 
method (Press et al., 1988). The parameter estimates 
so obtained are dependent on the starting tree. How­
ever, this dependency is slight (Yang, 1996). Moreover, 
the free parameters are periodically reestimated dur­
ing the refinement process (every four stages in the 
current version of PHYML). 

5. The current tree is iteratively refined until conver­
gence, as described in the previous section. Each re­
finement stage involves (a) computing the possible 
modifications of every branch, (b) applying a X pro­
portion of these modifications to the current tree, and 
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(c) checking that the tree likelihood increases and, if 
necessary, returning to step b with a lower k value. 
Step a requires 0(s) time per branch and then 0(ns) 
for the whole tree. Step b is fast, basically in 0(n). 
Step c performs likelihood computations as described 
for step 3, i.e., requiring 0(ns) time. Moreover, after 
step c all conditional likelihoods have been updated, 
and then a new refinement stage can start. 

6. Tree refinement stops when there are no more possible 
swaps and when the branch lengths are stable. The 
current tree is then returned. 

The time complexity of model parameter, topology, 
and branch length optimization (steps 3-6) is then 
O(pns), where p basically represents the number of re­
finement stages that have been performed. Even when 
this analysis does not clarify some (bounded but signifi­
cant) parameters, e.g., the number of iterations required 
by the Brent method to optimize branch lengths, it re­
veals why our method is so fast. With the 218-taxon 
data set, p is equal to only 15, and in practice p is al­
ways much smaller than n (see Table 1). This explains 
why our O(pns) ML optimization has computing time in 
the same range as distance methods such as NJ, BIONJ, 
and Weighbor, which require 0(n2s + n3) time, including 
distance estimation. 

RESULTS 

Computer Simulations 

We generated 5,000 random phylogenies, each com­
prising 40 taxa, using the standard speciation process 
described by Kuhner and Felsenstein (1994). This pro­
cess makes the trees molecular clock-like, so we created 
a deviation from this model by multiplying every branch 
length by (1 + X), where X followed an exponential dis­
tribution with expectation /x. The /x value represents the 
extent of deviation and was identical within each tree but 
different from tree to tree and equal to 0.2/(0.001 + ID, 
where U was uniformly drawn from [0,1]. The smaller 
the U, the larger the /x and the larger the deviation from 
the molecular clock. Tree length was rescaled by multi­
plying every branch length by (0.4 + 8.6V)/T, where T 
is the total tree length and V was identical within each 
tree but different from tree to tree and uniform in [0,1]. 
This scaling made the tree length uniformly distributed 
in the [0.4,9.0] range. 

Phylogenies generated in this way have a broad vari­
ety of deviations from the molecular clock and various 
evolutionary rates. The branch length mean is equal to 
0.06 substitutions/site, with the 5%, 25%, 50%, 75%, and 
95% quantiles about equal to 0.0015, 0.01, 0.03, 0.07, and 
0.20, respectively. The ratio of the length of the longest 
to the length of the shortest lineages measures the devia­
tion from the molecular clock, with the perfect molecular 
clock having a ratio of 1. The mean of this ratio, among the 
5,000 phylogenies, is equal to 3.4, with the 5%, 25%, 50%, 
75%, and 95% quantiles about equal to 1.3, 2.3, 3.2, 4.2, 
and 6.4, respectively. These values come from an analy­
sis of substitution rates in various organisms (Page and 

Holmes, 1998) and of numerous recently published phy­
logenies; they should then cover the features of almost 
all real data sets, even when the extreme values, notably 
the highest divergence rates, are likely rare. 

Sequences 500 base pairs (bp) in length were generated 
from these phylogenies using Seq-Gen (Rambaut and 
Grassly, 1997) under the Kimura two-parameter (K2P) 
model (Kimura, 1980), with a transition/trans version 
ratio of 2.0. The 5,000 data sets (phylogenies and se­
quences) obtained in this way are available on our web 
page. 

These 5,000 data sets were generated without rate 
heterogeneity across sites, even when this is clearly an 
important parameter for accurate phylogeny estimation 
from most sequence sets. Indeed, the ML programs we 
tested (see below) deal with rate heterogeneity in a dif­
ferent way or simply do not take this parameter into 
account, which makes comparison impossible. In fact, 
PAUP* is the only program using the same discrete 
gamma distribution (Yang, 1994) as PHYML. To compare 
these two programs in this setting and to check the prop­
erties of PHYML, we then generated 1,000 other data 
sets from the first 1,000 trees, with the same sequence 
length and Kimura model, plus a four-category discrete 
gamma distribution of parameter 1.0, which corresponds 
to moderate heterogeneity (Yang, 1996). 

Topological Accuracy 

Using these data sets, we compared PHYML with nu­
merous other packages: NJ, Weighbor 1.2 (Bruno et al., 
2000), DNAPARS 3.5 (Felsenstein, 1993), NJML+ (Ota 
and Li, 2001), fastDNAml (Olsen et al., 1994), PAUP* 
4.0beta (Swofford, 1999), and MrBayes 2.01 (Huelsenbeck 
and Ronquist, 2001 ). NJ and Weighbor are distance-
based methods and were combined with DNADIST 
3.6 (Felsenstein, 1993), DNAPARS uses the parsimony 
principle, and the other programs implement ML ap­
proaches. We did not test MetaPIGA (Lemmon and 
Milinkovitch, 2002) at this stage because no batch ver­
sion allowing for multiple data sets was available. More­
over, for computing time reasons, PAUP* and MrBayes 
were only run on the first 1,000 of the 5,000 data sets, and 
only nearest neighbor interchanges were used in PAUP*. 
MrBayes was run with a random starting tree, 30,000 gen­
erations, a sampling frequency of 10, and the resulting 
consensus phylogeny was built from the last 1,500 trees. 
The options for NJML were bootstrap threshold = 90% 
and composite mode for likelihood computation. Other 
packages were used with default options, supplying the 
simulation settings (e.g., the sequence length or the tran­
sition/trans version ratio) when required. 

The topological accuracy of these various methods was 
measured on the 5,000 data sets (without rate heterogene­
ity) by the standard Robinson and Foulds (1979) distance 
between the inferred tree and the true tree. This dis­
tance corresponds to the proportion of internal branches 
that are found in one tree and not in the other one. Its 
value ranges from 0.0 (both topologies are identical) to 
1.0 (they do not share any branch in common). The value 
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FIGURE 2. Topological accuracies of various tree building methods as a function of the divergence between sequences. N = NJ; W = Weighbor, 
= NJML; D = DNAPARS; F = fastDNAml; P = PHYML. BIONJ (used to build the starting tree in PHYML) is midway between NJ and Weighbor. 

of this distance was plotted against the maximum pair-
wise divergence in the data set under consideration, with 
the (uncorrected) divergence between two sequences be­
ing simply the proportion of sites where both sequences 
differ. The results are displayed in Figure 2, where the 
5,000 original points corresponding to each method are 
smoothed by averaging over a sliding window of length 
1,000. 

These results are in accordance with expectations and 
with previously published simulations (Huelsenbeck 
and Hillis, 1993; Kuhner and Felsenstein, 1994; 
Huelsenbeck, 1995; Rosenberg and Kumar, 2001; Ranwez 
and Gascuel, 2002). When the divergence rate is low, 
phylogeny reconstruction is hard because there is not 
enough information in the data to estimate the short in­
ternal edges. With a high divergence rate, saturation cor­
rupts the phylogenetic signal and reconstruction is again 

hard. This explains why all methods perform better with 
medium divergence rates. The best region for parsimony 
corresponds to low rates, as expected since it assumes 
that multiple substitutions are rare, while distance-based 
methods (which account for multiple substitutions) tend 
to perform better than parsimony when substitution 
rates are high. The performance of NJML, which com­
bines distance-based and ML approaches, is midway 
between both. However, the best approach is clearly 
ML. Both fastDNAml and PHYML outperform all other 
methods, and PHYML even tends to improve fastD­
NAml with high substitution rates. Indeed, PHYML and 
fastDNAml are very close concerning likelihood op­
timization, except with high substitution rates, where 
PHYML is slightly better (results not shown). Moreover, 
for about 95% of the data sets, both programs infer trees 
with likelihoods identical to or higher than the likelihood 
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of the true tree, which indicates that there is little room 
for accuracy improvement by further optimizing the tree 
likelihood. This indication is confirmed by the average 
accuracy of the various ML programs on the first 1,000 
data sets, i.e., 0.086, 0.086, 0.081, and 0.081 for PAUP*, 
fastDNAml, MrBayes and PHYML, respectively So we 
do not expect to achieve major improvements on these 
data sets by any ML method, including MetaPIGA. 

For the 1,000 data sets incorporating rate heterogene­
ity, both PHYML and PAUP* were given the true value 
(1.0) of the gamma distribution parameter. Adjusting this 
parameter in PAUP* was (too) time consuming: about 
1 hr 25 min for a single data set, instead of 4 min with­
out adjustment, and 43 sec for PHYML including adjust­
ment. Results confirm above findings: PHYML is slightly 
more accurate than PAUP*; their average topological ac­
curacies are 0.101 and 0.105, respectively 

Computing Times and Likelihood Optimization 

We compared the computing time of the various 
methods using 30 data sets comprising 40 taxa and 
30 data sets with 100 taxa, both sets being generated 
as described above (available on our web page). We 
also used two large real data sets. The first set con­
tains 218 prokaryotic sequences with 4,182 bp from the 
small ribosomal subunit and was downloaded from 
the RDPII project web page (http://rdp.cme.msu.edu/ 
download/SSLLrRNA/alignments). The second set in­
cludes 500 rbcL sequences with 1,428 bp from plant 
plastids and was obtained from http://www.cis. 
upenn.edu/~krice/treezilla/record.nex. 

The computing time was measured on a PC 
Pentium IV 1.8 GHz (1 Go RAM) running with Linux. 
Basically, all methods were run as described above, 
while MetaPIGA was run by hand using one run and 
four metapopulations, which is the default option to 
build a single tree. To approximate posterior probabil­
ities, Lemmon and Milinkovitch (2002) used 10 runs and 
10 metapopulations, which makes running times much 
longer than those reported here. The speed of PHYML is 
partly explained by the fact that it starts with a reason­
ably good distance-based tree. Therefore, we also tested 
PAUP* and MetaPIGA using the option they give of start­

ing from the NJ tree, denoted here as PAUP*+NJ and 
MetaPIGA+NJ. In principle, the same approach can be 
used to accelerate MCMC approaches, but we observed 
that it does not fit well with MrBayes, providing no 
significant gain in convergence time. Moreover, starting 
with random trees is the recommended strategy for eval­
uating convergence of MCMCs and then obtaining re­
liable estimation of posterior probabilities. FastDNAml 
and PAUP* were not run with the two larger data sets 
because even the 218-taxon set required more than 2 days 
of computations. PAUP*+NJ did not output any tree 
on the 500-taxon set for numerical reasons. With the 
two larger data sets, we were not able to obtain any 
result with NJML, seemingly for memory size reasons, 
while MrBayes was stopped after 1,000,000 generations 
without having reached stable likelihood values. With 
the 100-taxon data sets, MrBayes was run with 200,000 
generations and a consensus tree was built from the 
last 10,000 trees. These parameters were chosen to con­
verge on stable likelihood values, but we did not ex­
plore a large range of settings, first preferring compu­
tation speed. In fact, this criterion was used for MrBayes 
and for the other packages. So it is likely that other rel­
evant speed/performance compromises could be found 
for any of these programs, and our results must there­
fore not be overinterpreted. Finally, the results (comput­
ing time, likelihood, inferred tree) of stochastic meth­
ods vary from one run to another, and the choice of 
Linux/Windows also has an influence. MetaPIGA (writ­
ten in JAVA) is twice faster with Windows as with 
Linux, while the speed of other programs remains nearly 
identical. 

The results are displayed in Table 1. PHYML is faster 
than all other ML programs. For example, with 100 
taxa PHYML requires 12 sec and fastDNAml requires 
about 25 min. With 500 taxa, PHYML requires only 
about 12 min and MetaPIGA requires more than 9 hr. 
MetaPIGA-hNJ is remarkably fast as well, being basi­
cally equivalent to PHYML with 40 and 100 taxa but 
still requiring 3 hr for 500 taxa. PAUP*+NJ is also much 
faster than PAUP*, which indicates that starting from a 
distance-based tree, as with PHYML, makes a signif­
icant difference with respect to computing time (see 
also results below concerning likelihood optimization). 

TABLE 1. Average run times for various methods. The computing times were measured on a 1.8-GHz (1 Go RAM) PC with Linux. For PHYML, 
the number in parentheses is the average number of refinement stages. 

Method 

DNADIST+ NJ/BIONJ 
DNADIST+ Weighbor 
DNAPARS 
PAUP* 
PAUP*+NJ 
MrBayes 
fastDNAml 
NJML 
MetaPIGA 
MetaPIGA+ NJ 
PHYML 

40 taxa (500 bp) 

0.3 sec 
1.5 sec 
0.5 sec 

3 min, 21 sec 
1 min, 10 sec 
2 min, 6 sec 
1 min, 13 sec 

15 sec 
21 sec 
6 sec 

2.7 sec (6.4) 

Simulations 

100 taxa (500 bp) 

2.3 sec 
22 sec 
6 sec 

1 hr, 4 min 
22 min 

32 min, 37 sec 
26 min, 31 sec 

6 min, 4 sec 
3 min, 27 sec 

23 sec 
12 sec (8.3) 

Real data 

218 taxa (4,182 bp) 

50 sec 
4 min, 52 sec 
4 min, 4 sec 

10 hr, 50 min 

4 hr, 45 min 
1 hr, 40 min 

8 min, 13 sec (15) 

500 taxa (1,428 bp) 

2 min, 19 sec 
58 min, 40 sec 
13 min, 12 sec 

9 hr, 4 min 
3h r 

11 min, 59 sec (13) 

http://rdp.cme.msu.edu/
http://www.cis
http://upenn.edu/~krice/treezilla/record.nex
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Finally, it appears from Table 1 that the computing time 
of PHYML is in the same range as that of NJ, Weighbor, 
and DNAPARS (Table 1). 

We also checked that the speed of PHYML is not offset 
by lower performance in optimizing the tree likelihood. 
For a fair comparison, the branch lengths of trees inferred 
by the various ML packages were reoptimized using the 
same Newton-Raphson procedure, and the tree likeli­
hood was recomputed. Because all the methods used 
the same Kimura model to infer trees and because the 
branch lengths of the inferred trees were reoptimized 
by the same procedure, the results of the various meth­
ods were then fully comparable. Therefore, we sorted 
the (ML) methods with respect to their log-likelihood 
values and computed the mean of their rank by averag­
ing over the 30 data sets analyzed. For the 40-taxon data 
sets, the mean ranks were 4.2, 4.2, 3.9, 3.0, 2.9, and 2.8 
for MetaPIGA, NJML, MrBayes, PAUP*, PHYML, and 
fastDNAml, respectively, and with 100 taxa, the results 
were 4.8,4.6,4.1,2.8,2.5, and 2.4, respectively. Using this 
comparison method, PHYML is the second best program 
with 40 taxa and the best with 100 taxa, but these results 
illustrate the fact no method is systematically better than 
the others. Results for MetaPIGA+NJ and PAUP*+NJ 
were very close to those for MetaPIGA and PAUP* 
alone, with PAUP*+NJ being even slightly better than 
PAUP*. 

We also computed the average log likelihood of every 
method for the 30 data sets corresponding to each tree 
size. The results basically confirmed the above ordering 
but with lower contrast. For 40 taxa, log likelihood val­
ues were -6196.745 for NJML, -6193.817 for MetaPIGA, 
-6193.688 for fastDNAml and PAUP*, -6193.626 for 
MrBayes, and -6193.569 for PHYML. PHYML is then 
best, and NJML is clearly last, although it was better 
than MetaPIGA when considering average ranking. This 
poor ranking is due to the fact that in a few cases NJML 
performs poorly and is far behind the other programs, 
which likely explains its relatively weak results regard­
ing topological accuracy. While MrBayes performs rela­
tively poorly when ranks are compared (see above), the 
trees that are inferred with this method are generally very 
likely even if they are not the most likely trees. This re­
sult could be explained by the fact that MrBayes tends to 
maximize the integrated likelihood, while we used the 
standard likelihood in our comparisons. MrBayes has 
then little chance to find the best tree regarding the stan­
dard likelihood, but because of its extensive search of the 
tree space it always finds good trees. Finally, it is worth 
noting that the ordering with average log likelihood is 
the same as that with topological accuracy on the first 
1,000 data sets (see above). 

For the large real data sets, PAUP*+NJ, MetaPIGA 
and PHYML were run with the Hasegawa-Kishino-
Yano (HKY; Hasegawa et a l , 1985) model, and the 
three programs adjusted the transition/trans version ra­
tio. We did not account for rate heterogeneity because 
this is dealt with in a very different way by MetaPIGA 
and PHYML. With the 218-taxon set, the log likeli­
hoods (after branch length reoptimization) were 156,881, 

-156,860, and -156,727, for PAUP*+NJ, PHYML, and 
MetaPIGA, respectively, and those for the 500-taxon set 
were -100,631 and -100,208 for MetaPIGA and PHYML, 
respectively. MetaPIGA is then best with the 218-taxon 
set, and PHYML is best with the 500-taxon set. These 
findings illustrate (again) the fact that no method is 
systematically better than the others and seem to in­
dicate that further improvements could to be made 
for such very large sets, possibly by combining both 
approaches. 

Therefore, it appears from the above results that 
PHYML is not only fast but also finds trees with high 
likelihood, being at least as good on average as the other 
methods we tested. 

CONCLUSION 

PHYML is freely available on our web page. The cur­
rent version implements several models of nucleotide 
sequence evolution: JC69 (Jukes and Cantor, 1969), F81 
(Felsenstein, 1981), K2P (Kimura, 1980), F84 (Felsenstein, 
1993), HKY (Hasegawa et al., 1985) and TN93 (Tamura 
and Nei, 1993). The Dayhoff (Dayhoff et al., 1978) and JTT 
(Jones et al., 1992) models for proteins are also available 
and run quickly, requiring about 3 min to analyze a data 
set comprising 50 mammalian sequences and 1,729 sites 
(F Delsuc, pers. com.). A discrete gamma distribution 
(Yang, 1994) can be used to account for variable substi­
tution rates among sites. The parameters of these models 
can be either user defined or fitted to the data by likeli­
hood maximization. PHYML can also be used to refine a 
user-supplied tree. 

In regard to its simplicity, the performance of our al­
gorithm is quite surprising. It is not only much faster 
than the standard approach but also slightly better in 
terms of topological accuracy and likelihood maximiza­
tion. In fact, it seems that adjusting the branch lengths 
and the tree topology together appears to keep the pro­
gram from getting trapped too early in local optima. The 
algorithm does not follow the slope corresponding to a 
unique branch or a unique swap but moves in a direction 
that improves the whole tree and, by striding this way, 
avoids getting lost in local irregularities of the likelihood 
landscape. However, testing more intense topological re­
arrangements or introducing some randomness in the 
search are interesting directions for future research. 
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