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Prologue ‘As the study of natural science advances, the language of scientific
description may be greatly simplified and abridged. This has already been
done by Linneaus and may be carried still further by other invention. The
descriptions of natural orders and genera may be reduced to short defi-
nitions, and employment of signs, somewhat in the manner of algebra,
instead of long descriptions. It is more easy to conceive this, than it is to con-
ceive with what facility, and in how short a time, a knowledge of all the
objects of natural history may ultimately be acquired; and that which is
now considered learning and science, and confined to a few specially
devoted to it, may at length be universally possessed in every civilized
country and in every rank of life’. J. C. Louden 1829. Magazine of natural
history, vol. 1.

This article is part of the themed issue ‘From DNA barcodes to biomes’.

1. Introduction
For more than two centuries, biodiversity science has focused on the inven-
tory of species, on probing their relationships and on clarifying the factors
responsible for their diversification. The sheer diversity of life, the fact that
millions of species of multi-cellular organisms await description, is a serious
barrier to scientific progress. Moreover, morphological approaches cannot
enable the census of these species in a timely or affordable fashion; the cost
of describing five million animal species has been estimated at $250 billion
and as requiring six centuries [1]. Eleven years ago, Savolainen et al. [2] con-
sidered the possibility that DNA barcoding might allow the encyclopedia of
life to be written in decades rather than a millennium. The present issue con-
siders progress towards this goal and provides a glimpse of the ways in which
DNA barcoding is transforming biodiversity science. The 16 articles included
in this issue derive from plenary presentations at the 6th International Bar-
code of Life Conference held in August 2015. When coupled with the
conference abstracts [3], it is clear that DNA barcoding is contributing to
rapid scientific progress on diverse fronts. This outcome might not have
been predicted just a decade ago.

When the Natural History Museum in London hosted the 1st International
Barcode of Life Conference in 2005, it anticipated a lively discussion with an
uncertain outcome. Some researchers involved in large-scale biodiversity inven-
tories viewed DNA barcoding as a breakthrough [4–6], but endorsements from
other segments of the community were restrained. Because prior genetic
approaches [7–9] had modest impact on their workflows, some taxonomists
anticipated that DNA barcoding would also have limited influence [10].
Others [11] highlighted the risks in basing taxonomic decisions on sequence
variation in a single gene, noting the potential complexities introduced by para-
phyly and polyphyly [12] and by the possible discordances between gene trees
and species trees [13]. These concerns could only be addressed by examining
the efficacy of DNA barcoding in varied taxonomic assemblages in diverse
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environments. About five million specimens have now been
analysed, and these results indicate that DNA barcodes can
discriminate most species.

The balance of this introductory article considers the factors
that were important in mobilizing a DNA barcode research
community, and the issues that needed consideration in
construction of the reference library. It also addresses the
effectiveness of DNA barcoding as a tool for specimen
identification and species discovery before examining the
scientific impacts of work in this field and future prospects.

2. Community mobilization
More than 1000 publications on DNA barcoding appeared in
2015, a count higher than that for many other major scientific
programmes (figure 1). The growth in interest and global
involvements in this field [14] are further signalled by the
increasing participation in the International Barcode of Life
Conferences (figure 1); 600 researchers from 55 nations
joined the latest meeting.

DNA barcoding has rapidly become the largest research
collaboration in biodiversity science. What provoked this?
The establishment of the Consortium for the Barcode of Life
(CBOL) in 2004 was a key development. It galvanized the
community and quickly organized meetings to advance under-
standing of DNA barcoding, including the International
Conferences in London (2005), Taipei (2007), Mexico City
(2009) and Adelaide (2011). CBOL also worked with researchers
to achieve consensus on the best DNA barcode marker(s) foreach
eukaryote kingdom [15–18]. While these activities were critical,
there was also a great need to clarify the efficacy of DNA barcod-
ing. The Gordon and Betty Moore Foundation sponsored the
first large-scale evaluations [19,20], and the flow of data was
reinforced with activation of the Canadian Barcode of Life
Network in 2005 [21]. By 2007, it was recognized that the
development of a global DNA barcode reference library required
a broad alliance, stimulating plans for iBOL, the International
Barcode of Life project (www.iBOL.org), which aimed to deliver
barcode records for 500 000 species within 5 years of activation.
Because substantial resources (more than $100 million) were
required, and plans called for research nodes in 25 nations, it
took 3 years before fundraising and network development
were sufficiently advanced for its activation. National barcode
networks were ultimately established in 11 countries (Argentina,

Austria, Brazil, Canada, China, Finland, Germany, Mexico,
Norway, South Africa and Switzerland), but they emerged asyn-
chronously; those in Argentina and Mexico launched in 2008 and
2009, while the Austrian and Norwegian networks began work
in 2014. Researchers in other countries (e.g. Costa Rica, France,
Kenya, The Netherlands, UK and USA) made major contri-
butions without a formal network. Despite this organizational
fluidity and varied activation dates, iBOL met its target for
species coverage in August 2015 (figure 2).

Although CBOL, iBOL and the national networks stimu-
lated the rapid rise of DNA barcoding, these grant-funded
entities had finite lifespans. As a result, the research commu-
nity needed to assume certain activities initiated by CBOL,
such as the International Barcode of Life Conferences, and
responsibility for their organization transitioned to countries
with lead roles in iBOL (China, 2013; Canada, 2015; South
Africa, 2017). Looking to the future, there will be an ongoing
need for a research consortium to ensure that barcode cover-
age is extended efficiently and to aid the acquisition of the
funds required for this purpose.

3. Constructing the DNA barcode reference
library

Although DNA barcoding is conceptually simple, the assem-
bly and curation of sequence information from one or more
standard gene regions across millions of species is challenging.
Over the past decade, improved laboratory protocols have
simplified barcode acquisition [22–24]. As a result, five million
specimens were analysed by July 2016, providing coverage for
some 60 000 plant and 450 000 animal species, although many
of the later taxa were undescribed. As these totals likely rep-
resent no more than 20 and 5% of the species in these
kingdoms, much work remains. However, achieving the
level of barcode coverage required for an effective identifi-
cation system [25] is a realistic goal for the biotas of Europe
and North America by 2025 [26]. Completion of the global
library might require the analysis of 100 million specimens,
presuming a target of 10! coverage per species, but it could
be completed in a few decades with adequate resources.
Because achieving a well-parametrized global library will
require specimens, sequence analysis and data management,
the rest of this section considers these matters in more detail.
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Figure 1. Metrics showing the growth of the DNA barcode research community through time as measured by the yearly number of publications on DNA barcoding
and by the number of participants in the International Barcode of Life Conferences. Data on publication activity by the Hubble Space Telescope research community
are presented for comparison.
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(a) Sourcing specimens
The most expensive component in DNA barcode analysis is
specimen acquisition. Obtaining sets of many thousands of
voucher specimens with expert annotation requires enor-
mous effort. Viewed from this perspective, natural history
collections are a valuable legacy, especially herbaria as bar-
code recovery is high, even from specimens a century old
[27]. Some animal groups are challenging, particularly
those preserved in formaldehyde [28], but others are more
tractable [24]. Because of their greater sensitivity, high-
throughput sequencers (HTS) allow barcode recovery from
specimens recalcitrant to Sanger analysis [29]. Their use to
obtain barcodes from type specimens is particularly impor-
tant as the resulting data serve to create a searchable index
of specimens linked to binomials, facilitating the correct
application of names and the resolution of synonymies
[30–32]. While the analysis of museum specimens will
extend barcode coverage for named species, new collections
will be required for groups that have seen little taxonomic
attention and for under-collected regions of the planet. How-
ever, as evidenced over the past decade, the biodiversity
science community has a strong capacity to make collections.
In considering the task ahead, it is important to emphasize
that a highly effective identification system is achieved long
before the last species is analysed because most surveys
encounter common, widely distributed taxa rather than
those that are either very rare or narrow endemics. Moreover,
when one of the latter taxa is encountered, its presence is
ordinarily signalled by its assignment to a new barcode
cluster, provoking referral of the specimens to a taxonomist
working on the group, allowing its subsequent inclusion in
the barcode reference library.

(b) Acquiring sequences
Presuming access to specimens, their barcode sequences must
be recovered. As polymerase chain reaction (PCR) is
employed to amplify the barcode region from genomic
DNA, analysis is disrupted if amplicons are generated from

pseudogenes [33] or from bacterial and fungal endosym-
bionts [34]. Pseudogenes have proven an infrequent
problem because they are typically shorter [35] and are pre-
sent in lower copy numbers than the barcode regions
targeted for analysis. Sequences from bacterial endosym-
bionts are encountered more commonly [36], but they are
easily excluded during data validation. Sequences from
fungal endosymbionts can fail to be recognized, especially
when the barcode is a DNA region, such as the internal
transcribed spacers (ITS) of nuclear ribosomal DNA, which
cannot be aligned across phyla [37], but spurious records
will be excised as valid entries are acquired for each species.

Aside from problems introduced by the recovery of non-
target DNA, library construction is also impeded if PCR fails
to generate an amplicon, a situation that arises because no
primer set is truly universal. This is particularly pertinent
to maturase K (matK), one of the two core barcode markers
for vascular plants, as existing primer sets have high failure
rates [38]. Recovery of cytochrome c oxidase subunit I (COI)
from animals is more reliable, although each primer set tar-
gets a particular constellation of species (e.g. fishes, insects).
While these primer sets are effective for their designated
group, they occasionally fail, especially in fast-evolving
lineages [39]. Although amplification success could be
raised by adopting a more conserved gene region, this
would reduce taxonomic resolution [40]. Moreover, the diffi-
culty in recovery of COI amplicons has been exaggerated by
in silico predictions of primer binding [41]. In practice, primer
sets employed for animals have strong performance with, for
example, a single primer set generating sequences from 88%
of specimens in 579 insect families [39]. This result and those
from similar studies on other groups of animals indicate that
amplification failure is too infrequent to justify the shift to a
more conserved gene region. However, there is a need for
further work on primer design to conquer problems in certain
groups, especially some marine taxa.

Presuming amplicon recovery, sequence characterization
is the next step in the analytical chain. The barcode standard
currently requires bidirectional Sanger analysis of each

Figure 2. Heat map of the five million DNA barcode records in July 2016. Purple circles .1000 records, red .100 records, orange .10 records, yellow 1 – 10 records.
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amplicon, an approach that generates a high fidelity, full-
length read. In practice, unidirectional analysis delivers
reads that meet key elements of the standard, suggesting
the possibility of relaxing the requirement for bidirectional
coverage. Aside from considering this adjustment, the bar-
code standard needs to be revisited in light of the very
different attributes of the sequence records generated by
HTS. It is certain that the volume of data generated by
these platforms will rapidly expand because they enable the
barcode characterization of bulk DNA extracts, a key advance
for environmental monitoring [42–49]. A shift to HTS for bar-
code recovery from single specimens might also reduce costs
for library construction [50,51], but substantial work will be
needed to optimize data quality and bioinformatics protocols
[52]. Certainly, for the foreseeable future, the barcode stan-
dard needs enough flexibility to recognize the validity of
records generated by different sequencing platforms so long
as they satisfy the requirements for sequence quality, length
and verifiability.

(c) Data management
The early development of BOLD, the Barcode of Life Data
System, has been critical for the storage, validation and analy-
sis of DNA barcode records generated via Sanger sequencing
[53]. Because it couples specimen and sequence information,
this platform plays an increasingly important role as data
volumes expand. Moreover, BOLD is gaining the capabilities
needed to support large-scale biodiversity analyses. For
example, its Barcode Index Number (BIN) system automates
the delineation of molecular operational taxonomic units [54]
as proxies for animal species and embeds each new BIN in a
persistent registry [55]. Work is also underway to allow
BOLD to automatically position new BINs in the Linnaean
hierarchy by exploiting taxonomic information linked to bar-
code records from known species. There will be a need for
sustained vigilance to ensure that specimens providing bar-
code records have reliable taxonomic assignments. While
major errors are easily recognized, misidentifications of closely
allied species require careful examination to recognize and cor-
rect [56,57]. The development of a barcode library for known
species is aided by ongoing efforts to create a registry of
valid species names [58], but ‘dark taxa’, those only known
from their DNA barcode sequences, will represent an increas-
ingly important challenge [32]. Although it is ultimately
desirable to have all specimens with a sequence, a name and
associated data, the fact that BINs provide a stable framework
for subsequent annotation and data enrichment is a major
breakthrough for tackling poorly known mega-diverse
groups [39]. Aside from the well-recognized challenges in
the storage and analysis of the data generated by HTS, studies
enabled by this technology will undoubtedly illuminate
massive numbers of dark taxa.

(d) Data sharing and release
The traditional model has been to ‘publish and then release
data’. However, wider cultural scientific changes focusing
on building infrastructure and access to big-data have
driven a shift to rapid data release and sharing. DNA barcod-
ing has tracked this change, transforming from a series of
large-connected research projects into a community move-
ment using BOLD as a project management system and as a
central repository of searchable barcode sequences.

4. DNA barcodes for specimen identification
and species discovery

DNA barcoding is advancing biodiversity science by
enabling the automated identification of specimens belong-
ing to known species and by facilitating the recognition of
new species [59]. Its capacity to deliver these insights
depends upon the reliability with which sequence variation
in each barcode region discriminates species. Within the
animal kingdom, there is generally a gap between intraspeci-
fic and interspecific variation in COI sequences, so barcoding
is highly effective. The situation in plants is more challenging;
barcode divergences at ribulose-biphosphate carboxylase
(rbcL) and matK are often so low that closely allied species
cannot be discriminated [52,60]. Studies on fungi [61] and
the many lineages of Protista also indicate cases of variable
discriminatory power.

(a) Animals
DNA barcodes typically discriminate about 95% of known
species; cases of compromised resolution involve sister taxa,
often species that hybridize [19,20,62,63]. In the many taxa
where geographical variation in barcode sequences is small
[64], a few records per species are sufficient to create an effec-
tive identification system. However, the analysis of more
specimens is advantageous because it often reveals discor-
dances that indicate misidentifications or cryptic taxa [65],
and it also provides insights into the extent of geographical
variation in barcode sequences [66,67]. There are two animal
phyla in which COI often fails to deliver species-level resol-
ution, sponges [68,69] and some benthic cnidarians [70],
apparently because of their slowed rates of mitochondrial evol-
ution. Barcoding also fails to distinguish a small fraction of
species in other groups, typically sister taxa or those whose
status is uncertain [71,72]. Conversely, barcode analysis fre-
quently exposes deep ‘intraspecific’ variation, situations that
often represent overlooked species as evidenced by covariation
with ecological or morphological traits [73–75]. However,
some cases have other explanations; they seem linked to the
merger of phylogeographic isolates [76], to rate acceleration
[77] or to doubly uniparental inheritance [78]. There remains
a need to clarify patterns of DNA barcode sequence variation
by examining selected nuclear loci or through genome-wide
approaches such as RAD sequencing [79] to extend under-
standing of factors explaining the origins and maintenance
of these cases of deep mitochondrial divergence.

(b) Plants
DNA barcoding confronts the challenge that many plant
species are exposed to hybridization and introgression, while
others have arisen via polyploidy in a near-instantaneous
fashion. Moreover, the evolutionary rates of their mitochon-
drial and plastid genomes are far slower than those in
animals, creating a further barrier to species resolution. Given
these factors, it is unsurprising that the designation of barcode
markers for plants has been challenging. Although it was
recognized that they would often not deliver species-level res-
olution, two plastid markers (matK and rbcL) were selected as
the core barcodes for plants [16], supplemented with ancillary
markers such as trnH–psbA, a plastid inter-genic spacer, and
the ITS of nuclear ribosomal DNA [80,81]. Researchers focusing
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on highly degraded DNAs have also used a small plastid
region from the trnL intron [82]. Collectively, DNA barcoding
has been deployed widely for discriminating plant species or
species groups [83–85]. The quest for improved barcode
resolution in plants is ongoing [52]. The benefits of complete
plastid genome sequencing have been noted by several authors
[86–88] although this will not solve identification failures aris-
ing from plastid introgression, such as those presumed in Salix
[89]. Ultimately, further substantial gains in plant species dis-
crimination will depend on cost-effective, standardized and
scalable approaches for accessing data from multiple unlinked
nuclear markers [38,52,88].

(c) Fungi
ITS is the standard DNA barcode marker for fungi and has
been widely adopted and used by mycologists [18,61].
The use of sequence data for species discovery and identifi-
cation is particularly important in this kingdom, because so
many fungal species are both undescribed and unculturable
[90]. The recovery of ITS barcode sequences is sometimes
compromised by intra-individual heterogeneity, reflecting its
multi-copy nature [91], and alignment ambiguities can make
it difficult to establish if the recovered sequence derives from
the target species or a symbiont. As a consequence, there has
been a search for secondary markers. COI has shown strong
resolution in some groups [92], but its utility is constrained
because the introns prevalent in fungal mitochondrial gen-
omes often disrupt its PCR amplification from genomic
DNA [93]. This fact has provoked studies on diverse nuclear
gene regions, such as large and small subunit ribosomal
DNA [94], but no secondary marker has gained broad adop-
tion. As with plants, efforts are shifting towards the
incorporation of wider genomic coverage into barcoding
workflows, creating a challenge to balance between the need
for increased resolution with the requirement for a cost-
effective, highly scalable assay. Another key issue for fungi is
the growing divide between identified taxa and sequences,
driven by the rapid growth of ‘sequences without names’ pro-
duced from metabarcoding studies, and also the need to
increase the proportion of newly described species that have
barcode sequences generated from type material. This parallels
the dark taxa challenges for other highly diverse groups [32,39]
and further sequencing of fungal types coupled with commu-
nity agreement on linking sequence-only records to a naming
system is a high priority [61].

(d) Protists
Work on protists is in the early stages, but 18S RNA has been
adopted as the core barcode marker [17] with full recognition
that this gene region evolves too slowly to provide species
resolution in most cases [40]. However, because primers for
18S are effective across diverse phyla, they can provide the
sequence information needed for a ‘rough’ taxonomic place-
ment that can be followed by the analysis of secondary
barcodes to obtain species-level resolution. The selection of
secondary markers for varied protistan lineages is underway,
and some core markers, such as COI and rbcL, have demon-
strated utility [95,96]. However, it is certain that both the
selection and testing of the efficacy of barcode regions will
be challenging given the extreme diversity of protistan
lineages [97].

5. Impacts of DNA barcoding
Although motivated by the goal of accelerating the inventory
of biodiversity and making taxonomic information more
accessible, DNA barcoding is providing opportunities for
important investigations in other fields of enquiry [98,99].
The balance of this section briefly considers some of the
research areas aided by its advance.

(a) Probing species
DNA barcoding is shifting taxonomic workflows in two ways.
Firstly, it is providing an increasingly effective identification
‘service’ for groups with a well-parametrized barcode refer-
ence library. Secondly, it is accelerating taxonomic progress
by aiding the recognition of species and by facilitating the con-
nection of their life stages [100] and sexes [101], associations
that are often challenging without barcode data. For example,
more than half of all genera of phorid flies are only known
from one sex [102], creating high risk for synonymy. DNA bar-
coding also has a strong role in species discovery, especially in
little-studied groups, because it can rapidly screen collections
for presumptive species, which can then be targeted for taxo-
nomic study [103]. DNA barcodes are additionally being
employed to streamline and expedite species descriptions
[104]. In fact, in hyperdiverse groups, the BIN registry may
be the terminal taxonomic system, one allowing the assembly
of morphological, ecological and distributional data for the
members of each barcode cluster.

(b) Probing species assemblages
DNA barcoding is a powerful tool for advancing knowledge of
species interactions and distributions [98,99]. It is often the sole
way to clarify dietary preferences in taxa where direct obser-
vation of feeding behaviour is impossible [105,106]. It can also
provide new details on host–parasitoid interactions [107], on
pollination syndromes [108,109] and on symbiotic associations
[110,111]. Aside from revealing interactions, DNA barcoding
allows the assessment of biodiversity on scales [112] and in
settings where this would otherwise be impossible [113]. By
exploiting its capacity to improve species recognition and to
reveal their interactions, DNA barcoding is also providing new
details on food web structure [114–117]. Finally, DNA barcodes
have been retrieved from ancient DNA, delivering insights into
the evolution and ecology of extinct organisms [118].

(c) Probing evolution
Although DNA barcoding was initiated to empower taxonomy,
the assembly of sequence information for a particular gene
region across diverse taxa creates a resource useful in evolution-
ary contexts [119]. For example, patterns of sequence variation in
the barcode region are an effective sentinel for shifts in the
nucleotide composition of mitochondrial genomes [120] and
provide a rich source of data for investigating molecular evol-
utionary rates [121,122]. Because species coverage is so
comprehensive, DNA barcoding can also make useful contri-
butions to phylogenetic studies [123]. Other potential
applications await exploration. For example, expansion of each
barcode record to include the entire sequence for COI or rbcL
would deliver an unrivalled database for studying the evol-
utionary trajectories of these key proteins. It is important to
emphasize the mutualism between DNA barcoding and studies
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which aim for deeper genomic characterization. For example,
barcode analysis played an important role in verifying identifi-
cations for specimens analysed in the 1KITE initiative [124]
because transcriptomic analysis required specimens to be pro-
cessed while alive, often making morphological identification
impossible. Aside from this role in validating identifications,
the DNA extracts resulting from barcode analysis represent a
resource for a future when sequencing costs have declined
enough to allow the assembly of a whole-genome sequence
for every species.

(d) Applying DNA barcodes
Because it facilitates specimen identifications, DNA barcod-
ing has gained adoption in diverse applied contexts. It is,
for example, now widely used to identify agricultural and
forestry pests and pathogens [61,125,126], to detect invasive
species [127] and for environmental impact assessments
[43]. It has also become the standard method for suppressing
marketplace fraud [128] and for deterring trade in endan-
gered wildlife [129]. In addition, it is gaining use in forensic
contexts [130], and in preventing illegal timber harvest
[131]. Finally, DNA barcoding has proven a superb vehicle
for exposing students to the practice of science [132].

6. What next?
Given past progress, what goals might the DNA barcode
community set for the next quarter century? The assembly
of a DNA barcode reference library for all multi-cellular
species will effectively write the encyclopedia of life.
Moreover, by coupling the automation of specimen identifi-
cations with the power of HTS to screen massive numbers
of individuals, barcoding will enable a future in which read-
ing life is routine. A global network of stations provisioned
with sequencers, computational hardware and autonomous
samplers [133] could track the shifting spectra of species in
space and time, an Internet of living things, a world in
which organisms act as transducers of biosphere change.

By completing the registry of all species by 2040, biodiver-
sity science would deliver the foundation needed to track and
forecast biotic change. Although this advance is within reach,
it will require biodiversity science to join those disciplines
that regard mega-science as everyday business. New struc-
tures, new alliances, and new leaders will be required to
propel this transition. There is a critical need for action.
More than half of all biodiversity hotspots have lost 90% of
their vegetation [134], and the remnant patches are impacted
by climate change. In fact, the least disturbed hotspot, the
California Floristic Province, recently experienced its most
severe drought in 1500 years [135]. Habitat fragmentation is
also increasing; 70% of global forests lie within 1 km of a
road [136]. These changes have lowered species abundances
[137] and have increased extinction rates [138]. Because a
sixth of all multi-cellular species may be extinct by the end
of this century [139], there is an urgent need to complete
the inventory of life and to use this information to track
shifts in species abundances and distributions. Without inter-
ventions enabled by such knowledge, it is certain that endless
forms most beautiful and most wonderful [140] will be lost. This
prospect is surely a call to arms.
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