No, it’s Not an Ant!

Photo by Kelsey Bailey.

Photo by Kelsey Bailey.

At first glance, the gangly creature above looks remarkably like an ant, but it is actually a flightless wasp from the family Dryinidae. Unlike ants, these wasps are solitary. They are parasitoids of insects in the order Hemiptera, the order we call “true bugs”. This order includes cicadas, leafhoppers, and all manner of other plant eaters. As parasitoids, the females use a sharp ovipositor (egg laying projection) to pierce into the host hemipteran. The larva begins to grow inside the host insect, but soon begins to protrude like a giant tumor from the host body. A tough, leathery covering develops to protect the growing larva. Eventually, the larva pupates and a new adult emerges to begin the cycle anew.

As you might imagine, things do not go well for the host hemipteran — it does not survive the process. That’s why this insect is called a parasitoid (as opposed to a parasite): parasitoids kill their host, while parasites are non-fatal.

Photo by Kelsey Bailey.

Photo by Kelsey Bailey.

This particular specimen, from a BioSCAN trap of course, is a female. In this family of wasps, the females are sometimes wingless, the males always winged. I just love the “hammerhead” appearance of this beautiful lady. My absolute favorite feature of this wasp is the front legs. You may have to look rather closely (click on the image to see it full size), but the front legs are modified into what I can best describe as “tongs with teeth”. These modified appendages are used to hold the host insect still while Momma Wasp lays her eggs. Ouch!

Faces of BioSCAN: The Amazing Adam Wall

Photo by Kelsey Bailey.

Photo by Kelsey Bailey.

When the BioSCAN Project moved into the Marine Biodiversity Center, the whole team soon realized the project required myriad people, talents, and skills. Adam Wall, Assistant Collections Manager of Crustacea, has a keen interest in problem solving, and soon found himself helping USC students seek answers to BioSCAN-related questions.

Adam comes from a fascinating background in electrical engineering. He previously worked for JPL (Jet Propulsion Laboratory, a part of NASA) on robotics. I was excited to learn that he worked on walking robots called “spiderbots” — which even pre-BioSCAN he realized would be more accurately termed “insectbots”, due to their having six legs instead of eight. These walking robots were being developed as alternatives to the more traditionally wheeled or tracked robots used both in space and military applications. Walking robots were smaller, more versatile, and less expensive than their traditional counterparts. Adam eventually moved on to a small startup company where he helped construct robots still used by USC to teach robotics.

Adam eventually left the world of robotics to study at USC. Although he initially pursued biochemistry, it was through his work study at the Natural History Museum that he first realized his love for biology. Working upstairs with Dr. Regina Wetzer, it was all about “coffee and problem solving”, two things Adam finds irresistible. When he casually mentioned to Regina that one day he would like to name and describe a species, he had no idea the journey he was about to embark on. Adam has spent the last five years revising a subgenus within the isopod genus Exosphaeroma. A single, poorly described species from 1857 has become five species stretching from Alaska to Baja. Perhaps best of all, Adam got to name a species of isopod after his closest uncle.

Now that his isopod work is coming to completion, he is unsure of what the future might hold. His big goal is always the question, the problem solving — we could find him studying just about anything next! For now, though, he is helping our students with both the genetics work in the lab, and the study of Wolbachia, a bacteria that lives inside the reproductive organs of insects. This bacteria can affect the life history of its host, and the “sheer insanity” of the relationship intrigues Adam.

When he’s not consumed by isopods or BioSCAN, Adam delights us with his fondness for mechanical toys. Above, you can see him powering a miniature version of the amazing Strandbeests.

The Coffin Fly

Photo by Kelsey Bailey.

Photo by Kelsey Bailey.

As you well know, we are fly obsessed here at BioSCAN. Particularly, we are phorid obsessed. I am particularly obsessed with the macabre species Conicera tibialis, commonly known as the Coffin Fly. Perhaps it’s the shadowy lighting as I view them under the microscope, but these flies, with their dark velvety bodies and (almost sinister looking) conical antennae (males only, females have round antennae), appeal to me tremendously.

Photo by Kelsey Bailey.

Photo by Kelsey Bailey.

A number of phorid species are known to colonize humans remains, but C. tibialis seems the most determined. Adult females of this species are known to dig down through over 2 meters of dirt and enter coffins to lay their eggs. To complete an equivalent journey, a human being would have to dig 2 miles down — in perspective the feat seems all the more remarkable!

Once the females reach the corpse they lay their eggs on, or near, the cadaver. The maggots hatch and feed on the decaying tissue — they are known to prefer lean tissue (while other taxa, such as some species of beetles, prefer adipose tissue). Yes, even corpse eaters can be picky! C. tibialis is known to be able to cycle multiple generations without surfacing (what they are doing below ground, the living can only imagine!). When the flies do surface, they do so by crawling the reverse path of their ancestors: back up through many feet of dirt.

Charles Colyer, in a paper from 1954, conveyed the observations of his friend Mr. R.L. Coe that were some of the first key insights into the life history of this species. In May of that year, Mr. Coe observed a number of C. tibialis running about a patch of his garden, where 18 months before he had buried his deceased dog. As Mr. Coe observed more closely, he realized that all the running about was actually a mating frenzy — complete with pairs frolicking in coitu! On Colyer’s request, Coe dug down to the corpse of his former pet, observing phorids at every depth along the way. The flies were all traveling toward the surface, in a mass exodus from the grave — hoping to join the mating party so that they might return to this, or another, grave and lay eggs of their own. Alas, Mr. Coe reported that by June 16 the phorids could no longer be found in their mating frenzy in his garden — where for weeks they had been seen “running over the ground in sunshine, and congregating under loose clods of earth in inclement weather”.

Photo by Kelsey Bailey.

Photo by Kelsey Bailey.

C. tibialis is known not only to dig to astounding depths for corpses, but to wait unbelievably long periods of time to colonize. Corpses are typically utilized over a year after burial, and a paper by Martin-Vega et al. (2011) revealed a case where the species was found breeding on human remains 18 YEARS postmortem. Phorid species are some of the key insects used in the field of forensic entomology — a branch of forensics utilizing insect life cycles to help approximate the age of a corpse.

A story detailing the occurrence of C. tibialis in California was recounted by Father Thomas Borgmeier (1969), one of the “fathers” of phoridology. He was sent specimens of the fly that were collected in a mausoleum in Colma. A family had constructed an above-ground resting place for their deceased in 1962, and in 1965 noticed large numbers of the flies both in the mausoleum and around the cemetery. The family made the decision to open the four crypts. All four crypt interiors were dry and filled completely with C. tibialis and spiders. I bet the phorids were happy they had such easy colonization – no digging required!

The take home message of this macabre tale should not be one of disgust. Although the details may be gruesome, insects that colonize corpses are performing the necessary breakdown of organic material that must occur postmortem. Only by this breakdown — by insects, fungi, and bacteria — can bodies be released to reenter the circle of life. Consumers of carrion are beneficial, performing an invaluable service to us below the surface. BioSCAN Principal Investigator Brian Brown likes to say that being food for C. tibialis is one way we can all contribute to the well being of phorids.

I hope you might be as delighted by this fly as I am after reading the amazing life history and marveling at the amazing photos taken by our star photographer Kelsey Bailey, who expertly capture the dark, sleek aesthetic of this species on film (well… digitally [did I just date myself?]). When I handed Kelsey a vial with several dried specimens, I told her I wanted creative photos to visually express the morbid life history of these flies. As you can see, she did not disappoint. I particularly enjoy the photograph at the top of the post — Kelsey beautifully mounted the specimen on the head of an insect pin — a glittery orb I wish appeared more often in entomological photos. I also like the film noir feel of the “portrait” she took of this species. Yes, I really like this fly. Perhaps my love for C. tibialis is so deep (2 meters, to be exact) because I know they will be with me not just in life, but for up to 18 years past my death.

VITA INCERTA, MORS CERTISSIMA.

Molten Aluminum + Ants = BUG FAIR!

Photo by Doug Booher.

Photo by Doug Booher.

A note about specimen sacrifice:
We do not advocate needless killing of any creature, big or small. Unfortunately, there are aspects of science that we are unable to examine without sacrifice. The ant nest that was used for our cast was sacrificed to create an amazing and permanent research and educational tool. The loss of one nest allows us tremendous insight into this species, which will benefit future efforts at understanding and conserving these native insects. As a reseach natural history museum, specimens are prepared and maintained at the highest museum standards, so that they will be available for researchers in perpetuity.

The BioSCAN crew dug ourselves into a hole last weekend when we journeyed to Anza-Borrego to cast ourselves an ant nest from molten aluminum! This amazing sculptural project was made possible by Aida and Armando Gonzalez, and led by the incomparable myrmecologist Doug Booher, a Ph.D. student at UCLA. If you’d like to see the six-foot-tall results of our day in person, you will have to come visit the BioSCAN table at Bug Fair , but read on for some information about the process, and the ants that built the nest!

Photo by Doug Booher.

Photo by Doug Booher.

Meet Myrmecocystus navajo, a species of honeypot ant. Honeypot ants are aptly named — they use workers called “repletes” to store nectar (collected from plants and other insects, such as aphids) for the colony. These repletes can get so engorged with honey they look like squishy, glistening marbles as they hang from the top of inside chambers. You can see some photos of repletes here.

We chose to cast the nest of this species for its size, complexity and beauty. First task of our day in the desert was to locate a suitable ant nest. Below, you can see our chosen nest. Although from the surface this nest is just a hole in the ground, we were tremendously excited by what we knew was hidden out of sight!

Photo by Emily Hartop.

Photo by Emily Hartop.

Next step was to fire up the kiln to melt us some metal! Crafted by Doug using techniques developed by Walter Tschinkel (detailed PDF of his techniques here), the kiln is powered by charcoal (and physics) to get hot enough to melt aluminum (Lisa is pictured with our raw material, below).

Photo by Emily Hartop.

Photo by Emily Hartop.

The kiln, like a barbecue, takes a while to heat up. Once hot, we added the aluminum to the interior compartment (called a “crucible”) and let it melt. Below, you can see Doug right after he pulled the full crucible from the kiln in preparation for the pour.

Photo by Emily Hartop.

Photo by Emily Hartop.

It’s Pompeii for ants as Doug pours in the molten aluminum. A moment of silence, please…

Photo by Emily Hartop.

Photo by Emily Hartop.

Now the fun really began…as we dug…and dug…for hours…and hours…in the hot desert sun, with the wind fiercely blowing sand all around us. In the picture below, you can see the sand whirling around Lisa as she worked down in the pit.

Why are we digging? Regrettably, one cannot simply yank a nest casting out of the ground. One exhumes it, inch by inch.

Photo by Emily Hartop.

Photo by Emily Hartop.

The final product was a nest over six feet deep — we hope you are able to come see it (and us!) at Bug Fair this weekend. Doug Booher, who led our trip, will be there so you can meet him. A big thanks from BioSCAN goes out to him for all his amazing efforts to make this dream project a reality!

Big thanks also go out to Walter Tschinkel, the myrmecologist who refined the technique of casting ant nests and passed his knowledge on to Doug. Previously, casts were made with plaster and other materials that made storage and transport difficult. He is pictured, below, on his porch in the California desert celebrating a (different) successful day of ant casting.

Photo by Emily Hartop

Photo by Emily Hartop

Going Native

A local bumble bee, photographed by BioSCAN Principal Investigator Brian Brown.

A local bumble bee, photographed by BioSCAN Principal Investigator Brian Brown.

Out of the hundreds of bee species found in Los Angeles County, a single species gets most of our attention: Apis mellifera, the European honey bee. This species has a relationship with man that has existed for centuries. It is an exotic species that was introduced to North America. In addition to being widespread in the wild, they are widely used for pollination of commercial crops, as well as for honey — that sweet elixir of regurgitated nectar that is excellent in tea, cookies, breads, cakes, and all manner of other culinary delights. If you would like to know more about this species, we suggest the fun read “Sweetness and Light” by Hattie Ellis — what we’d like to focus on here are the many other bees with which you might not be as familiar. These are the bees that have been right here all along, our native bees of Los Angeles.

Native bees are a diverse and fascinating group. Most of the species are solitary — meaning they build individual nests rather than living in colonies of thousands like the honey bee. Even the few of our native species that are social (like bumble bees and sweat bees) have colonies that rarely exceed a few dozen workers. One of the great things about native bees, apart from their fascinating diversity, is that they are not aggressive stingers. Ironically, the bees that have the cutest, fuzziest image (the aforementioned honey bees and bumble bees), are the most prone to give you a nasty sting.

Native bees are mainly attracted, obviously enough, to native plants, from which they gather pollen for their offspring. Most of the solitary species of native bee tend to specialize on a specific plant or group of plants for pollen, while some of the social species are generalists that will take advantage of more diverse resources. All types of bees will visit virtually any flower for nectar. Bees that take advantage of more diverse resources are better adapted to make use of the wide range of resources that may be available in urban environments.

Photo by Kelsey Bailey.

Photo by Phyllis Sun.

The beautiful bee above is a male bee in the genus Agapostemon. In the family Halictidae, they are also known as Metallic Sweat Bees. Though they are part of this family, named because of their attraction to sweat, this particular genus does not exhibit this trait. This specimen is easily distinguished as a male bee — females of this species are uniformly metallic, while males have a more typical “beelike” striped abdomen. Most Agapostemon are solitary, digging a deep vertical burrow in sloping soil or bank.
When to look for them: Summer to fall
Where to look for them: On composite “daisy-like” flowers

Photo by Phyllis Sun.

Photo by Phyllis Sun.

Pictured above is perhaps the most endearing genus of bees, Bombus: the bumble bees. This particular specimen is the one and only bumble bee that has been caught in a BioSCAN trap (Site #1, NHM Nature Garden). There are 26 species of bumble bees in California and some have been in serious decline since the 1990s due to commercial keeping of bumble bees, habitat loss, pollution, and climate change. Bumble bees are generalists with long tongues that can obtain nectar from even very deep flowers. They are social bees that live in colonies of up to 1,000 individuals, although most colonies have under 50 bees. These colonies, unlike honey bee colonies, do not provision for overwintering. Instead, the colony dies off in the fall and the queen overwinters alone — emerging in spring to start up a new colony. Bumble bees are better pollinators than honey bees for crops like tomatoes, cranberries, raspberries, blueberries, and field beans. This is partly due to the fact that some flowers only release pollen when the anthers are vibrated at certain frequencies — the “buzz” of a bumble bee accomplishes this!
When to look for them: Early spring to late fall
Where to look for them: Flowers with tubular shapes

Photo by Kelsey Bailey

Photo by Kelsey Bailey.

Our next bee is a specimen from the genus Andrena — a Miner Bee. Before we get into the details on this genus, we want to show you how much care and love go into specimen processing for bees. Below, you see my esteemed colleague and entomological other half, Lisa Gonzalez, carefully drying a bee (look at the intense expression — this is serious!). Using a paintbrush (close up, second photo below), Lisa carefully fluffs up the hairs on each bee as she uses a blow dryer to dry them. Without this extra effort, the fuzz on bees would dry matted and stuck together. So all the fluffy bees in these blog photos are thanks to Lisa’s delicate handiwork!

Photo by Phyllis Sun.

Photo by Phyllis Sun.

Photo by Phyllis Sun.

Photo by Phyllis Sun.

Andrena is associated with willow, and emerges in large numbers in spring when willow blooms. This makes perfect sense to us — we found over 100 bees in a single spring sample from right near the L.A. River, where there is plenty of willow growing! These bees are mostly solitary, but nests can be clustered together in aggregations in sandy soil or near shrubs.
When to look for them: March-September
Where to look for them: Nearly any sort of flower — including wind-pollinated species like willows

Photo by Kelsey Bailey.

Photo by Phyllis Sun.

This next bee is a large leaf-cutter bee from genus Megachile. Leaf cutters use their mandibles (mouthparts) to cut leaves or flowers of plants and use them to form nest cells. This genus includes both specialist and generalist species, including M. rotundata which specializes on alfalfa and is an introduced species critical to commercial pollination of that crop. These bees are cavity nesters, and will make use of bee hotels — they will line cells with the pieces of leaves they cut. This group also includes some species that use resin and mud to build above ground nests and some ground dwellers — most are opportunists that take advantage of their surroundings. An interesting feature of Megachile is that the scopa, which is a group of hairs that collect pollen, is on the underside of the abdomen, whereas most bees have this adaptation on their legs. One of the scientists working at the Museum, Anna Holden, works on Megachile from the La Brea Tarpits. A National Geographic article featured her work, you can find that article here.
When to look for them: Summer
Where to look for them: Many flowers, but especially in the pea family (Fabaceae)

A related genus of bees, the small leaf-cutter bees, genus Osmia, win the award for the cutest bees! These small, stout bees have an abdominal scopa like their larger cousins the Megachile. They often have a metallic green or blue sheen, and are efficient pollinators of a number of fruit trees. 250 female bees of this genus can out-pollinate tens of thousands of honey bees! We had to mention them here so that we could share this amazing video of an Osmia using an abandoned snail shell for a nest, or how about this beautiful use of flower petals?
When to look for them: Spring to summer
Where to look for them: Mostly perennial shrubs and trees, and Phacelia

If you’d like to attract native bees to your own yard, the Xerces Society webpage is a great resource. Additionally, bee hotels can be made or purchased in a variety of forms to help your garden space become a nesting place for solitary species. There are many resources for different types on the internet, but you can start here.

For more information and help with indentifying native bees, we recommend the Field Guide to the Common Bees of California by Gretchen Lebuhn.

Faces of BioSCAN: World Traveler & Accidental Bug Lady Jennifer Camello

Photo by Phyllis Sun.

Photo by Phyllis Sun.

This week we feature another of BioSCAN’s amazing USC students, Jennifer Camello. Jennifer is a junior at USC majoring in Anthropology. She plans to go to medical school with the admirable goal of being a leader in global health advocacy, helping to make the world a more equitable place.

Jennifer came to our lab “squeamish around insects”. Although she admits that she is still working on not panicking when there are bees or wasps around, she now finds herself intrigued by most of the insects she encounters. Not only does Jennifer identify the insects she sees to the level of order (part of what she does for the project), but she even tries to examine the genitalia of flies to determine the sex. We have trained her well.

Her favorite part about the BioSCAN project is “being surrounded by people who are so passionate about their work”. She loves “when somebody finds a really exciting insect under the microscope and gathers everyone else around to take a look at it”. She is also a great asset at the BioSCAN table in the Nature Lab, where she enjoys explaining BioSCAN to children visitors. She loves that some are “super intrigued and others are completely grossed out”! We have confidence that Jennifer’s previous aversion to insects can help her relate to the grossed out children and help them find their own inner entomologist.

Working on an urban biodiversity project has been a revelatory experience for Jennifer. She stresses the importance of studying the biodiversity of our cities in the face of expanding urbanization. She is amazed at the number of insects she sees in the samples — she had no idea there existed such diversity in an urban setting. As many might, she overlooked a vast majority of our urban biodiversity because “most of them are so tiny and just look like specks to the naked eye” — if you didn’t see last week’s post on microscopy, you should read about the tools that helped to change Jennifer’s perspective.

When asked what she liked best about working in the BioSCAN lab, she revealed one of our best kept secrets: BioSCAN staffers love to eat delicious food! Not only do people bring in delicious treats they buy or make, but the lab is inclined to turn into a makeshift sushi restaurant for special occasions. Unfortunately, we don’t do outside events, so please, no calls for catering.

Outside of BioSCAN and her busy school schedule, Jennifer finds time for travel…and more travel! This summer, she will make it to her fifth continent when she visits China (she has previously visited South America, Europe and Africa). Last summer she spent a month in Ghana. After graduation, her travel plans include Egypt, Morocco and Thailand. Even with all her traveling atop school and BioSCAN, Jennifer also loves to bake, curl up with hot tea and a good science fiction book, explore new cities and try new foods, find the best taco stands/trucks around Southern California (I will be asking her for recommendations), ski and snowboard, and scuba dive. She is obsessed with Greek mythology. She is looking forward to her trip to China this summer, her upcoming 21st birthday, and to returning home in the fall to a new football season and her senior year!

Lastly, in typical Southern California style, Jennifer had her few seconds of fame in a music video. If you think you can, try to spot her here.

Up Close and Personal with Fly Genitalia

SEM Photography by Emily Hartop

SEM by Emily Hartop

As many of you know, a principal research focus of the BioSCAN project is the phorid fly. Although a majority of us encounter phorids everyday, we are mostly oblivious to their existence due to their small size. Luckily, scientists have tools that allow us to enter the microscopic world of the phorid in order to study them in detail. Three of these techniques: scanning electron microscopy (SEM), slide mounting with compound microscopy, and stereo microscopy are the subject of this week’s blog.

The photo above is the male genitalia of a species of phorid of genus Megaselia taken with a scanning electron microscope (SEM). This specimen came from a BioSCAN trap, and was dried from its ethanol-soaked state with a chemical called HMDS. Entomologists use HMDS to dry specimens to reduce distortion during dehydration. If dried straight from ethanol, specimens end up crumpled — sometimes beyond recognition. The detail from SEM photography is far greater than what scientists can achieve with a regular light microscope. The seemingly giant, barbed spikes on this fly’s genitalia appear as minute bristles, even at the highest magnification on a compound microscope. SEM photography is done using a focused beam of electrons bounced off of an electrically conductive specimen — for this, biological specimens are “sputter coated” with a conductive material before being placed in the vacuum chamber where they are blasted with electrons.

Photo by Kelsey Bailey

Photo by Kelsey Bailey

Another useful microscopy technique is slide mounting. The photo above is of the genitalia of another species of Megaselia that has been “cleared” and slide mounted. Clearing is done with pure clove oil, which the specimens are transferred to from the ethanol they are collected in. Through extended soaking, the clove oil dissolves away the soft internal tissue of the specimens and leaves behind the rigid structures that contain the morphological features scientists use for identification. Once cleared, the specimens are mounted on glass slides in small drops of Canada Balsam (a tree resin) for permanent storage and study. BioSCAN scientists are hard at work everyday, mounting hundreds of specimens for closer examination. Dozens of species have already been identified from the project — a number of them are potentially new species.

Photo by Kelsey Bailey

Photo by Kelsey Bailey

Last but not least, the photo above is a stereo microscope shot of BioSCAN specimens still in the ethanol from the Malaise trap. Using stereo, or dissecting, microscopes, BioSCAN scientists are able to sort many of our phorids to species without the additional processing of slide mounting or SEM. This leaves only the really tricky specimens for more advanced techniques. Since we are dealing with thousands of phorids from the BioSCAN sites every week, the more species we can identify using this first method, the better.

You may be wondering why we entomologists appear to be so fixated on the genitalia of these flies. The answer is simple — features of male fly genitalia are one of the principal ways of identifying these flies to species. BioSCAN scientists must study male phorids to determine all the species we have in the Los Angeles fauna — females often lack enough discernible morphological features to easily separate to species. One goal the BioSCAN entomologists have is to get scientific illustrations done of the male genitalia of each phorid they come across — creating an incredible visual encyclopedia for phorid identification in the years to come!

Faces of BioSCAN: Research with the Remarkable Regina Wetzer

Photo by Phyllis Sun

Photo by Phyllis Sun

This week, I am pleased to better acquaint you with BioSCAN’s Co-Principal Investigator, and Associate Curator & Director of the Marine Biodiversity Center, Dr. Regina Wetzer. Regina was a natural fit for the BioSCAN project. She is a marine biologist with a passion for taxonomy and biodiversity. She is also an accomplished ambassador — she works closely with both professors and students at USC and has colleagues across disciplines and around the globe. She understands deeply how collaborations allow researchers to accomplish bigger, greater goals than what they could achieve individually. As Co-Principal Investigator of this project, she supervises much of the day-to-day activity of the BioSCAN lab — including advising our many USC students on their BioSCAN-related research projects. She also manages the lab with impeccable organization and style, and plays a key role in putting on events like last weekend’s soirée for our BioSCAN site hosts.

Regina grew up here in Southern California — in fact, her grandfather used to push her stroller through the Exposition Park Rose Gardens next door to the Natural History Museum. She earned degrees at both Loyola Marymount (B.S. Biological Sciences) and Long Beach State (M.S. Biological Sciences/Invertebrate Zoology) before taking a job with a marine supply company. There, she worked for Rim Fay, Southern California’s answer to Dr. Ricketts from Cannery Row. Eventually, fate led her back to the Natural History Museum here in Los Angeles. As a curatorial assistant, Regina found herself smitten — with crustaceans. After moving to the San Diego Natural History Museum for a time, she traveled across the country to get her doctorate working on crustaceans at the University of South Carolina.

Regina’s work in recent years has been on the taxonomy of crustaceans, focusing on the isopod family Sphaeromatidae. She has been working on this group’s phylogeny and mate-guarding behaviors since 2002 — with work around the world including East Africa and the Great Barrier Reef. It is a testament to her dedication that twelve years after this project began, Regina is still working hard to answer the questions originally posed when she started her work on this particular phylogeny.

Photo by Dean Pentcheff

Photo by Dean Pentcheff

Regina’s work has taken her to South America, the South Pacific, Australia, and even Mongolia (photos above and below — and, yes, landlocked countries have crustaceans, too!), but she speaks most fondly of her extensive travels in Baja. Part of her affinity for the peninsula comes from her fascination with organisms that are adapted to life in extremely harsh conditions, including desert flora and fauna. The fantastic landscapes of the San Felipe and Vizcaino deserts of Baja, with their boojum trees, ocotillo, and giant cardon, intrigue and delight Regina. These are magical lands for all who visit them, and Regina is lucky enough to have visited them many times.

Photo by Dean Pentcheff

Photo by Dean Pentcheff

In addition to her prolific body of scientific work, Regina is a fantastic and passionate cook, an avid gardener of cacti and succulents, and a devoted fan of gypsy music (she grew up with a father who plays accordion!). Her favorite vacation destination is her beloved Baja “Boojumland” (although she’s in Tibet as we post this!). She’s an amazing leader, an excellent scientist, and a fascinating human being — we’re incredibly lucky to have her on the BioSCAN management team!

The Mesmerizing Eyes of Eristalinus taeniops

Photo by Dr. Brian Brown

Photo by Dr. Brian Brown

This week, we bring you a visual treat from BioSCAN’s Principal Investigator, Curator of Entomology, and Photographer Extraordinaire, Dr. Brian Brown. His beautiful photo (above) of Eristalinus taeniops was taken in the NHM’s Nature Garden, home to BioSCAN Site #1. This species is commonly known as the Stripe-Eyed Flower Fly, from the family Syrphidae, commonly called Flower or Hover Flies from their habit of hovering hummingbird-style over flowers in search of nectar. Although syrphid flies are quite common in the BioSCAN traps, this particular species has not yet been captured by our project. Dr. Jim Hogue, also an entomologist and photographer as well as a BioSCAN site host, speculated that this fly is simply too strong a flier to be easily corralled into death by Malaise trap.

The entomological equivalent of “The Ugly Ducking”, the larvae of the stunning Stripe-Eyed Flower Flies are filth-dwelling Rat-Tailed Maggots. The “rat tail” is actually a telescopic breathing tube that allows larvae to mature in stagnant, and often polluted, water (and other moist substrates lacking in oxygen). The tube allows them to “snorkel” at the surface to breathe.

Also on the list of this fly’s unsavory larval habitats, rare cases of human intestinal myiasis — where larvae develop inside the human gut — have been documented for this group. The breathing tubes of the maggots, in this case, would be located in close proximity to their host’s anus to allow them to breathe.

Despite their distasteful beginnings, the Stripe-Eyed Flower Flies certainly turn out to be magnificent adults. Not only are they amazing honeybee mimics, but their striped eyes are absolutely hypnotizing. This pigmentation may serve an optical purpose, but more research must be done on this group before conclusions are to be made.

Photo Copyright by Dr. Jim Hogue (used with permission)

Photo Copyright by Dr. Jim Hogue (used with permission)

If you haven’t seen the Stripe-Eyed Flower Fly buzzing around your yard, keep looking! The first California record for the species was in 2006 from Orange County. Three years later only a single specimen was found when Dr. Brown and Dr. Hogue worked on local Flower Flies for the booklet “Flower Flies of Los Angeles County“. That single specimen was from Dr. Hogue’s Eagle Rock backyard, which is now a BioSCAN site! Above, you can see another beautiful photograph of this species, this one taken by Dr. Hogue.

Originally, Eristalinus taeniops was from southern Europe, Africa and the Middle East. Introduced species can sometimes create issues for native flora and fauna, but it doesn’t appear that Eristalinus taeniops is creating any problems. We’re glad, because it sure is a stunning addition to our Flower Fly fauna!

The Faces of BioSCAN: Photography with Kelsey Bailey

Photos by Kelsey Bailey

Photos by Kelsey Bailey

BioSCAN Buzz is excited to bring you the first in a new series of blog features: “The Faces of BioSCAN”. We will be interspersing these posts, illuminating the amazing folks we have working behind the scenes, with continued coverage of exciting news from the project.

This week, we begin our series by featuring the woman behind the amazing insect photographs you see on the blog: Kelsey Bailey.

Photo by Phyllis Sun

Photo by Phyllis Sun

Kelsey is a senior political science student at USC, minoring in photography and social change. After graduation, Kelsey aspires to find a job that will utilize her diverse talents and allow for travel. She has the ambitious goal of becoming a photographer for National Geographic; from what we’ve seen she’s well on her way to achieving success of that caliber!
 
Kelsey’s interest in photography encompasses all elements of the craft, from the technical to the artistic. Her art history and photography classes have left her intrigued and inspired about the “many different dialogues about time, legacy, representation, technology, mortality” that photography opens up. She is constantly challenging herself by working on both the technical specimen photography for BioSCAN and fine art, conceptual photography. She finds her job particularly exciting when the two intersect, which we like to think happens with our beautiful insect specimens.

In her work with BioSCAN, Kelsey expressed her excitement that she gets to reveal a microscopic world through her photography: “To the naked eye, insects appear to be indistinguishable black specks in a petri dish, using a camera and a microscope I get to expose them as remarkably diverse creatures with intricate structures and vivid colors. Photography is an effective way to convey this biodiversity to the public as well as inviting people to take a peek at a microscopic world.”
 
Kelsey also spoke of the challenges of shooting insects: “They’re ridiculously small and sometimes difficult to physically handle. It’s been somewhat of a struggle to develop a process for photographing them, but it gets easier over time.” Kelsey’s process involves photographing the insects under a microscope with a camera connected to a computer. At high magnification, she must take a series of photographs at different focal lengths, and then “stack” them using special software. This allows her to create composite photos that have the entire depth of the insect in focus.

Kelsey is well versed in dealing with the many challenges of insect photography. She photographs specimens both dried and in ethanol; each provide very different obstacles. Reflections and refractions are constant hurdles one must face when photographing through a liquid, or photographing insects, which often have reflective surfaces. Her favorite insect to photograph? So far, Kelsey’s favorite photography session was with the asilid, or Robber Fly, which is the top left image in the collage above. Kelsey loved that the Robber Fly was “such a theatrical little monster!”
 
Outside of BioSCAN, Kelsey loves music, politics, other art forms, the great outdoors, pouring cream into her coffee, making things with her hands, and beer tasting. Just recently, Kelsey ran the LA Marathon which she considered a “quite monumental” personal accomplishment (we agree!). We can’t wait to see what Kelsey does next, and we’re so happy we can share her talents with all of you!